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Abstract
 The successful fabrication is reported of highly crystalline Co nanoparticles interconnected with zeolitic imidazolate frame-
work (ZIF-12) -based amorphous porous carbon using the molten-salt-assisted approach utilizing NaCl. Single crystal dif-
fractometers (XRD), and X-ray photoelectron spectroscopy (XPS) analyses confirm the codoped amorphous carbon structure. 
Crystallite size was calculated by Scherrer (34 nm) and Williamson-Hall models (42 nm). The magnetic properties of NPCS 
(N-doped porous carbon sheet) were studied using a vibrating sample magnetometer (VSM). The NPCS has a magnetic 
saturation (Ms) value of 1.85 emu/g. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) 
analyses show that Co/Co3O4 nanoparticles are homogeneously distributed in the carbon matrix. While a low melting point 
eutectic salt acts as an ionic liquid solvent, ZIF-12, at high temperature, leading cobalt nanoparticles with a trace amount of 
Co3O4 interconnected by conductive amorphous carbon. In addition, the surface area (89.04 m2/g) and pore architectures of 
amorphous carbon embedded with Co nanoparticles are created using the molten salt approach. Thanks to this inexpensive 
and effective method, the optimal composite porous carbon structures were obtained with the strategy using NaCl salt and 
showed distinct electrochemical performance on electrochemical methodology revealing the analytical profile of Erdatifinib 
(ERD) as a sensor modifier. The linear response spanned from 0.01 to 7.38 μM, featuring a limit of detection (LOD) of 3.36 
nM and a limit of quantification (LOQ) of 11.2 nM. The developed sensor was examined in terms of selectivity, repeatability, 
and reproducibility. The fabricated electrode was utilized for the quantification of Erdafitinib in urine samples and pharma-
ceutical dosage forms. This research provides a fresh outlook on the advancements in electrochemical sensor technology 
concerning the development and detection of anticancer drugs within the realms of medicine and pharmacology.
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Introduction

Cancer, which is known to have various, is one of the most 
common causes of mortality globally [1]. Bladder cancer, 
with urothelial carcinoma being its predominant subtype, 
is a highly prevalent malignancy on a global scale, holding 
the 10th position in terms of cancer incidence worldwide. It 
affects men more commonly than women and is character-
ized by elevated levels of morbidity and mortality [2–4]. 
This underscores the significant impact of bladder cancer on 
public health, emphasizing its substantial role in the land-
scape of oncological diseases. The pathogenesis of various 
malignancies, including urothelial carcinoma, has been intri-
cately linked to anomalous fibroblast growth factor receptors 
(FGFR) signaling pathways [5]. FGFRs, pivotal players in 
cellular processes such as proliferation, differentiation, and 
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growth, also regulate cell migration and the selective induc-
tion of apoptosis during embryogenesis and angiogenesis 
[6]. This intricate orchestration makes FGFRs attractive 
targets for anti-neoplastic pharmaceutical agents. Demon-
strated inhibitory effects on cellular proliferation and the 
induction of programmed cell death across diverse tumor 
models bearing FGFR aberrations have led numerous 
research consortia to embrace FGFRs as prime targets for 
therapeutic development [7]. Erdafitinib is a highly potent 
and discerning oral pan-FGFR tyrosine kinase inhibitor. This 
pharmaceutical agent, a product of collaborative research by 
Astex and Janssen, achieves the distinction of being the first 
FGFR inhibitor to gain FDA approval in 2019 for utilization 
in the treatment of metastatic urothelial carcinoma (UC) [8]. 
Erdafitinib exerts its action by impeding FGFR phospho-
rylation, thus curtailing FGFR-mediated signal transduction 
cascades. This intervention serves to preclude tumor cell 
proliferation and provoke programmed cell death, thereby 
contributing to its anti-neoplastic effect [9].

The compound’s IUPAC nomenclature is denoted as 
N’-(3,5-dimethoxyphenyl)-N’-[3-(1-methylpyrazol-4-yl)qui-
noxalin-6-yl]-N-propan-2-ylethane-1,2-diamine (Figure S1) 
[10]. Erdafitinib is classified within diverse pharmacological 
categories, such as anti-neoplastics, pyrazoles, diamines, and 
quinoxalines. This comprehensive categorization is crucial 
in characterizing Erdafitinib within the broader pharmaco-
logical landscape, elucidating its molecular and structural 
attributes that contribute to its pharmacotherapeutic profile. 
Such precise delineation facilitates a nuanced understand-
ing of Erdafitinib’s pharmacological identity, providing a 
foundation for its contextualization and exploration within 
the intricate domain of pharmaceutical sciences [11].

Beyond all these, the active ingredient Erdafitinib causes 
many negative effects on human health, such as hyperphos-
phatemia, hyponatremia, stomatitis, asthenia, nail dystrophy, 
urinary tract infection, and palmar-plantar erythrodysesthe-
sia syndrome. Therefore, the determination of Erdafitinib is 
of great importance to prevent side effects, especially con-
sidering the high reported rates of ocular toxicity [12–14].

Examination of the existing literature pertaining to Erdafi-
tinib (ERD) disclosed a paucity of documented analytical 
methodologies available for the quantitative determination 
of this compound. In reported studies, HPLC–UV [15, 16], 
LC–MS/MS [17], UPLC-MS/MS [18, 19], and spectrofluor-
imetric methods [20] have been investigated. To our most 
current knowledge, there is an absence of any established 
electrochemical methodology documented for the quantifi-
cation of this compound. Therefore, this investigation dis-
tinguishes itself as the inaugural electrochemical analysis 
conducted on ERD. Additionally, the methods described in 
the literature exhibit drawbacks such as elevated costs, intri-
cate and time-consuming experimental procedures, and the 
utilization of large quantities of toxic and hazardous solvents 

[21–24]. For example, the derivatization steps can extend 
the analysis time, and certain situations may necessitate the 
use of purely organic solvents. Consequently, employing the 
mentioned techniques for analysis would be labor-intensive, 
requiring derivatization and pre-concentration steps, encom-
passing sampling and various forms of extraction before 
conducting the actual analyses [25]. Thus, the requirement 
arises for advanced laboratories and skilled manpower [26]. 
The LC–MS/MS provides enhanced specificity and sensitiv-
ity; however, its primary drawbacks include the substantial 
instrument costs and limited availability in various centers 
[27]. HPLC–UV is favored due to its greater accessibility 
compared to the expensive alternative method. However, it 
has a lengthier run time and demands a larger sample vol-
ume owing to its lower sensitivity [28]. Besides all this, 
Electrochemical methods stand out as alternatives among 
various detection techniques because of their cost-effective-
ness, prompt response, high sensitivity, and selectivity for 
drug analysis molecular detection, coupled with reduced 
reagent consumption [29, 30]. Furthermore, electrochemi-
cal sensors are considered to be more selective, efficient and 
sensitive compared to alternative methods, primarily due to 
their ability to improve through various modifiers [31–34].

Carbon materials such as graphene, graphite, and acti-
vated carbon have been well-known due to their unique and 
important characteristics, such as large specific surface area, 
abundant resources, high chemical resistance, and high elec-
tronic conductivity [35, 36]. After KOH activation, the first 
superactive carbon with an extremely large surface area was 
formed [37, 38]. However, this material is quite expensive 
due to the large amount of alkali utilized in its production. 
For the production of activated carbon, various inorganic 
salt derivatives have been used to create superactive carbon 
[39, 40]. Recently, a simple and sustainable method for the 
synthesis of extremely porous functional carbons, known as 
“salting templating” [41], has been disclosed. At increased 
temperatures, a carbon precursor is combined with a non-
carbonizable inorganic salt, which is then carbonized and 
scaffolded. This method yields carbonized networks that 
maintain the structure of their inorganic counterparts while 
keeping their exceptional porosity and pore size. The molten 
salt synthesis process is a cost-effective and efficient way to 
produce carbon-based products with excellent yields [42, 
43]. By utilizing molten salts as a liquid reaction media 
and pre-formed templates, this approach is frequently uti-
lized to manufacture diverse carbon nanostructures using 
a variety of carbon precursors and inorganic salts [44–46]. 
Metal–organic frameworks (MOFs) are a novel type of 
porous materials that combine organic and inorganic com-
ponents [47–49]. The distinct advantages of MOFs, such 
as their crystalline porous structure, highly dispersed metal 
components, and adjustable pore size, have led to their 
extensive investigation in gas storage [50], separation [51], 
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purification [52], catalysis [53–57], drug delivery [58–60], 
sensing [61], thin-film systems [62, 63], energy storage 
devices [64], and for the fabricate a conductive composite 
porous amorphous carbon [48, 65]. All depends on the char-
acteristics and ultimate structures,various synthetic methods 
can be used to generate MOFs, each with its own set of 
advantages and disadvantages. Slow diffusion [66], hydro-
thermal (solvothermal) [67], electrochemical [68], mechano-
chemical [69], microwave-assisted heating, and ultrasound 
[70] are some of the synthesis methods frequently used in 
the synthesis of MOFs. There are a few drawbacks to MOFs 
despite their many benefits; for example, they have a low 
quantum yield in luminescence chemical sensing, and elec-
trochemistry suffers from limited charge transfer and sig-
nificant charge recombination. However, these drawbacks 
can be overcome by creating composite materials based on 
MOFs. Carbons formed from MOFs via direct pyrolysis 
frequently exhibit architectures dominated by micropores, 
which significantly retard reaction kinetics by limiting mass 
transfer and providing access to active areas within micropo-
res. To enhance the application potential of MOF-derived 
carbons in Lithium-ion batteries (LIBs), recent studies have 
focused on preparing hierarchical porous carbons from 
MOFs [71]. Most prior papers on carbons generated from 
MOFs sought to create porous carbons by direct pyrolysis 
[72]. As a result of the inescapable formation of additional 
C–C or C-N bonds between adjacent MOF particles, high-
temperature annealing induces an irreversible fusion/aggre-
gation of nanoparticles and a partial morphological collapse 
of MOFs [48]. Among these strategies, nanostructuring and 
hybridization with conductive materials, such as carbon, 
have become reliable and prominent methods [73, 74]. A 
material containing nanosized metal and carbon particles is 
very effective because nanosized carbon may not just allevi-
ate the strain induced by the volume expansion of nanosized 
metals and alloys but also enhance a material’s conductivity 
to facilitate rapid charge and ion transfer. Diverse carbon 
materials, including as carbon nanotubes [75], graphene [76, 
77], and amorphous carbon [78] have been employed in this 
context to produce carbon composites/ metals/ metal oxides/ 
and alloys with significantly enhanced electrochemical per-
formance [79, 80].

The objective of this research is to intensify the produc-
tion of a conductive carbon at maximum surface area and 
product yield from ZIF-12 by applying the pyrolysis of 
ZIF-12 with NaCl. We report a simple molten salt-assisted 
method for preparing Co nanoparticle-embedded intercon-
nected porous carbon structures. During the pyrolysis, the 
NaCl salt is used and activates the surface of ZIF-12 par-
ticles and connects them into carbon skeletons. The salt 
crystal functions as a restricted reactor for the degradation 
of organic intermediates, which then generate graphene-
like carbon nanosheets during the carbonization process. 

ZIF-12 provides the carbon and nitrogen necessary for the 
creation of an N-doped porous carbon sheet (NPCS). The 
prepared amorphous NPCS is N-doped and defect-rich. The 
3D macroscopic structure encourages mass diffusion, while 
the nanosheets connecting it encourage electrical conductiv-
ity. The obtained interconnected carbon skeletons generated 
after NaCl removal become macropores, facilitating rapid 
electron/ion transport pathways that enhance the kinetics of 
the process.

The main contributions presented in this paper include 
the following: (1) synthesis of NPCS by calcining NaCl-
doped ZIF-12; (2) determination of crystal size, surface area, 
and morphology of NPCS by XRD, XPS, and SEM-TEM; 
(3) determination of Erdafitinib in synthetic human urine 
samples and pharmaceutical dosage forms using an elec-
trochemical method. On the other hand, discovering new 
anticancer drugs and screening their efficacy, avoiding pos-
sible adverse effects, require a huge amount of resources 
and time-consuming processes. Streamlining the time and 
resources involved in this procedure also plays a crucial role 
in advancing the development of novel anticancer drugs 
[81]. Moreover, in clinical application, this approach could 
successfully enhance the efficacy and safety of chemother-
apy regimens [82]. Consequently, the first electrochemical 
sensor capable of accurately measuring amounts of Erdafi-
tinib was created using a modified electrode with NPCS. The 
porous MOF-derived amorphous carbon composite NPCS 
could exhibit a high and stable performance in the detection 
of Erdafitinib. This study sheds light on the effective struc-
tural design and fabrication strategy for the highly efficient 
analytical profile of Erdafitinib via the modification of elec-
trodes with a NPCS material which has interconnected and 
macroporous features. To this end, a simple and low-cost 
process is developed to produce hierarchical porous amor-
phous carbon, which could be potentially used in sensors 
and detecting devices.

The objective of this study is to investigate and clarify 
the possible oxidation mechanism of ERD on NPCS/GCE 
using CV and DPV. Also, another main purpose is to estab-
lish a meticulously validated electrochemical methodology 
designed for the quantification of Erdafitinib within phar-
maceutical dosage formulations and synthetic human urine 
specimens.

Experimental section

Reagents and apparatus

For a more comprehensive understanding and detailed 
insights, it is recommended that readers refer to the Sup-
plementary Information.
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Synthesis of ZIF‑12

Zeolite imidazolate frameworks (ZIF-12) were synthesized 
according to the literature with slight modifications [83]. 
Briefly, 2 mmol of benzimidazole with NH3 (1 mmol) and 
1 mmol of cobalt acetate tetrahydrate ((CH3COO)2Co.4H2O) 
was dispersed into two 10  mL of methanol-toluene 
(3:1 mol%) solution. The two suspensions were then com-
bined and agitated briskly at room temperature for three 
hours, and purple powders were centrifuged with methanol. 
An overnight vacuum drying process at 60 °C produced the 
final product, which manifested as a purple powder.

Preparation of N‑doped porous carbon sheets

One gram of ZIF-12 was introduced to five grams of a super-
saturated salt solution while vigorously stirring for more 
than 24 h. Once the salt had completely recrystallized, the 
temperature was gradually increased to 80 °C in a water 
bath. Following ten hours of vacuum drying at 60 °C, the 
final product was achieved by subjecting the dried powder 
to Ar gas at a rate of 2 °C min−1 at 800 °C for three hours. 
The product was acquired by subjecting it to a series of pro-
cesses, beginning with washing with deionized water, filtra-
tion, and drying at 120 °C. The products were obtained and 
named N-doped porous carbon sheets (NPCS).

Preparation of the modified glassy carbon electrode

Initially, the unmodified Glassy Carbon Electrode (GCE) 
underwent a meticulous cleansing procedure following a 
previously documented protocol [84]. The meticulously 
cleaned electrode was then subjected to controlled drying 
for 10 min at room temperature (~ 24 °C). Subsequently, a 
precisely measured volume of 6.0 μL of a homogenized sus-
pension containing NPCS composites at a concentration of 
0.5 mg/mL, dissolved in deionized water, was meticulously 
drop-casted onto the impeccably smooth surface of GCE. 
Following this deposition, the modified electrode, referred 
to as NPCS/GCE, underwent a natural drying process at 

ambient room temperature. Once the solvent had completely 
evaporated, the NPCS/GCE electrode was then immersed 
within an electrochemical cell to facilitate a series of elec-
trochemical tests [85].

Preparation of human synthetic urine samples 
and dosage forms

The electrochemical detection of ERD was rigorously 
assessed in actual samples, encompassing pharmaceutical 
tablets and synthetic human urine specimens. Five tablets of 
BALVERSA®, each containing 4.0 mg of the active ingredi-
ent, were meticulously weighed and subsequently subjected 
to homogenization. The mean tablet weight was accurately 
determined through a rigorous calculation process. Further-
more, for the preparation of a 1.0 mM tablet stock solution, 
a specific quantity of this homogenized powder was meticu-
lously extracted from the mixture, followed by dispersion in 
deionized water and methanol (1:1). This resulting disper-
sion was then subjected to a 30-min ultrasonic bath treat-
ment. The resultant solution was further refined by passing 
it via a 0.45 μm polytetrafluoroethylene (PTFE) filter, then 
ultimately diluted in the appropriate buffer solution [86]. 
Synthetic human urine was used as received. The differen-
tial pulse voltammetry (DPV) method was judiciously uti-
lized to analyze the synthetic human urine samples, which 
were intentionally augmented with varying concentrations 
of ERD [87].

Results and discussion

Synthesis and characterization of NPCS material

A simplified diagram of the molten-salt-assisted process for 
synthesizing NPCS material is shown in Fig. 1. A descrip-
tion of the formation of the NPCS product follows: ZIF-12 
doped with NaCl is calcined in an Ar atmosphere. When 
heated to the molten point of NaCl, the molten salts induce 
ionized species reactions between cobalt salts, resulting in 

Fig. 1   Summary illustration of the synthesis procedures for NPCS
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the growth of nanoparticle cobalt and a trace amount of 
cobalt oxide crystals under the influence of the molten salts’ 
“molecular template.”

The X-ray diffraction (XRD) patterns of NPCS are 
given in Fig. 2a. The sample matches well with the cubic 
(Fm-3 m, 225) Co (PDF#15–0806) with the diffraction 
peaks of (111), (002), and (022) crystalline planes and a 
trace amount of Co3O4 crystals (PDF#43–1003). The peak of 
carbon (PDF#75–2078) was also detected in the NPCS sam-
ple. The carbon diffraction peak is too weak to be properly 
detected. The presence of a broad peak at around 2θ = 26.6° 
for the carbon powder suggests that the carbon in the Co/C 
nanocomposites is mainly amorphous, as opposed to the 
characteristic sharp peak of graphite carbon at 2θ = 26.6°. 
Nevertheless, the carbon content of NPCS material could 
be determined via XPS analysis. The carbon concentration 
of the NPCS sample was 75.86%, as shown in Table 1. The 
crystallite size D can be calculated from the XRD via the 
Debye-Scherer formula,

whereβ is the full width of half maximum in (2θ), θ is the 
corresponding Bragg angle, λ = 0.154 nm. The crystalite size 
for Co NP is calculated with reference to the maximum peak 
at angle at ~ 44°. The average crystallite size for Co NP is 
found to be ~ 35 nm.

Williamson-Hall method was performed in order to cal-
culate the average crystallite size (D) and the best agreement 
between the experimental and fitted data with R2 = 0.94 (D ≈ 

D =
0.9�
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Fig. 2   XRD analysis (a), Raman analysis (b), nitrogen adsorption isotherm of NPCS (c)

Table 1   Elemental contents of ZIF-12 and NPCSmaterials according 
to XPS analysis

Sample C% Co% BET 
surface area 
(m2/g)

ZIF-12 80.99 19.01 128.6
NPCS 75.86 23.35 89.04
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42 nm) (Figure S2).The crystallite size D can be calculated 
from the XRD via the Williamson-Hall method formula,

Scherrer formula ( k, λ, β, and θ are the shape factor taken 
as 0.9, the X-ray wavelength, the full width at half maximum 
(FWHM), and the Bragg angle of the peak, respectively) 
considers only the effect of crystallite size on the XRD peak 
broadening. By the Scherrer equation, the average crystal-
lite size calculated from the intercept of the obtained fitted 
line is 34 nm.

D = Kλ/βcosθ.
When we compare these two methods, the Williamson-

Hall approach gives larger apparent crystallite sizes than the 
Scherrer equation due to its consideration of lattice strain 
effects, as well as the additional complexity involved in its 
calculations.

The above XRD and SEM–EDS analysis indicates that 
cobalt in the NaCl-doped ZIF-12 has been transformed to 
metallic Co and a trace amount of Co3O4 crystals by pyrolysis. 
In addition, Raman analysis confirms this observation (Fig. 2b). 
Consequently, we might hypothesize that during calcination, 
the molten salt form a liquid reaction environment in which the 
reactants are easily able to interact and clash with one another. 
The nitrogen gas absorption curves (Fig. 2c) provide additional 
evidence that the melting salt and evaporation process can sig-
nificantly reduce the specific surface area of the NPCS.

Specially, the BET surface areas of the ZIF-12 and NPCS 
are shown in Table 1. According to Table 1, the ZIF-12 has 
a slightly bigger surface area than NPCS. This could per-
haps be attributed to the pristine crystal structure of ZIF-
12 collapsing, as seen by the microporous nature of the 
NPCS structure as revealed by SEM and TEM images. The 

�cos(�) =
k�

D
+ �sin(�)

evaluation of the N2 adsorption isotherm reveals that NPCS 
possesses type I isotherms, which provide confirmation of 
its microporous pore structure.

The scanning electron microscopy (SEM) and transmis-
sion electron microscopy (TEM) images of ZIF-12 and 
NPCS specimens are shown in Fig. 3 and Fig. 4, respec-
tively. The morphologies of ZIF-12 and NPCS are notably 
dissimilar, as the salt-activated structure of the latter is 
highly dependent on the salt employed during carbonization. 
The NPCS synthesized exhibits a more integrated morphol-
ogy with irregular pits on its surfaces.

The elemental mapping outcomes of SEM-energy disper-
sive spectroscopy (EDS) (Figure S3) indicate that the C, O, 
and Co elements are uniformly distributed across the entire 
area of the amorphous carbon network. It is noteworthy to 
mention that the trace levels of N signal, which align with 
the XPS findings, primarily derive from nitrogen-containing 
heterocyclic compounds inherent in ZIF-12. These heter-
oatoms may promote electron transport and perhaps generate 
further defects [88].

Figure 5 shows the TEM image, EDS spectrum, and EDS 
result of the ZIF-12 sample. It is observed that the nanoparti-
cles are cobalt based. No oxide phase is seen since EDS did 
not show any oxygen element. Similarly selected area elec-
tron diffraction (SAED) pattern of this image gave only the 
cobalt phase in addition to carbon (Fig. 6). Cobalt diffraction 
rings were spotty. A faint dispersed diffraction ring of carbon 
is evidence of amorphous carbon. Indexation according to 
Fm-3 m cobalt is also shown in Fig. 6.

In Fig. 7, HRTEM image (a) and its fast Fourier trans-
formation (FFT) diffractogram of the ZIF-12 sample are 
given. HRTEM images labeled (e) and (f) are magnified 
views of (c) and (d), respectively showing (111) d-spacings 
of cobalt. d-spacings measured from both FFT diffractogram 

Fig. 3   SEM images of ZIF-12 (a) and NPCS (b) specimens
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and atomic lattice images are 0.205 nm, which matches with 
(111) d-spacing of cobalt. In the image, lattices labeled with 
red lines in (e) are parallel to FFT spots labeled with red 
circles in (b); similarly, lattices labeled with white lines in 

(f) are parallel to FFT spots labeled with white circles in (b). 
The yellow-spotted line in FFT guides the eye to the diffused 
ring pattern of the carbon lattice and also the amorphous 
carbon background.

Fig. 4   TEM images of ZIF-12 (a) and NPCS (b) specimens

Fig. 5   TEM image, EDS spectrum, and EDS result of ZIF-12 sample
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Even if it is rare in some regions of the NPCS sample, 
Co3O4 nanoparticles were observed via TEM studies, one 
representative TEM image, EDS spectrum, and EDS result 
of Co3O4 nanoparticles in the NPCS sample given in Fig. 8. 
In contrast to cobalt nanoparticles, evidence of oxygen in 
TEM-EDS results is the first proof of Co3O4 nanoparticles. 
The second and direct evidence of nanoparticles being in 
the Co3O4 phase is the selected area electron diffraction 

results. In Fig. 9, we indexed the ring patterns according to 
the Co3O4 phase. Moreover, the yellow-labeled diffuse ring 
comes from the carbon. Since it is diffused, it can be stated 
that carbon is amorphous in the NPCS sample, similar to 
the ZIF-12 sample.

In the interim, XPS studies are employed to determine 
the elemental composition of the as-prepared NPCS surface. 
The identification of the peaks at 780.0, 533.0, 401.0, and 
285.0 eV, corresponding to Co 2p, O 1 s, N 1 s, and C 1 s, is 
illustrated in Fig. 10a. The deconvolution spectra of Co ele-
ments are displayed in Fig. 10b, and the peaks at 779.7 eV 
and 780.2 eV both belong to Co 2p3/2; the peaks at 794.8 eV 
and 795.5 eV belong to Co 2p1/2; 781.3 eV and 795.5 eV are 
two satellite peaks, and these are the characteristic peaks 
of Co3O4 phases [89]. The peaks with the binding energy 
of 779.7 eV and 794.8 eV can be appointed to Co2+, while 
the peaks at 780.2 eV and 795.5 eV can be appointed to 
Co3+. Among them, the two peaks located at 779.7 eV and 
794.8 eV originated from Co–C bonds; the peaks located at 
780.2 eV and 795.5 eV represent Co–O bonds, which may 
be due to the surface oxidation of Co atoms during prepara-
tion and storage of NPCS material. The total percent of the 
signal of Co3+ and Co2+ are relatively high in the total inte-
grated intensity of Co 2p (Co nanoparticle), which is mainly 
attributed to the limited detection depth of XPS, and thus, 
the signal of metallic cobalt is not high as much as Co3+ and 
Co2+ signals. Considering that Co3O4 is formed as a result 
of the oxidation of Co nanoparticles on the surface, XPS 
analysis is expected. According to XPS results, the forma-
tion of Co3O4 is very low due to the protection of amorphous 
carbon, which has been demonstrated by the weak intensity 

Fig. 6   Selected area electron diffraction (SAED) pattern and indexa-
tion results

Fig. 7   HRTEM image (a) and 
its fast Fourier transformation 
(FFT) diffractogram of ZIF-12 
sample. HRTEM images labeled 
(e) and (f) are magnified views 
of (c) and (d), respectively 
showing (111) d-spacings of 
cobalt
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of Co3O4 in XRD spectra. Furthermore, the high-resolution 
N 1 s spectrum reveals the presence of three distinct forms 
of nitrogen within the substance: pyridinic nitrogen, gra-
phitic nitrogen, and oxidized nitrogen (Fig. 10c). Based on 
XPS analysis, the N element content of NPCSs is approxi-
mately 1.2% (Table S1). In Fig. 10d, the C 1 s spectrum of 
the NPCS reveals three peaks at 284.1 eV, 284.6 eV, and 
285.2 eV for NPCS, which correspond to C − C, Co–O-C, 
and C = O, respectively [90]. It illustrates that carbon is pre-
dominantly found in C − C and Co–O-C bonds at 284.1 and 
284.6 eV, respectively [91, 92].

The magnetic properties of NPCS were studied using 
quantum design PPMS (Fig. 11), vibrating sample mag-
netometer (VSM) at 300 K ranging from − 30 to 30 kOe. 
The magnetic hysteresis loops of NPCS are shown in the 
figure to access their magnetic properties. The NPCS has a 
magnetic saturation (Ms) value of 1.85 emu/g. Due to the 
existence of magnetic metal Co and metal oxide Co3O4, the 
sample exhibits ferromagnetic activity and typical S-shaped 
hysteresis loops under magnetic field excitation.

The electrochemical characteristics of erdafitinib 
on both unmodified and modified electrode

The electrochemical attributes of both bare and altered elec-
trodes were examined via the application of differential pulse 
voltammetry (DPV), cyclic voltammetry (CV) techniques, 
and electrochemical impedance spectroscopy (EIS).

The electrochemical responses of 10.0 μM Erdafitinib 
were elicited by employing both an unmodified GCE and an 
NPCS/GCE. Data acquisition was performed using the DPV 
technique with the instrumental setting listed in Table 2.

The influence of NPCS as an electrode surface modifier 
is visually represented in Fig. 12. Importantly, the signal 
of the peak current for Erdafitinib achieved with the newly 
engineered nanomaterial-modified electrode demonstrated 
a remarkable ~ twofold amplification in comparison to the 
unmodified GCE. This enhancement in signal response for 
Erdafitinib was attributed to the augmented electron trans-
fer kinetics and increased efficient surface area facilitated 
by the introduction of NPCS nanoparticles on the GCE 
surface. Moreover, the porosity of the modified electrode 
can increase the current response over the plain electrode 
while also causing shifts in peak potentials [93]. Employing 
chemically modified electrodes offers several advantages, 

Fig. 8   TEM image, EDS spectrum, and EDS result of Co3O4 nanoparticles in NPCS sample

Fig. 9   Selected area electron diffraction (SAED) pattern and indexa-
tion results of Co3O4 nanoparticles in NPCS sample
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including a reduction in the potential required for the elec-
trochemical reaction to take place and an increase in sensi-
tivity owing to catalytic activity [94].

The assessment of the electrochemical performance 
of the fabricated sensor was executed by CV evaluations 
within a 0.1 M KCl electrolyte solution, using 5.0 mM 
[K3(CN)]6

3−/4−qua the model analyte, and with 50.0 mV/s 
as the scanning rate (Fig. 13A). The CV profiles ensured 
detailed information about the electrochemical properties of 
the distinct electrode configurations. Peak potential separa-
tions (ΔEp) were quantified as 0.4760 V and 0.21476 V in 
the unmodified GCE and NPCS/GCE, severally. The notable 
reduction in ΔEp monitored for the NPCS/GCE signifies 

Fig. 10   Survey XPS spectra for NPCS, the high-resolution XPS spectra (a) of Co 2p (b), N 1 s (c), C 1 s for NPCS material (d) 
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Fig. 11   VSM profle of NPCS nanoparticles at 300 K

Table 2   Instrumental parameters for DPV measurement

Parameter/mode Setting

Potential ramp DPV
Start potential 0.4 V
Stop potential 1.2 V
Step potential 5 mV
Scan rate 50 mV/s
Modulation amplitude 50 mV
Modulation time 10 ms
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an improved electron transfer rate and a greater potent sur-
face area attributed to the designed electrode. Furthermore, 
cathodic peak currents along with anodic peak currents also 
demonstrated remarkable increases, and more distinct peak 
features were monitored for NPCS/GCE than for the bare 
GCE. The findings underscore the enhanced electrocatalytic 
performance of the designed electrode, highlighting its abil-
ity to facilitate electrochemical reactions.

EIS emerges as an invaluable technique for the com-
prehensive investigation of electrode surface conductivity 
characteristics. Nyquist plots obtained through EIS com-
prise two discernible segments: a semicircular region and 
a linear region. The semicircular component is indicative 

of the charge transfer resistance (Rct) prevalent at higher 
frequency domains, while the linear segment pertains to 
lower frequencies associated with diffusional processes 
[95]. Upon examining the semicircular regions, the Rct 
observed for the bare GCE was quantified at 7878.9 Ω, 
which exhibited a notable reduction to 3785.7 Ω after 
the introduction of functionalized NPCS (as depicted in 
Fig. 13B). The alterations discerned in the EIS curves can 
be ascribed to the advantageous attributes of NPCS, which 
is exceptional electrical conductivity.

The primary factor inf luencing the sensitivity of 
the electrochemical sensor is the Electroactive Surface 
Area (ESA), which dictates the extent of interaction 
between the analyte and the electrode surface. Therefore, 
the determination of ESA for both the unmodified and 
the developed electrode is executed employing the 
Randles–Sevcik equation (Equation S1) as previously 
reported employing a 0.1 mM Fe(CN)6

3−/4− redox probe 
solution [96]. The calculated ESA for NPCS/GCE was 
determined to be 0.11 cm2 (Figure S4B.), a remarkable 
approximately twofold increase in comparison to the 
unmodified GCE (0.0618 cm2) (Figure  S4A.). These 
outcomes affirm that the engineered NPCS/GCE 
manifestly boasts an extensive electroactive surface area, 
affording an augmented array of reactive parts. This 
amplified surface area plays a pivotal role in promoting 
proficient electron transition kinetics and, concurrently, 
forging a highly potent electron-conductive route 
connecting the electrode surface with the analyte. As a 
consequence, these enhancements significantly enhance 
the comprehensive performance of the electrode.

In addition, the electrical characteristics of an electrode 
can be assessed through the determination of capacitance. 

Fig. 12   DPVs of 10.0 μM ERD in B-R buffer at pH 6.0 on blank (a), 
unmodified GCE (b), and NPCS/GCE (c)

Fig. 13   A CVs and B EIS of the bare GCE (a) and NPCS/GCE (b) in 1.0 mM [Fe(CN)6]3−/4− at a scan rate of 50 mV/s with 0.1 M KCl
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Therefore, existing literature presents a diverse range of 
experimental protocols for capacitance determination, 
employing either CV or electrochemical EIS [97, 98]. 
Initially, CV measurements were employed to ascertain 
the double-layer capacitance (CDL). The calculated CDL 
values for the unmodified electrode and the modified 
electrode were 0.3344 μF and 0.8022 μF, respectively. 
After CDL values, expressed as constant phase element 
(CPE), obtained from EIS analysis were found to be 0.3718 
μF and 0.8428 μF for unmodified electrode and NPCS/
GCE, respectively. While the obtained results demonstrated 
similarity in values, the CDL values obtained through EIS 
were higher in comparison to those acquired through CV.

The optimization of electrode modification

The NPCS/GCE optimization, encompassing considerations, 
for example, compound concentration, quantity, and the 
characteristics of the backing electrolyte, demands prompt 
and comprehensive examination. This imperative has 
prompted the meticulous selection of the most suitable 
buffer solutions as the preliminary step in this optimization 
endeavor. Various buffers, including Britton-Robinson 
(B–R) buffer, phosphate buffer saline (PBS), potassium 
chloride (KCl), sodium hydroxide (NaOH), hydrochloric 
acid (HCl), and acetate buffer (AC) underwent thorough 
investigation. The relationship between the potential peak 
and oxidation current of ERD in the existence of these 
diverse supporting electrolytes is graphically delineated in 
Figure S5A. Especially, among the investigated buffers, the 
Britton–Robinson buffer exhibited the highest current peak, 
establishing it as the chosen electrolyte for ensuing research 
of ERD at the recommended electrode. Otherwise, the effect 
of the concentration of NPCS composite was methodically 
investigated at values of 0.2 to 2.0 M (Figure S5B). A 
discernible enhancement in the oxidative mark of the aimed 
analytes was notably monitored at a concentration of 0.5 M 
within the NPCS nanocomposite. Consequently, 0.5 M was 
determined as the ideal concentration level for the design of 
NPCS-based electrodes for use in subsequent studies.

Moreover, a comprehensive analysis of the impact of 
NPCS nanocomposite quantity on the electrochemical elec-
trode’s activity and sensitivity was conducted inside the 
parameters of 2.0–7.0 μL (Figure S5C). The highest oxida-
tion peak current was realized at 6.0 μL of the nanocompos-
ite, as delineated in Figure S5C. Nevertheless, beyond 6.0 
μL, a noticeable decline was monitored, presumably attrib-
uted to diminished adherence of the altering stratum to the 
electrode surface. As a result, it was deduced that the ideal 
circumstances was obtained at a concentration of 0.5 M and 
a quantity of 6.0 μL of the NPCS nanocomposite, thereby 
establishing a robust foundation for subsequent analytical 
applications.

The impact of pH

In this research, Britton-Robinson (BR) buffers were delib-
erately chosen as the electrolyte solution, with a purposeful 
variation in pH from 2.0 to 9.0. This systematic pH range 
allowed for a thorough examination of the electrochemical 
response of the ERD across different protonation states, pro-
viding a detailed understanding of its behavior along the 
acidity-alkalinity spectrum. The recorded profiles from DPV 
under various pH conditions (Fig. 14A) serve as a meticu-
lous record, capturing subtle changes in peak currents and 
potentials. A noteworthy finding in our investigation is a 
distinct increase in peak current at pH 6.0, representing the 
optimal operational pH where the electrochemical system 
achieves maximum efficacy and sensitivity. Furthermore, the 
observed decrease in current amplitude with a further rise 
in pH is ascribed to the dynamic nature of ERD. (Fig. 14B). 
Namely, this shift suggests that at low pH, the nitrogen of 
the ERD molecule is protonated, which makes the loss of an 
electron more difficult, and at a pH above 6 it is hydrolysis 
of imine, which leads to a sharp decrease in the ERD oxida-
tion current [99].

The careful examination of the electrochemical behav-
ior of ERD has revealed a noticeable shift in the oxidation 
peak potential towards more negative values with increasing 
pH levels (Fig. 14C). This indicates that protons (H+) have 
taken part in the electrochemical oxidation process of ERD 
[100, 101]. An important outcome of this investigation is 
the development of a linear regression model expressing the 
relationship between the oxidation peak potential of ERD 
and the surrounding pH levels as Epa =  − 0.047pH + 1.128. 
This model, supported by a high coefficient of determina-
tion (R2 = 0.996), demonstrates exceptional accuracy in 
capturing the intricate pH-dependency inherent in the elec-
trooxidation of ERD. The key deduction from this complex 
electrochemical narrative is significant: both electrons and 
protons play an equitable role in the irreversible oxidation 
process of ERD at the NPCS/GCE interface. This assertion 
is reinforced by the observed slope (47 mV/pH) of the rel-
evant oxidation potential curve, which closely approaches 
the theoretically expected Nernstian slope value of 59.2 mV/
pH[102].

The impact of scan rate

Systematic examination of the scan rate (υ) impact on the 
voltammetric response of ERD serves as a pivotal step in 
the elucidation of the intricate electrochemical oxidation 
mechanism, further enabling the discrimination between 
a diffusion or adsorption-controlled electrochemical pro-
cess. In pursuit of this goal, a comprehensive assessment 
of the electrochemical performance of 10.0 μM ERD on 
the NPCS/GCE surface, using cyclic voltammetry (CV), 
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was conducted over a scan rate range spanning from 10 to 
300 mV/s, all while immersed in a Britton-Robinson (BR) 
buffer held at a pH of 6.0. The investigation revealed dis-
tinctive anodic peaks in the forward scans, with no evi-
dent cathodic peaks identified in the backward scans. This 
observation affirms the irreversible of the oxidation process 
for ERD (Fig. 15A) [100, 103]. A discernible linear cor-
relation among Ιpa (peak current) and υ1/2 (the scan rate 
square root) was meticulously identified within the range of 
10.0 to 300.0 mV/s ( Ιpa = 0.129 υ 1/2 – 0.015, R2 = 0.997) 
(Fig. 15B). This observation serves as a robust indicator that 
the electrochemical reaction is primarily governed by diffu-
sion, thereby elucidating the non-adherence of analyte ions 
to the electrode surface [100]. Moreover, validation of this 
diffusion-centric behavior was obtained through the loga-
rithmic representation of the peak current with scan rates, 
stated by log Ιpa = 0.479 logυ-6.85 (R2 = 0.990). Here is the 

slope of log Ιpa in relation to log υ with between 0.0 and 0.5 
(completely 0.479) (Fig. 15C). This suggests that the oxida-
tion of ERD is a diffusion-controlled process [104]. As can 
be seen in Fig. 15D, a linear connection between Epa and Ιnυ 
was obtained with an equation of Epa = 0.035 ln v + 0.764, 
R2 = 0.996. Leveraging Leviron’s theory of irreversible elec-
trode reactions (Equation S2) and the slope of the Epaversus 
Ιnυ, were employed to discern the number of electrons 
exchanged during the electrochemical process [105].

According to estimates, 1.467 (∼1) e− were transported 
during the electrooxidation reaction of ERD [106]. The 
findings obtained from this inquiry, combined with those 
gleaned from the pH scan analysis, provide evidence sup-
porting the requirement for the simultaneous transition of 
one electron and one proton during the electrochemical oxi-
dation of ERD. The potential oxidation mechanism of ERD 
on NPCS/GCE is schematized (Scheme 1) [107, 108].

Fig. 14   A DPV of 10.0 μM of ERD at dissimilar pHs (2.0 to 9.0) on 
the surface of NPCS/GCE; B Impact of pH values on the peak current 
for developed electrode containing 10.0 μM of ERD at various pHs; 

and C Impact of pH values on the potential for developed electrode 
containing 10.0 μM of ERD at various pHs
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Analytical performance of the sensor created 
for the detection of erdafitinib

In order to comprehensively evaluate the analytical prowess 
of the developed sensor, a comprehensive investigation was 
undertaken, involving a systematic analysis across a range 
of ERD concentrations. This assessment was conducted 
using the precise DPV method under optimized conditions 
(Fig. 16A). Subsequently, a meticulously crafted calibration 
curve was generated by correlating Ipa with escalating con-
centrations of ERD (Fig. 16B).

The findings elucidated a robust linear relationship within 
the concentration range of 0.01–7.38 μM, substantiating the 
sensor’s aptitude for discerning ERD concentrations with 
a high degree of precision. The linear regression formula 
characterizing this association was derived as I = 0.374 
CERD + 0.015 (R2 = 0.998). LOD (limits of detection) and 
LOQ (limits of quantification) were judiciously established 

by employing the equation LOD = 3 s.m−1 and LOQ = 10 s.
m−1, severally. These formulations facilitate a nuanced eval-
uation of the analyte’s minimum discernible and measur-
able concentrations. Within the scope of our investigation, 
LOD and LOQ results were ascertained to be 3.36 nM and 
11.2 nM (Table 3), severally. The discernments mentioned 
furnish crucial perspectives into the heightened sensitivity 
and accuracy intrinsic to the designed sensor, underscoring 
its potential for detecting ERD at exceedingly low concentra-
tions, a pivotal attribute in advancing its utility for pharma-
ceutical analysis and clinical applications.

Table 4 provides a comparison of Erdafitinib concentration 
determination, considering the linear range and LOQ, with 
prior findings documented in the literature [15–20]. The cur-
rent methodology is straightforward and eliminates the need 
for pre-treatment procedures or laborious and chemical-inten-
sive reactions such as derivatization. Therefore, it is notewor-
thy that this method significantly reduces preparation costs 

Fig. 15   CVs of the ERD (10.0 μM) in NPCS/GCE at dissimilar scanning rates (from 10.0 to 300.0 mV.s−1) (A); the relevance of Ipa vs. υ.1/2 
(B); the relevance of the log Ipa vs. log υ (C); and plot of the Epa vs. ln υ acquired in NPCS/GCE (D)
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and provides rapid detection compared to existing standard 
procedures. Additionally, as can be seen from the table, the 
method is superior to most studies in the literature in terms of 
linear range and LOQ. This suggests that the current voltam-
metric method is more sensitive and offers a sufficiently wide 
linear range for ERD determination

The evaluation of some validation parameters 
for the modified electrode.

In evaluating the repeatability of the newly devised NPCS/
GCE, an exhaustive examination involving 9 successive 
cycles was conducted, and the %RSD (relative standard 
deviation) was meticulously ascertained, as illustrated in 
Figure S6A. The resulting %RSD for all ninr cycles was 

Scheme 1   The possible oxidation reaction of ERD

Fig. 16   DPVs of different con-
centrations of ERD from 0.01 to 
7.38 μM (A), the graph of Ipa 
versus CERD (B)

Table 3   Analytical performance data for the proposed method

Parameter Value

Measured potential (V) 0.843
Linearity range (μg/mL) 0.01–7.38
Regression equation I = 0.374 

CERD + 0.015
Determination coefficient (R2) 0.998
Intercept 0.015
Slope 0.374
SE of intercept 0.015
SE of slope 0.005
LOD (ng/mL) 3.36
LOQ (ng/mL) 11.2
*SE, standard error
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remarkably low at 2.66%, providing clear evidence of the 
exceptional repeatability of the NPCS/GCE.

Furthermore, a meticulous assessment of the reproduc-
ibility of the NPCS/GCE was conducted through the fabrica-
tion of 6 electrodes under identical conditions. DPV signals 
were systematically recorded for each of these electrodes, as 
delineated in Figure S6B. The observed current variations 
exhibited an impressively low RSD% of 2.13%, highlighting 
the outstanding reproducibility demonstrated by the NPCS/
GCE.

Additionally, with its noteworthy repeatability and repro-
ducibility, the discerningly developed sensor is imperative 
to showcase a pronounced selectivity specifically tailored 
toward the designated target analyte. This criterion, when 
met, further enhances the efficacy and applicability of the 
developed NPCS/GCE in demanding analytical scenarios, 
thereby solidifying its standing as a sophisticated and reli-
able sensing platform within the realm of pharmaceutical 
sciences.

In this study, to verify the selectivity and application of 
the voltammetric approach, interference studies were per-
formed using chemicals frequently included in drugs and 
biological fluids. These chemicals were vitamin C (ascor-
bic acid(AA)), C5H4N4O3 (uric acid(UA)), D-Glc(D-G), 
L-Arg(L-A)[109], L-Met(L-M)[110], KCl (potassium 
chloride), Na2SO4 (sodium sulfate) and KNO3 (potassium 
nitrate) (Figure  S7). The experiments were carried out 
under optimum conditions where ERD was kept constant 
at 1 μM, and the interfering substances were used 100-fold. 
The results, revealed through thorough experimentation, 
distinctly show no significant impact on the electrochemi-
cal currents related to ERD. The observed stability is rep-
resented by an RSD% confined to a mere 2.55%.Thus, the 
developed sensor exhibits high repeatability, reproducibility, 
and sensitivity, further enhancing its efficacy in analytical 
endeavors.

Real sample analysis

The efficacy of the NPCS/GCE was systematically evaluated 
in the context of ERD assay, employing commercially avail-
able synthetic human urine and tablet forms as representa-
tive specimens. Employing the standard addition technique, 
DPV was judiciously implemented to quantitatively discern 
the concentration of ERD within the authentic samples. Upon 
examining the results presented (Table 5), it is clear that the 
created electrode shows a notable capability for directly 
detecting ERD in real samples. The recorded recoveries, span-
ning a range from 98.40 to 101.04% for urine and 100.34 to 
102.24% for tablet formulations, underscore the robustness 
and reliability of the NPCS/GCE in discerning ERD concen-
trations within these complex matrices. Consequently, it can 
be unequivocally affirmed that the suggested voltammetric Ta
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method exhibits a high degree of accuracy, thereby substan-
tiating its proficiency in the precise determination of ERD 
concentrations in real-world samples. This outcome holds par-
ticular significance in the realm of pharmaceutical sciences, 
signifying the pragmatic applicability of the NPCS/GCE as a 
potent tool in pharmaceutical analysis.

Conclusion

In this study, we have introduced a novel electrochemical 
method for quantifying Erdafitinib, an anti-cancer pharma-
ceutical agent. This innovative approach utilizes an electro-
chemical sensor modified with a ZIF-12-based NPCS pro-
duced via the molten salt-assisted method. To begin with, 
the interpenetrated porous structure facilitates the transpor-
tation of substances. Furthermore, the electronic conductiv-
ity and wettability of NPC material are enhanced through 
nitrogen doping. Furthermore, the method utilizing molten 
salt as an aid enhances the extent of graphitization in NPC 
materials by providing guidance for the carbon organiza-
tion. These benefits not only encourage the advancement 
of porous carbon as a material for electrode modification in 
medical applications, but they may also inspire the develop-
ment of alternative electrode materials.

The material’s unique microstructure contributes to its 
exceptional electrochemical characteristics. The incorpora-
tion of the NPCS nanocomposite significantly augmented 
the surface area of the GCE and enhanced the electrical 
conductivity of the fabricated sensors. Under optimal con-
ditions, NPCS/GCE demonstrated heightened sensitivity 
in the determination of the anticancer drug ERD across a 
linear range of 10 nM to 7.38 μM, with an impressively low 
detection limit of 3.36 nM. Moreover, NPCS/GCE exhib-
ited successful application in the determination of ERD in 
real samples, showcasing acceptable recovery data ranging 
from 98.40 to 101.04% for tablets and 100.34 to 102.24% 
for urine samples. The resulting sensor, compared to other 
methods, demonstrates outstanding performance character-
istics, including heightened sensitivity and precise selec-
tivity, simplicity, and cost-effectiveness, positioning it as a 

promising tool for ERD analysis in biological samples and 
pharmaceutical formulations. Moreover, this marks the first 
occurrence of electrochemical analysis conducted on ERD. 
Subsequent studies may explore extending the use of this 
electrochemical technique with additional anti-neoplastics.
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Table 5   Analysis of synthetic human urine samples and dosage forms 
(as tablets) in the presence of ERD

a Mean value derived from three replicated measurements

Sample Added (µM) Found (µM) a RSD (%) Recovery (%)

Urine 0.2 0.202 0.62 101.04
0.3
0.4

0.295
0.404

0.57
0.64

98.40
100.98

Tablet 0.2
0.3
0.4

0.204
0.302
0.401

2.25
0.89
1.30

102.24
100.85
100.34

https://doi.org/10.1007/s00604-024-06318-z
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