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Abstract
Carboxyl-rich tris(4,4′-dicarboxylic acid-2,2′-bipyridyl) ruthenium(II) ([Ru(dcbpy)3]2+) and 1,3,5-phenyl tricarboxylic acid 
(H3BTC) were used as the organic ligand to synthesize the metal−organic frameworks by a simple one-pot hydrothermal 
method with ZrCl4 as metal ion source. Subsequently, the excellent electrochemiluminescence (ECL) luminophore (denoted 
as Ru@Zr-BTC-MOFs) was obtained. The Ru@Zr-BTC-MOFs displayed outstanding ECL properties, and a sensitive ECL 
bioassay based on Ru@Zr-BTC-MOFs was designed for the detection of let-7a microRNA (miRNA) using hybrid chain 
reaction (HCR). Under the optimal experimental conditions, the proposed bioassay exhibited a good linear relationship in the 
range from 50.0 fM to 5.00 × 102 pM with a detection limit of 3.71 fM. Besides, the proposed sensor exhibited satisfactory 
performance in real samples. The recovery was 91 ~ 108%, and the relative standard deviation was less than 5.6%. It might 
have potential clinical applications for detecting miRNA in biomedical research and clinical diagnosis.
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Introduction

Cancer is still one of the most widespread causes of death in 
human beings due to various difficulties in early diagnosis 
and late clinical treatment of cancer [1]. In recent years, 
studies have reported that the expression of let-7a (a sort of 
microRNA) might be related to many cancers. miRNA is a 
kind of non-coding small RNA composed of 19-23 nucleo-
tides [2]. Its abnormal expression level is closely related 
to cancer [3], cardiovascular disease [4], and so on. How-
ever, due to the short size and highly similar sequence of 

miRNAs, there are still considerable challenges to accurately 
determine miRNA [5].

At present, many classical technologies, such as microar-
rays [6], real-time PCR [7] and northern blotting [8], have 
been applied in miRNA detection. But these technologies 
had their own unavoidable shortcomings [9, 10]. In order to 
avoid these shortcomings, many new methods of capillary 
electrophoresis [11], electrochemiluminescence [12] and 
fluorescence [13] in nucleic acid detection have gradually 
attracted the attention of researchers. As to electrochemi-
cal sensor, on the one hand, the electrochemical technol-
ogy does not require tedious pretreatment processes and 
complicated operation procedure, and its instruments are 
relatively inexpensive and portable. On the other hand, due 
to the development of electrode modification and surface 
fixation technology, molecular recognition and sensing 
can be achieved on the electrode surface without excessive 
intervention. The electrochemiluminescence method showed 
great application prospects because of its advantages, such 
as high specificity of biological receptors, low background 
signal, low detection limit and easy operation [14, 15].

Metal-organic frameworks (MOFs) [16, 17], as a porous 
variant of coordination polymer with the advantages of large 
surface area, remarkable porosity and easy modification and 
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functionalization, have attracted great interest. Owing to 
these excellent properties, MOFs have been widely applied 
in gas storage/separation [18–20], drug delivery [21], het-
erogeneous catalysis [22] and biosensing [23]. Recently, 
MOFs have been employed as carrier materials to increase 
the immobilization amount of ECL luminophores [24, 25].

[Ru(dcbpy)3]Cl2, a carboxylated ruthenium structure of 
tripyridine ruthenium chloride hexahydrate, could not only 
be luminophores with the same high electrochemical lumi-
nescence signal as [Ru(bpy)3]Cl2, but also be the ligand 
through its carboxyl coordinating with metal ions. The sheet-
like nanomaterial structure can greatly shorten the diffu-
sion paths of ions, electrons, co-reactants and so on, which 
improves the utilization ratio of luminophores. On the other 
hand, [Ru(dcbpy)3]Cl2 as a bridging ligand could connect 
two Zr12 clusters of 2D Ru@Zr-BTC nanoplate through Zr-O 
bonds, which was beneficial to enhance the stability of the 
ECL signal. As mentioned above, Ru@Zr-BTC nanoplate 
exhibited superior ECL performance in high ECL response 
and excellent stability, making it a promising candidate for 
constructing highly sensitive ECL biosensors.

In this study, a new metal-organic framework material 
of Ru@Zr-BTC-MOFs, as an indicator of ECL signal, 
was synthesized. And the ultrasensitive electrochemi-
luminescence bioassay based on Ru@Zr-BTC-MOFs 

nanoparticles was fabricated to detecting Let-7a using the 
hybridization chain reaction [26], which was a common 
signal amplification strategy without enzyme participa-
tion (Scheme 1). The solution of Ru@Zr-BTC-MOFs and 
AuNPs were mixed and dropped on the surface of bare 
glassy carbon electrode (GCE) to form AuNPs/Ru@Zr-
BTC-MOFs film with high ECL response. Then, sulfhy-
dryl-modified aptamer S1 was fixed on the surface of the 
electrode through Au-S bond. In the presence of the target 
let-7a, the hairpin structure of S1 was opened and hybrid-
ized with its complementary single-chain DNA S2 and S3 
to complete the hybrid chain reaction. Thus, the proposed 
aptamer ECL sensor would realize to significantly improve 
the sensitivity for determining let-7a in real samples with 
satisfactory results. It might provide a potential approach 
for the diagnosis of cancers.

Experimental section

Reagents and apparatus

The reagents and apparatus used for the study are listed 
in the Supplementary Information (S1 Reagents and 
apparatus).

Scheme 1   The schematic diagram of the preparation of Ru@Zr-BTC-MOFs (a) and ECL sensor for detecting let -7a (b)
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Synthesis of gold nanoparticles (AuNPs)

AuNPs were synthesized according to a previous report with 
some modification [27]. The detailed procedures are listed in 
the Supplementary Information (S2 Synthesis of gold nano-
particles (AuNPs)).

Synthesis of Ru@Zr‑BTC‑MOFs nanomaterials

Ru@Zr-BTC was prepared referring to previous report with 
some modifications [28, 29]. Firstly, 4.2 mg ZrCl4, 3.9 mg 
H3BTC and 1.3 mg [Ru(dcbpy)3]Cl2 were dissolved in 4 
mL DMF. Subsequently, 1 mL doubly-distilled water was 
added into above solution and sonicated for 10 min. Then, 
the mixture solution was transferred into a 7 mL vial and 
heated at 120°C for 48 h. After cooling to room temperature, 
the resultant orange suspension was collected by centrifu-
gation at 8000 rpm for 5 min, and washed with DMF and 
doubly-distilled water, respectively. Finally, the product was 
dispersed into 1 mL doubly-distilled water and stored at 4°C 
in the dark place for further use.

Analysis of agarose gel electrophoresis

The detailed process listed in the Supplementary Informa-
tion (S3 Analysis of Agarose Gel Electrophoresis).

Fabrication of the ECL biosensor

The fabrication of the proposed biosensor was shown in 
Scheme 1b. Firstly, the bare GCE was polished to a mirror-
like surface by sequentially using 0.3 and 0.05 μm alumina 
slurry, followed by sonication in ethanol and doubly-distilled 

Fig. 1   SEM images of the 
prepared Ru@Zr-BTC-MOFs 
(a and b). The PXRD patterns 
of Ru@Zr-BTC-MOFs and Zr-
BTC-MOFs (c). TEM image of 
AuNPs (d)

Fig. 2   The ECL signals of each step in the process of preparing the 
bioassay. a: bare GCE, b: AuNPs/Ru@Zr-BTC-MOFs/GCE, c: S1/
AuNPs/Ru@Zr-BTC-MOFs/GCE,d: MCH/S1/AuNPs/Ru@Zr-BTC-
MOFs/GCE, e: Let-7a/S2/S3/MCH/S1/AuNPs/Ru@Zr-BTC-MOFs/
GCE. The PMT was set at 800 V
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water to remove any residues, respectively. And then it 
allowed to dry at room temperature. First, the mixed solu-
tion of 6.0 μL AuNPs and 5.0 μL Ru@Zr-BTC-MOFs was 
placed on the surface of GCE and dried completely (denoted 
as AuNPs/Ru@Zr-BTC-MOFs/GCE). Then 5.0 μL S1 (2.5 
μM) was added on the surface of AuNPs/Ru@Zr-BTC-
MOFs/GCE to incubate for 12 h at room temperature 
(denoted as S1/AuNPs/Ru@Zr-BTC-MOFs/GCE). When 
the electrode was further immersed in 1 mM MCH for 60 
minutes to block the unresponsive active site (denoted 
as MCH/S1/AuNPs/Ru@Zr-BTC-MOFs/GCE), the 
mixture solution of 3.0 μL Let-7a, 3.0 μL S2 (2.5 μM) 
and 3.0 μL S3 (2.5 μM) was dropped on the surface of 
MCH/S1/AuNPs/Ru@Zr-BTC-MOFs/GCE to incubate 
for 150 minutes at room temperature. After each step of 
the construction of the biosensor, the electrode surface 
was washed with doubly-distilled water to remove the 
unbound substances.

Preparation of samples

In this study, serum samples were obtained from several 
patients with a history of malignant breast cancer and nor-
mal people from Jiangsu Cancer Hospital. Three hundred 
microliter serum sample was diluted with 1.0 mL 0.1 M 
phosphate buffer solution (PBS, pH 7.4), and then centrifuge 
at 10000 rpm for 5 min. The supernatant was collected and 
stored at 4°C for further use. As to recovery test, the known 
concentration of let-7a was added to the real sample, and 

the pretreatment procedure was the same as the previous 
sample processing.

Results and discussion

Characterization of Ru@Zr‑BTC‑MOFs nanoparticles

The morphologies of the prepared Ru@Zr-BTCs-MOFs 
were characterized by SEM. As shown in Fig. 1a and b, 
the Ru@Zr-BTCs-MOFs presented irregular nanoplate 
like sheet oatmeal. Moreover, the powder X-ray diffrac-
tion (PXRD) patterns of Ru@Zr-BTC-MOFs and Zr-BTC-
MOFs showed several peaks in 2θ, ranged between 3.7 and 
15° which matched with the simulated PXRD pattern well 
(Fig. 1c), suggesting that Ru@Zr-BTC was iso-structural 
with the parent framework of Zr-BTC-MOFs [30]. These 
results demonstrated that the Ru@Zr-BTC-MOFs was suc-
cessfully synthesized. According to the transmission elec-
tron microscopy (TEM) image (Fig. 1d), the size of AuNPs 
was about 16 nm with a spherical morphology.

Characterization of the HCR process

To validate the feasibility of HCR, gel electrophoresis assay 
was performed.

The results were in the Supplementary Information (S4. 
Characterization of the HCR Process), which indicated that 
DNA nanostructures based on HCR were successfully con-
structed and the HCR amplification procedure was feasible.

Fig. 3   (a) ECL signals of the 
biosensor at the different let-7a 
concentrations. (a~f: 0.00, 50.0 
fM, 5.00 × 102 fM, 5.00 pM, 
50.0 pM, 5.00 × 102 pM ) (b) 
Linear relationship between 
ECL intensity and logarithm 
of let-7a concentration. PMT: 
800 V, S2 and S3 concentration: 
2.5μM

Table 1   Comparison of 
sensitivities of this work with 
some available methods

Methods Detection range (pM) Detection limit (pM) References

Fluorescence 5.0 ~ 5.0×102 3.8 [31]
Microarrays 1.0×10-2 ~ 1.0×102 1×10-2 [32]
LCR 2.0 ~ 2.0×103 0.7 [33]
ECL 1.0×10-2 ~ 1.0 3×10-3 [34]
Lateral flow assay 1.0×102 ~ 2.0×103 1.14×102 [35]
EIS 1.0×10-2 ~ 1.0×103 4.2×10-3 [35]
ECL 5.0×10-2 ~ 5.0×102 3.71×10-3 This work
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Characterization of the proposed bioassay

The successful manufacture of the aptamer sensor was 
verified by electrochemiluminescence (ECL). As shown 
in Fig. 2, there was almost no ECL response at bare GCE 
(curve a). After dropping AuNPs/Ru@Zr-BTC-MOFs on 

the surface of GCE, the ECL signal increased significantly 
(curve b). However, when the AuNPs/Ru@Zr-BTC-MOFs/
GCE was incubated with S1 and MCH, respectively, the 
ECL response decreased significantly (curve c and curve 
d) because S1 and MCH blocked the electron transfer. 
When S2, S3 and target let-7a were added to the MCH/S1/
AuNPs/Ru@Zr-BTC-MOFs/GCE, the ECL strength was 
further reduced (curve e). It showed that the participation 
of target let-7a caused the hairpin structure of S1 to open 
and then conducted hybrid chain reaction with S2 and S3. 
Electrochemical impedance spectroscopy (EIS) and cyclic 
voltammetry (CV) was also used to manifest the manufac-
turing process of the adapter sensor in 0.1 M PBS (pH 7.4) 
containing 5.0 mM [Fe(CN)6]3-/4-. These results were given 
in Supplementary Information (S4 Characterization of the 
Proposed Bioassay), which manifested the successful prepa-
ration of the ECL bioassay.

Optimum of experimental conditions

In order to improve the detection performance of ECL 
aptamer sensor, some factors, such as the volume of Ru@
Zr-BTC-MOFs and AuNPs, concentration of aptamer S1 
and time of HCR reaction, were optimized. The detailed 
experimental results were listed in Supplementary Informa-
tion (S5 Optimum of Experimental Conditions). 5.0 μL of 
Ru@Zr-BTC and 6.0 μL of AuNPs on the GCE, 2.5 μM S1 
concentration, 150 min of hybridization time between target 
and S1, S2 were chosen in the subsequent experiments.

Fig. 4   Reproducibility (a), 
repeatability (b), stability (c) 
and seledctivity (d) of the pro-
posed biosensor

Fig. 5   The ΔECL intensity of the proposed biosensor for the detec-
tion of let-7a expressed in three diluted serum samples from patients 
diagnosed with breast cancer and three serum samples from healthy 
persons. The inset was the quantization diagram in diluted sample 
tests. (let-7a addition: 0 pM)
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Analytical performance of the bioassay

Under the optimized experimental conditions, the ECL 
curve of the biosensor in different let-7a concentra-
tions was recorded (Fig. 3a). It can be seen that ECL 
intensity decreased with the increase of let-7a concen-
tration. Based on the data analysis in Fig.  3b, ΔECL 
(ΔECL was the difference of the ECL intensity values 
between detected in the reaction solution without let-
7a participating and detected under the different con-
centrations let-7a participates in HCR solution, that is, 
ΔECL = ​ECL​(M​CH/​S1/​AuN​Ps/​Ru@​Zr-​BTC​-​​MOF​s/G​CE)–​ECL​
(L​et-​7a/​S2/​S3/​MCH​/S1​/Au​NPs​/Ru​@Zr​-BTC-MOFs/GCE)) and the loga-
rithm of let-7a concentrations showed a good linear rela-
tionship in the range of 50.0 fM ~ 5.00 × 102 pM, and the 
linear equation was ΔECL = 4.050 × 103 + 7.458 × 102 lg(c 
∕ nM) . The correlation coefficient was 0.9919 and detec-
tion limit was 3.71 fM (S /N=3). Compared with other 
let-7a analysis methods, the proposed method performed 
a wide linear range and low detection limit (Table 1).

The reproducibility of the biosensor was evaluated by 
using five different electrodes to detect let-7a with a con-
centration of 50.0 pM after the same modification, and the 
relative standard deviation (RSD) of ECL intensity was 1.9% 
(Fig. 4a). The repeatability of the biosensor was evaluated by 
using the same electrode modified five times, and the RSD 
of ECL intensity was 1.4% (Fig. 4b). In addition, the stabil-
ity of the proposed ECL biosensor for three let-7a concentra-
tions (50.0 fM, 5.00 pM, 5.00 × 102 pM) showed a relative 
stable curve with successive scanning for 8 cycles, and the 
RSD of different concentrations were within 2.92% (Fig. 4c). 
The above experimental results showed the good reproduc-
ibility, repeatability and stability of the proposed biosensor.

In order to evaluate the selectivity of the proposed sensor, 
some different interfering substances, including miRNA-21, 
miRNA-155 and miRNA-192, were tested. Compared with 
1.00 ×102 pM let-7a, the concentration of these interfer-
ing substances was set at 0.500 nM. As depicted in Fig. 4d, 

the interfering substances exhibited little interference with 
let-7a, which proved that the proposed biosensor performed 
good selectivity for let-7a detection.

Samples analysis

In order to verify the accuracy of the aptamer sensor, 8 μL 
of two levels of 5.00 pM and 50.0 pM let-7a were added 
to 8 μL serum samples respectively using the standard 
addition method. When let-7a addition was 0, the ΔECL 
intensity of patient and healthy individuals was shown in 
Fig. 5, which indicated that let-7a was low expression in 
breast cancer patients. At the same time, qPCR as a control 
experiment was used to further verify the accuracy of the 
proposed electrochemiluminescent bioassay. As shown in 
Table 2, the results obtained by the proposed method were 
basically consistent with those of the control experiment. 
Additionally, the recoveries of the proposed method were 
between 91% and 108%, and the RSD value was less than 
5.6%, indicating that the proposed method performed good 
accuracy in practical detection and clinical diagnosis.

Conclusion

A novel Ru@Zr-BTC-MOFs with high ECL efficiency 
were prepared by a simple method and successfully 
applied for preparing the ECL bioassay to sensitively 
detect let-7a. It exhibited high sensitivity and a wide lin-
ear range. Moreover, the proposed ECL sensor performed 
good reproducibility, repeatability, stability, selectivity 
and accuracy for let-7a detection. More importantly, this 
sensing strategy might pave a general avenue for consid-
erably advancing the field of clinical diagnostics, particu-
larly for early cancer diagnosis and prognosis. This work 
would widen the application of ultrasensitive analysis with 
the perspective efficient utilization of nanomaterials and 
luminescent materials.

Table 2   Detection of let-7a in 
diluted serum samples by the 
proposed method

*a and b: patient
**c and d: healthy individuals

Sample Detection Result 
of sample (pM)

PCR detection 
result (pM)

Added (pM) Found (pM) Recovery (%) RSD(%)(n=3)

seruma 1.21 1.12 5.0 5.82 92% 3.4%
50.0 51.7 101% 2.9%

serumb 0.93 0.78 5.0 5.50 91% 5.6%
50.0 52.3 103% 3.8%

serumc 3.71 3.52 5.0 9.13 108% 5.4%
50.0 52.8 98% 3.5%

serumd 4.84 4.69 5.0 10.1 105% 4.2%
50.0 55.2 101% 4.7%
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Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00604-​023-​06107-0.
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