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Abstract
A novel ternary Y-DNA walker amplification strategy designed fluorescence aptasensor based on Au@SiO2@Fe3O4 nano-
materials for ultrasensitive and specific ochratoxin A detection in food samples is presented. Au@SiO2@Fe3O4 nano-
materials provide the loading platform as well as separation and recovery properties for the ternary Y-DNA walker. The 
ternary Y-DNA walker is designed to be driven by Nb.BbvCI cleaving a large number of FAM probes to achieve signal 
amplification. Since Ochratoxin A (OTA) can bind to the constituent aptamer in the ternary Y-DNA walker, adding OTA 
will destroy the structure of the ternary Y-DNA walker, thereby inhibiting the driving process of the walker. After optimiza-
tion of various parameters, a standard curve was obtained from 100 to 0.05 ng·mL−1 of OTA with the limit of determination  
of 0.027 ng·mL−1. The spiked recovery of peanut samples by this method was 82.00–93.30%, and the aptasensor showed 
excellent specificity and long-term stability. This simple, robust, and scalable oligonucleotide chain-based ternary Y-DNA 
walker can provide a general signal amplification strategy for trace analysis.
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Introduction

Ochratoxin A (OTA) is a secondary metabolite secreted of 
several Aspergillus and Penicillium spp [1]. First time from 
a commercial corn sample in 1969 [2], OTA is the most 
prevalent and toxic member of the ochratoxin group, exhibit-
ing neurotoxicity, immunotoxicity, teratogenicity, and muta-
genicity due to its chemical structure (i.e., chlorine atoms 
in molecular substituents) and is classified as a Group 2B 
carcinogen to humans [3, 4]. In 2020, the report of the EFSA 

Panel on Contaminants in the Food Chain (CONTAM), a 
Benchmark dose limit (BMDL10) of 4.73 μg·kg−1 body 
weight (bw) per day was calculated from kidney lesions 
observed in pigs [5]. In fact, OTA is capable of contaminat-
ing most food products (including cereals, coffee, and wine) 
and is the only mycotoxin with established regulatory limits 
in wine [6]. With the global prevalence of OTA estimated at 
53% according to risk assessment studies [7], it is extremely 
important and urgent to develop specific and sensitive strate-
gies for the detection of OTA in food.

Current proven and widely used detection methods 
such as mass spectrometry (molecular analysis for chemi-
cal detection) and running qPCR (for DNA amplification). 
These methods require expensive instrumentation, operat-
ing costs, trained technicians, and sample shipping costs 
for centralized analysis [8, 9]. Fluorescence-based sensing 
technologies offer unparalleled sensitivity and richness in 
addition to low cost, which allows for unique studies of 
small molecules or structured biomacromolecules [10, 11]. 
Aptamer is a class of short single-stranded DNA (ssDNA) 
or RNA oligonucleotides [12, 13]. Aptamers are suitable 
recognition elements, due to their small size, high stability, 
high affinity, and strong specificity [14, 15]. Aptamer can not 
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only be isolated and combined with any selected molecule 
(including metal ions, small molecules, peptides, proteins, 
and even material surfaces), but also can be easily modi-
fied [16, 17]. Aptamer-based fluorescent biosensors have 
received extensive attention due to their high sensitivity, 
specificity, fast response, and relatively low cost [18, 19].

Using a “bottom-up” approach, it has been possible to 
construct complex DNA nanostructures with high biosens-
ing potential. It involves the self-folding of single-oligonu-
cleotide DNA and multiple-oligonucleotides complementary 
pairing, and can form two-dimensional or three-dimensional 
structures, such as sheets or more complex structures with 
edges and planes [20, 21]. These DNA nanostructures can be 
programmed with aptamers and oligonucleotides to respond 
to external stimuli, such as biomolecules, enabling their use 
in biosensing strategies [22]. The DNA walker is one of 
the dynamic DNA nanostructures, which has good control-
lability and excellent predictability [23, 24]. Due to they 
can move autonomously along programmed oligonucleotide 
trajectories to elicit hundreds of signaling molecules with 
high specificity in response to a single binding event, they 
offer interesting strategies for designing signal amplifica-
tion methods. Aptamer (Apt)-conjugated nanomaterials have 
been used by researchers as part of a solution for building 
biosensors to monitor food hazards [25]. The characteris-
tics of separation and recovery can be provided for fluores-
cent sensors by coupling aptamers to Fe3O4 nanomaterials 
[26]. Fe3O4 nanomaterials do have their limitations, such 
as fast agglomeration and high surface energy, resulting in 
the magnetic loss [27]. Modification by conjugating a SiO2 
coating to the surface of Fe3O4 nanomaterials avoids oxida-
tion and agglomeration [28]. Moreover, the SiO2 coating 
can also provide chemical and physical shielding from the 
external environment, which prevents flocs of particles and 
substances from adsorbing to the surface, thus improving 
chemical and optical stability [29].

In this work, we attempted to develop a fluorescent 
aptasensor designed based on a novel DNA walker strategy, 
and the introduction of magnetic nanocomposites endowed 
the sensor with certain easy-to-detect properties. We syn-
thesized iron oxide and silica core–shell loaded gold nano-
particles composites (Au@SiO2@Fe3O4) nanomaterials as 
a sensing platform endowed with recovery and separation 
properties. SiO2 coating can avoid Fe3O4 nanomaterials 
oxidation and agglomeration and improve its chemical and 
optical stability. The ternary Y-DNA walker is covalently 
bound to the surface of the Au@SiO2@Fe3O4 via Au–S 
affinity. The restriction endonuclease Nb.BbvCI can drive 
the DNA walker to cleave the FAM probes, which releases 
the FAM probes in the supernatant by magnetic separation. 
Due to the ability of OTA to disrupt the Y-shaped DNA 
walker, OTA concentration is inversely proportional to the 
concentration of FAM probes released by cleavage. Based 

on the high specificity and amplification characteristics of 
the DNA walker, as well as the separation performance and 
recovery characteristics of magnetic nanomaterials, it exhib-
its superior performance in the detection of OTA with ultra-
sensitivity, specificity, and stability.

Experimental section

Materials, reagents, and apparatus

Oligonucleotides were synthesized and purified with HPLC 
by Sangon Biotechnology Co., Ltd. (Shanghai, China). The 
OTA aptamer 1.12.8 (Apt), screened by Penner’s research 
group in 2001 [30], was used as the recognition element in 
this work. Table S1 shows detailed sequence information of 
all oligonucleotides.

Ochratoxin A (OTA), zearalenone (ZEN), Deoxynivalenol 
(DON), Aflatoxin B1 (AFB1), and Fumonisin B1(FB1) 
were obtained from Sigma-Aldrich. Nb.BbvCI (10,000 
units·mL−1) and 10 × CutSmart Buffer (50 mM potassium 
acetate, 20 mM Tris-base, 10 mM Mg2+, 100 μg·mL−1 BSA) 
were obtained from New England Bio-labs (America). Iron 
trichloride hexahydrate (FeCl3·6H2O, 99%), Poly (acrylic 
acid) (PAA, average Mw 1800), Tris(hydroxymethyl)
aminomethane (Tris-base), Gold chloride trihydrate 
(HAuCl4·3H2O, ≥ 99.9%), Tetraethyl orthosilicate 
(TEOS, 99.99% metals basis), Tris(hydroxymethyl) 
aminomethane phosphine hydrochloride solution (TCEP, 
98%), polyethylenimine (PEI, BR, 99%, molecular weight 
10000, liquid) sodium chloride (NaCl), magnesium chloride 
(MgCl2), potassium chloride (KCl), and concentrated 
ammonia solution (NH3·H2O, 28 wt%) were obtained 
from Yuanye Bio-Technology Co., Ltd. (Shanghai, China). 
Ultrapure water was used throughout the experiments and 
all chemicals were of analytical grade.

Reagents: 10 × BB buffer (50 mM Tris-base, 5 mM K+, 
100 mM Na+, 1 mM Mg2+, pH 7.4), 10 × Tris–HCl buffer 
(20 mM Tris-base, 5 mM K+, 50 mM Na+, pH 7.4). The 
20 mM FAM-cDNA stock solution and the 20 mM H-DNA 
were configured with 10  mM TCEP, Tris–HCl buffer. 
Other oligonucleotides stock solution was configured with 
Tris–HCl buffer.

Apparatus: Materials were characterized by transmission 
electron microscope (TEM, JEM-2100HR, JEOL Ltd., 
Japan), scanning electron microscopy (SEM, 3  kV, 
Hitachi Ltd., Japan), X-ray diffractometer (XRD, Cu-Kα, 
λ = 0.15406  nm, D2 PHASER, Bruker AXS Co., Ltd., 
German). The oligonucleotide chains were incubated in 
Bio-Rad C1000 Thermal Cycler (Bio-Rad Co USA) and 
Flexi-Therm constant temperature incubator (Vitl, UK). 
PowerPac Basic Power Supply and Molecular Imager® Gel 
Doc™ XR + System with Image Lab™ Software (BioRad 
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Co., US) were used for gel electrophoresis and imaging, 
respectively. Fluorescence signals were collected Synergy 
H1 multi-detection microplate reader (BioTek Instruments, 
Inc., US).

The detailed procedures for synthesis of Au@SiO2@
Fe3O4 nanomaterials were given in the Supporting Infor-
mation (Sect. 1).

Preparation of fluorescence aptasensor

Yn-DNA was constructed by the annealing of three single-
stranded DNAs [Apt, H-DNA, and En-DNA hybridization 
(n = 5, 20, 40, represents the number of consecutive 
T bases in the oligonucleotides)]. Generally, the three 
oligonucleotides [Apt, H-DNA, En-DNA (n = 5, 20, 40)] 
stock solutions were separately dissolved in Tris–HCl buffer. 
Afterward, they were blended with equal volumes to a final 
concentration of 1 mM. The mixture was heated to 95 °C 
for 5 min and then cooled for 3 h to room temperature. The 
FAM-DNA was individually dissolved in Tris–HCl buffer 
to a final concentration of 1 mM.

The Au@SiO2@Fe3O4 nanomaterials were resuspended 
in ultrapure water to prepare a 2-mg·mL−1 standard solution. 
Au@SiO2@Fe3O4 nanomaterials will gradually sediment, so 
vortex measurements often. Add a certain volume ratio of 
Yn-DNA and FAM-DNA to the Au@SiO2@Fe3O4 nanoma-
terials dispersion solution, 200r shake, and incubate for 2 h 
at 37 °C to prepare fluorescence aptasensor based on ternary 
Y-DNA walker amplification strategy.

Detection of fluorescence aptasensor

Before measurement, a mixture solution consisting of 
Nb.BbvCI, NEB buffer, and specific concentrations of OTA 
was dropped on the aptasensor and 200r shake and incubated 
for 3 h at 37 °C. The supernatant was collected by magnetic 
separation for fluorescence detection. For each example 
detection setup, all experiments were prepared in triplicate 
at the 200 μL scale. Each experiment consisted of 20–60 μL 
2 mg·mL−1 of Au@SiO2@Fe3O4 standard solution, 20 μL 
of 10 × BB buffer, 2 μL 10000 units·mL−1 Nb.BbvCI, 20 
μL 10 × CutSmart Buffer, 10 μL 1 mM Yn-DNA, 20–60 μL 
1 mM FAM-DNA, and 10 μL of specific concentrations of 
OTA. Finally, take 120 μL of supernatant was by magnetic 
separation and transferred into a 96-well plate. The FAM 
fluorescence signal was recorded from 508 to 650  nm 
with excitation at 480 nm at room temperature by Synergy 
H1 multi-detection microplate reader. For the measured 
analytical signal, excitation of FAM fluorescence was 
performed at 480 nm and emission of FAM was recorded 
at 522 nm.

Detection of OTA in spiked peanut samples

10 mL extraction solution (CH3OH: H2O = 7:3, v:v) was 
placed in a 50-mL centrifuge tube, and 25 mL crushed pea-
nut dispersion solution (containing 2 g crushed peanut) was 
added to the extraction solution. After shaking incubation for 
15 min, the sample solution was centrifuged at 5000 r/min 
for 10 min. The top aqueous layer was decanted into a round 
flask, and the aqueous layer was tenfold diluted with the 
Tris–HCl solution. For the standard addition and recovery 
experiments, the OTA standard solutions were added to the 
ground maize samples before adding the extracting solution.

Results and discussion

Assay strategy

We developed a fluorescence aptasensor based on a ternary 
Y-DNA walker amplification strategy for OTA detection 
analysis in food samples. The detailed working principle is 
shown in Scheme 1. To achieve the pretreatment of ternary 
Y-DNA walker sensors and the enrichment of fluorescent 
signals, Au@SiO2@Fe3O4 nanomaterials were synthesized 
and used. Scheme 1 A shows the synthesis procedure of 
Au@SiO2@Fe3O4. Generally, Yn-DNA (Constituents 
H-DNA) and FAM-cDNA are immobilized on the surface 
of Au@SiO2@Fe3O4 via Au–S self-assembly. The high spe-
cific surface area of the Au@SiO2@Fe3O4 provides a high 
density of oligonucleotide sites, and then enough Yn-DNA 
and FAM-cDNA are installed. Scheme 1 B shows the prepa-
ration of the ternary Y-DNA walker sensor. Inset I shows a 
close-up of the tertiary structure of the OTA aptamer bound 
to its ligand, based on the PDB structure 6J2W [31]. Inset 
II shows the detailed base-binding sequence of the Yn-
DNA. The 3' end of the Yn-DNA (Constituent En-DNA) 
can be complementary to the base of the hairpin region of 
FAM-cDNA to form a restriction endonuclease Nb.BbvCI 
specific recognition sequence (5’…CCT​CAG​C…3’, 3’…
GGAGT^CG…5’). Nb.BbvCI only cuts the FAM-cDNA 
hairpin region (containing the base sequence GGA​GTC​G), 
causing the 3' end of Yn-DNA (Constituent En-DNA) to be 
released from the construct to initiate the next hybridization 
process. The abundant cleaved FAM probes were generated 
during cycling. In the presence of OTA, OTA dissociates 
the aptamer from Yn-DNA (Constituent Apt), thereby dis-
rupting the Yn-DNA structure. Constituents En-DNA and 
H-DNA cannot form a Yn-DNA, so the dissociation of the 
aptamer will lead to the destruction of the ternary Y-DNA 
walker, so FAM-cDNA cannot be effectively cut. Scheme 1 
C shows the sensor differences in the presence and absence 
of OTA, the fluorescence intensity of FAM is inversely pro-
portional to the OTA concentration.
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Characterization of materials

The surface morphology of SiO2@Fe3O4 and Au@SiO2@
Fe3O4 was characterized by scanning electron microscopy 
(SEM). Comparing Fig. 1A and B, it can be observed that 
gold nanoparticles (AuNPs) are successfully modified on 
the surface of SiO2@Fe3O4. The Fig. S1 further shows the 
SEM image of the Au@SiO2@Fe3O4 with 300 nm scale, 
during which the broken of Au@SiO2@Fe3O4 (Fig. 1C) 
was found accidentally, further confirming that the Au@
SiO2@Fe3O4 has a core–shell structure. The particle sizes 
of Fe3O4, SiO2@Fe3O4, and Au@SiO2@Fe3O4, respectively, 

were characterized by transmission electron microscopy 
(TEM). As shown in Fig. 1 D, the average diameter of the 
obtained Fe3O4 microspheres is about 436 nm, and the sur-
face is rough. After coating with SiO2, the microspheres 
exhibited an obvious core–shell structure, and the thickness 
of the SiO2 shell was about 124 nm (Fig. 1E). The diameter 
of the subsequently loaded AuNPs is about 25 nm (Fig. 1F). 
The Fig. S2 shows the TEM images of Au@SiO2@Fe3O4 
(Fig. S2A) with 200 nm scale, and magnetic characteriza-
tion images (Fig. S2B) of 0.5 mg·mL−1 Au@SiO2@Fe3O4 
aqueous dispersion solution. These results demonstrate the 
successful synthesis of Au@SiO2@Fe3O4 nanomaterials 

Scheme 1   A Schematic diagram of Au@SiO2@Fe3O4 synthesis pro-
cedures; B Engineering strategy of ternary Y-DNA walker sensors; 
Inset I shows a close-up of the tertiary structure of the OTA aptamer 
bound to its ligand, based on the PDB structure 6J2W [31]. Inset II 

shows the detailed base-binding sequence of the Yn-DNA. C Detec-
tion procedure for ternary Y-DNA walker sensors machines in pres-
ence and absence of OTA
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Fig. 1   SEM image of SiO2@Fe3O4 (A), Au@SiO2@Fe3O4 (B), and 
broken of Au@SiO2@Fe3O4 (C); TEM image of Fe3O4 (D), SiO2@
Fe3O4 (E), and Au@SiO2@Fe3O4 (F); XRD patterns of synthesis 

process and crystal structure changes of Au@SiO2@Fe3O4 (G); Line 
scan (H) and elemental mapping images (I) of Fe, Si, Au, and O in 
Au@SiO2@Fe3O4
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with separation and recovery properties, which can be used 
as immobilized platforms for ternary Y-DNA walker. Au@
Fe3O4 nanomaterials was used as the control group, and its 
TEM images with 200 nm scale is shown in Fig. S3.

The synthesis process and crystal structure changes of 
Au@SiO2@Fe3O4 nanomaterials were further investigated 
by X-ray diffraction (XRD). As shown in Fig. 1 G, Fe3O4 
nanomaterials exhibit “Fe3O4” characteristic reflective 
surfaces of (220), (311), (400), (422), (511), and (440) at 
2θ values of 30.6°, 35.9°, 43.2°, 54.2°, 57.4°, and 62.9°, 
respectively, with space group: Fd-3 m[227], equiaxed crys-
tal system [JCPDS Card. No. PDF#26–1136]. SiO2@Fe3O4 
nanoparticles at 2θ values of around 20° exhibit a dome-
shaped scattering curve, which is a typical diffraction peak 
of amorphous SiO2 (JCPDS Card. No. PDF#27–0605, not 
shown in the figure), that is, the irregular structure composed 
of silicon-oxygen tetrahedra network. PEI@SiO2@Fe3O4 
nanoparticles showed an improved degree of crystalliza-
tion, which may be due to the destruction of the mesoporous 
structure of SiO2 after PEI coating. Moreover, the strong 
peak at 2θ values of 12° also corresponds to the d-space 
value of 6.82 Å, which can indicate the characteristic peak 
of PEI polymer [32, 33]. Au@SiO2@Fe3O4 nanoparticles 
exhibit “Au” characteristic reflective surfaces of (111), 
(200), (220), and (311) from 2θ values of 38.6°, 44.8°, 65.0°, 
and 78.0°, respectively, with space group: Fd-3 m [225], 
equiaxed crystal system [JCPDS Card. No. PDF#04–0784], 
confirmed that the AuNPs were successfully decorated to 
the surface of SiO2@Fe3O4 nanoparticles. Analysis of line 
scan and elemental mapping images profiles reveals that 
Fe, Si, Au, and O elements have distinct layered core–shell 
structures. The line scan images are shown in Fig. 1 H, the 
arrangement of elements from the outer shell to the inner 
core is Au (pink), Si (green), and Fe (red) elements, and the 
O (indigo) element is highly overlapped with Si and Fe ele-
ments. The elemental mapping images is shown in Fig. 1I, 
which has a more intuitive display of the element distribu-
tion and composition of Au@SiO2@Fe3O4.

Characterization of ternary Y‑DNA walker sensor

The key to the ternary Y-DNA walker sensor is the success-
ful construction of Yn-DNA, so it is necessary to verify the 
formation of the Yn-DNA first. Yn-DNA involves three con-
stituents: Apt, H-DNA, and En-DNA. Native polyacrylamide 
gel electrophoresis (PAGE) was used to characterize and val-
idate the formation of Yn-DNA. Use Image Lab™ software 
to compare the separated bands of different oligonucleotide 
chain constituents at known concentrations (0.4 μM). The 
electrophoresis analysis was performed in 1 × TBE buffer 
at 4℃ for 50 min with 15% Polyacrylamide gels (30%, 
acrylamide/bis-acrylamide 29:1). As shown in Fig. 2A, 
lanes 1, 2 and 3 correspond to Apt, H-DNA, and E20-DNA, 

respectively. Lanes 4, 5, and 6 correspond to constituents 
Apt, H-DNA, constituents Apt, E20-DNA, and constitu-
ents H-DNA, E20-DNA, respectively. Although new bands 
appeared in lines 4 and 5, the bands were still very weak, 
indicating that constituents Apt, H-DNA, and constituents 
Apt, E20-DNA were only weakly bound. Moreover, Line 5 
did not appear any new bands, indicating that constituents 
Apt and E20-DNA did not bind. Lane 7 corresponds to con-
stituents Apt, H-DNA, E20-DNA, and a bright band appears, 
which proves the successful synthesis of Y20-DNA. Lanes 8 
and 9 correspond to constituents Apt, H-DNA, and E5-DNA 
and constituents Apt, H-DNA, and E40-DNA, respectively, 
which further proves the successful synthesis of Y5-DNA 
and Y40-DNA, and also proves that the continuous T base 
sequence does not affect the synthesis of Yn-DNA.

Moreover, using UV–vis absorption spectroscopy pro-
vided direct evidence about the successful loading of the Y 
ternary Y-DNA walker on the surface of Au@SiO2@Fe3O4 
nanomaterials via Au–S affinity. As shown in Fig. 2B, the 
ternary Y-DNA walker (Constituents Apt, H-DNA, E20-
DNA, and FAM-cDNA) has a characteristic peak at 260 nm. 
After the ternary Y-DNA walker was incubated with the 
magnetic Au@SiO2@Fe3O4 nanomaterial, the decrease of 
the characteristic peaks of the supernatant obtained by mag-
netic separation confirmed the successful coupling of the 
ternary Y-DNA walker with Au@SiO2@Fe3O4.

Each key step of the ternary Y-DNA walker sensor was 
further characterized by detecting the fluorescent signal 
of FAM. As shown in Fig. 2C, the ternary Y-DNA walker 
(indigo) represents the strongest FAM fluorescence signal. 
After incubating the ternary Y-DNA walker with Au@
SiO2@Fe3O4 (green), the FAM fluorescence signal of the 
supernatant was significantly decreased, further confirm-
ing the successful coupling of the Y-DNA to the material. 
Adding Nb.BbvCI to the solution of ternary Y-DNA walker 
and Au@SiO2@Fe3O4 (black) will drive the ternary Y-DNA 
walker to cut the track hairpin FAM-cDNA and release FAM 
signal fragments, and the supernatant after magnetic sepa-
ration will produce a higher FAM fluorescence signal. The 
binding of OTA to Apt (red) disrupts the ternary Y-DNA 
walker and inhibits cleavage. These results demonstrate 
that the ternary Y-DNA walker can be successfully driven 
by restriction endonuclease Nb.BbvCI continuously gener-
ates a large number of signal fragments, which are inhibited 
by OTA. After incubating the ternary Y-DNA walker with 
Au@SiO2@Fe3O4 and Au@Fe3O4 respectively, the FAM 
fluorescence signal diagram of the supernatant is shown in 
Fig. 2. The results show that Au@SiO2@Fe3O4 exhibits 
stronger fluorescence adsorption due to its larger specific 
surface area.

Moreover, comparing the Au@SiO2@Fe3O4 with Au@
Fe3O4, the FAM fluorescence signal of the supernatant was 
compared by incubating the ternary Y-DNA walker with 
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Au@SiO2@Fe3O4 and Au@Fe3O4 respectively. As shown 
in Fig. S4, Au@SiO2@Fe3O4 exhibits stronger adsorption 
due to its larger specific surface area.

Optimization of analytical parameters

A series of optimization experiments were conducted on 
the Au@SiO2@Fe3O4 concentration (Fig. S5A&B), FAM-
cDNA volume (Fig. S5C&D), the number of consecutive 
T bases in Yn-DNA (Constituent En-DNA, n = 5, 20, 40) 
(Fig. S5E&F) and restriction endonuclease Nb.BbvCI cut-
ting time (Fig. S5G&H), 0.5 mg·mL−1, 40 μL, n = 20, and 
90 min were determined as the optimal experimental condi-
tions, respectively. See Supporting Information (Sect. 2) for 
more specific optimization procedures.

Analytical performance of ternary Y‑DNA walker 
sensor

Under the optimal experimental conditions, the analyti-
cal performance of the ternary Y-DNA walker sensor was 
evaluated with various concentrations of OTA (100, 50, 
10, 5, 1, 0.5, 0.1, 0.05 ng·mL−1). As shown in Fig. 3A, 
the fluorescence intensity increased gradually as the OTA 

concentration decreased from 100 to 0.05 ng·mL−1, and dis-
played a well-linear relationship with the logarithm of the 
OTA concentration (Fig. 3B). The regression equation was 
F = -3708.85lg(cOTA/ng·mL−1) + 31,032.21 with a good cor-
relation coefficient (R2) of 0.991, where F is the variable of 
the FAM fluorescence signal intensity and c is the OTA con-
centration. Based on the IUPAC [34] method (Sect. 3), the 
limit of detection (LOD) is estimated to be 0.027 ng·mL−1 
and Table S2 lists the blank fluorescent signal values when 
absent of OTA. Compared with other detection methods 
(Table 1), the ternary Y-DNA walker sensor performed well 
in terms of linear range and detection limit, indicating that 
the sensor has good sensing performance.

Specificity and long‑term stability

To study the specificity of this strategy, we compared the 
fluorescence intensity of blank control (Blank), DON, ZEN, 
AFB1, FB1, OTB, OTA, and a mixture of the above toxins 
(Mix). Figure 4A and B shows the histogram of fluorescence 
intensity and Fluorescence spectra of different mycotoxins 
and their mixture., respectively. In the presence of OTA in 
the ternary Y-DNA walker sensor, a strong suppression of 
fluorescence intensity can be observed, confirming the good 

Fig. 2   A Non- denaturing PAGE (15%) analysis of the Yn-DNA. All 
samples are run at 200 V for 45 min. The concentration of each sam-
ple was set as 400  nM. The down table represents the sample type 

of each lane; B and C correspond to UV–vis absorption spectroscopy 
and fluorescent spectroscopy characterization, respectively
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specificity of the sensor. The prepared three-way Y-shaped 
DNA walker sensor was stored in triplicate at 4  °C for 
14 days. Then, OTA and Nb.BbvCI were added and fluo-
rescence signals were collected by Synergy H1 Multiplex 

Detection Microplate Reader. The results showed that the 
fluorescence intensity was 96.7% of the initial value, which 
confirmed that the sensing strategy has satisfactory long-
term stability.

Fig. 3   A Fluorescence intensity of FAM in the supernatant after incubating the ternary Y-DNA walker sensor with different concentrations of 
OTA and Nb.BbvCI. B Calibration curve of FAM fluorescence intensity and -lg[OTA] using ternary Y-DNA walker sensor

Table 1   Comparison of different sensors for the OTA determination

Method Linear range LOD Ref

Dpy-NhBt-COF@Tb-based fluorescence aptasensor 25–10,000 nM 13.5 nM (5.44 ng·mL−1) [35]
amSWCNTs-based fluorescence aptasensor 1.12–0.08 μM 14 nM (5.64 ng·mL−1) [36]
g-CNQDs and CoOOH nanosheets-based fluorescence aptasensor 57–0.4 ng·mL−1 0.02 ng·mL−1 [37]
Fluorescence aptasensor and RNase H-assisted cycle response strategy 20–0.4 ng·mL−1 0.08 ng·mL−1 [38]
AuNPs-based fluorescence immunosensor and FRET strategy 3.12–0.09 ng·mL−1 0.02 ng·mL−1 [39]
Au@SiO2@Fe3O4-based fluorescence aptasensor and ternary Y-DNA 

walker strategy
100–0.05 ng·mL−1 0.027 ng·mL−1 This work

Fig. 4   Histogram of fluorescence intensity (A) and fluorescence spectra (B) of different mycotoxins and their mixture
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Ternary Y‑DNA walker sensor in real samples

The peanut sample was chosen to investigate the potential 
application of the ternary Y-DNA walker sensor. Accord-
ing to the toxicological assessment conducted by the Food 
Science Committee [40] and IARC’s [3] assessment of the 
carcinogenic risk of chemicals to humans, the maximum 
allowable content of OTA in cereals is 5 ng·mL−1, and in 
cereal-derived products is 3 ng·mL−1. The OTA spiked 
concentrations used in the study were 0.5, 1, 5, 10, and 
50 ng·mL−1, respectively. These specimens were measured 
by the developed method and a commercially available 
ELISA method. As shown in Fig. S6, the results show that 
there is no significant difference between the two methods 
and that they are highly correlated. As shown in Table S3, 
the results showed that recovery rates in the peanut sample 
was 82.00–93.30% with relative standard deviations (RSD) 
of 3.36–5.14%. These experimental results showed that 
the fluorescence aptasensor based on the ternary Y-DNA 
walker strategy could be used for the detection of real sam-
ples and had broad application prospects in identifying 
OTA and realizing control of it in food safety as well.

Conclusions

Overall, based on the Au@SiO2@Fe3O4 nanomaterials and 
ternary Y-DNA walker amplification strategy, a fluores-
cence aptasensor was developed for OTA detection. As 
a loading platform for fluorescent sensors, Au@SiO2@
Fe3O4 nanomaterials can greatly improve the distribu-
tion density of the ternary Y-DNA walker, and can be 
easily recovered and magnetically separated. The ternary 
Y-DNA walker couples the nanomaterials via Au–S cova-
lent bonds, resulting in satisfactory stability of the sensor. 
Moreover, the ternary Y-DNA walker was programmed to 
cleave the FAM probe driven by the restriction endonucle-
ase Nb.BbvCI, and this driving process was inhibited by 
OTA. Taking advantage of the aforementioned advantages, 
the proposed sensing strategy exhibits satisfactory analyti-
cal performance. It is worth noting that both the design 
of Au@SiO2@Fe3O4 nanomaterials and ternary Y-DNA 
walker can be used to develop biosensors for other tar-
gets. In this study, Yn-DNA was optimized in more detail, 
so that it can easily expand to other targets by replacing 
different aptamers in the base sequence of the Yn-DNA 
binding region. The current detection strategy relies on 
a multi-step standardized incubation process, which lim-
its the scale and frequency of monitoring required. In the 
future, investing in high-throughput detection equipment 
may improve this situation.
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