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Abstract
Mn3O4 nanoparticles composed of porous reduced graphene oxide nanosheets (Mn3O4@p-rGO) with enhanced oxidase-
like activity were successfully fabricated through an in-situ approach for fast colorimetric detection of ascorbic acid (AA). 
The residual Mn2+ in the GO suspension of Hummers method was directly reused as the manganese source, improving 
the atom utilization efficiency. Benefiting from the uniform distribution of Mn3O4 nanoparticles on the surface of p-rGO 
nanosheets, the nanocomposite exhibited larger surface area, more active sites, and accelerated electron transfer efficiency, 
which enhanced the oxidase-like activity. Mn3O4@p-rGO nanocomposite efficiently activate dissolved O2 to generate singlet 
oxygen (1O2), leading to high oxidation capacity toward the substrate 3,3′,5,5′–tetramethylbenzidine (TMB) without the 
extra addition of H2O2. Furthermore, the prominent absorption peak of the blue ox-TMB at 652 nm gradually decreased in 
the presence of AA, and a facile and fast colorimetric sensor was constructed with a good linear relationship (0.5–80 μM) 
and low LOD (0.278 μM) toward AA. Owing to the simplicity and excellent stability of the sensing platform, its practical 
application for AA detection in juices has shown good feasibility and reliability compared with HPLC and the 2, 4-dinitro-
phenylhydrazine colorimetric method. The oxidase-like Mn3O4@p-rGO provides a versatile platform for applications in 
food testing and disease diagnosis.

Keywords  Mn3O4 nanoparticles · Porous reduced graphene oxide · Oxidase-like activity · Nanozyme · Ascorbic acid 
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Introduction

Ascorbic acid (AA) is an important biological cofactor 
and antioxidant, which participate in various biochemical 
and physiological processes [1]. Abnormal levels of AA 
are associated with scurvy, cancer, cardiovascular disease, 
and some mental illness [2–5]. It is of great importance to 

develop convenient and rapid methods for AA detection with 
high sensitivity in a vast range of areas such as drugs, foods, 
and clinical diagnosis. Recently, various methods have been 
exploited for AA determination, including high-performance 
liquid chromatography (HPLC), capillary electrophoresis, 
electrochemistry, chemiluminescence, and fluorescence 
[6–12]. Colorimetric assay has emerged as an important 
sensing platform due to its rapidity, simplicity, low-cost 
and easy detection by naked eyes. Nowadays, enzyme-like 
nanomaterials-based sensors have drawn great interest as 
colorimetric tools [13].

Nanozyme is a class of nanomaterials that possess 
intrinsic enzyme-like properties, which can be applied as 
an enzyme substitute to catalyze the biochemical reactions 
of the substrates under physiological conditions [14]. 
Owning to the advantages of low cost, high stability, and 
ease of production, nanozyme has excellent prospects in 
molecular detection and some other areas. The peroxidase 
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and oxidase-like nanomaterials can efficiently catalyze 
the oxidation of colorless substrates to produce colored 
products, which can be used as colorimetric sensors 
[15, 16]. Different from peroxidase-mimics, oxidase-
mimicking nanozymes can directly use dissolved oxygen 
molecules as the oxidant [17]. Herein, the oxidase-
mimics are much more attractive in biosensing, which 
can effectively eliminate the interferences of the extra 
addition of H2O2. Most of the reported oxidase-mimics 
concerned in metal oxide nanoparticles and noble 
metal nanoparticles [15], such as Au [18], Pt[19], CeO2 
[20], NiO [21], MnO2 [22], Mn3O4 [23], and V2O5 
nanozymes [24]. However, the catalytic activities of 
these metal nanomaterials are severely deteriorated by 
the spontaneous aggregation and instability. Improving 
the catalytic activity and stability of the nanoparticle-
based nanozyme is still challenging.

The growth of nanoparticles on specific support can 
efficiently prevent aggregation and increase active sites, 
which is an effective strategy to enhance the catalytic 
activity [25–27]. Graphene nanosheets, as an excellent 
two-dimensional (2D) carbon support, is regarded as a 
promising candidate due to the characteristics of high 
mechanical strength, large surface area, high chemical 
stability, and good biocompatibility [28–30]. However, 
the agglomeration and restacking of graphene sheets can 
lead the decrease of active sites. Porous graphene, which 
possesses abundant pores on the surface, could effi-
ciently avoid agglomeration and increase the surface area 
[31–34]. We have proposed several strategies to deposit 
different nanoparticles (including TiO2 nanoparticles, Fe/
Ni bimetallic nanoparticles, Zn-BTC MOF, and so on) 
on the surface of porous graphene, which exhibited good 
potential applications in organic pollutant degradation 
[35], rare earth adsorption [36, 37], separation [38], and 
molecule detection [39].

In this work, we successfully combined porous 
reduced graphene oxide nanosheets (p-rGO) with Mn3O4 
nanoparticles (Mn3O4@p-rGO) through an in-situ fabrication 
strategy. Mn3O4 nanoparticles were synthesized by reusing 
the absorbed Mn2+ on the surface of GO as the precursor, 
and the p-rGO with porous structure was obtained by 
directly calcinating in open air. The decoration of Mn3O4 
nanoparticles on the surface of p-rGO nanosheets effectively 
enhanced the oxidase-like activity owing to the larger surface 
area, more active sites, and accelerated electron transfer 
efficiency (as shown in Scheme 1). Furthermore, a simple 
and fast colorimetric sensor was constructed for AA detection 
with satisfactory sensitivity and selectivity. It’s proved that 
Mn3O4@p-rGO is a promising oxidase alternative with 
potential applications in molecular sensing and disease 
diagnosis.

Experimental section

Preparation of Mn3O4@p‑rGO nanocomposites

Aqueous graphite oxide dispersion was prepared via the 
modified Hummers method [40]. Specifically, with stir-
ring in an ice bath, graphite flakes (0.5 g), and NaNO3 
(0.5 g) was added to 25 mL concentrated H2SO4. KMnO4 
(3 g) was then slowly added with the temperature of the 
suspension lower than 20 °C throughout the process. After 
2 h, the mixture was transferred to a 40 °C water bath 
for an additional hour. Subsequently, 40 mL of H2O was 
added dropwise to increase the temperature. The reaction 
was performed at 90 °C for 0.5 h and followed by further 
addition of 5 mL H2O2. Then, the mixture was centri-
fuged to remove the soluble ions, and 5 M KOH solution 
was added to neutralize the products. Let stand for 1 h, 
the black precipitates were washed with water for three 

Scheme 1   Schematic illus-
tration the mechanism the 
boosted oxidase-like activity of 
Mn3O4@p-rGO



Microchim Acta (2023) 190:243	

1 3

Page 3 of 9  243

times and dried in vacuum at 60 °C. At last, the samples 
were rapidly transferred to a muffle furnace at 500 °C for 
10 min, and the final product was collected and denoted 
as Mn3O4@p-rGO nanocomposite.

Oxidase‑mimic activity assay

The oxidase-mimic activity was evaluated by using TMB as 
a chromogenic substrate. Typically, 20 μL of TMB (10 mM), 
30 μL of Mn3O4@p-rGO nanocomposites (100 mg/L), and 
40 μL of acetate buffer (100 mM, pH 4.0) were mixed with 
110 mL DI water, and the absorbance spectrum was recorded 
after incubated for 10 min. The kinetic assays were performed 
by changing the TMB concentrations (0.025, 0.05, 0.075, 0.1, 
0.15, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 mM) in the reaction mix-
tures. All reaction solutions were incubated at room tempera-
ture (25 ℃) unless otherwise stated, and the absorbance at 
652 nm was recorded at 1-s interval over 5 min. All data were 
collected with three independent measurements.

Detection of AA

For colorimetric detection of AA, 30 μL of Mn3O4@p-rGO 
nanocomposites solution (100 mg/L), 40 μL of acetate buffer 
(100 mM, pH 4.0), and various concentrations of AA (final 
concentrations: 0–100 μM) were mixed in a 0.5-mL tube. 
Then, 20 μL of TMB (10 mM) solution was added, and fur-
ther diluted with ultrapure water to a final volume of 200 
μL. These mixtures were incubated for 10 min, and then 
the UV–vis absorbance spectrum was recorded. Similarly, 
the interference experiment was performed by replacing AA 
with some other agents. All data were collected with three 
independent measurements.

Detection AA in fruit juice

Fresh fruits were purchased from market, and the edible 
part of these fruits were isolated. Then, the fruit juices 
were obtained with an electric juicer, the juice were centri-
fuged at 3000 rpm for 10 min to remove the fruit residues. 
The supernatants were collected and diluted tenfold with 
100 mM acetate buffer (pH 4.0) and stored at 4 ℃. Under 
the detection procedures, 20 μL of the diluted juices were 
added into the reaction systems, and further detected as men-
tioned above. Totally, all fruit juices were diluted 100-fold 
to fit the sensing response range. The AA concentrations in 
these samples were also detected by HPLC method and 2, 
4-dinitrophenylhydrazine colorimetry method according to 
the Chinese standard GB 5009.86–2016. All data were col-
lected with three independent measurements.

Results and discussion

Characterizations of Mn3O4@p‑rGO nanocomposites

As illustrated in Fig. 1A, a facile in-situ fabrication strat-
egy was applied for the synthesis of the Mn3O4@p-rGO 
nanocomposites. Firstly, Mn2+-GO suspension was 
obtained by the modified Hummers method. Under this 
process, KMnO4 was both used as a strong oxidant for 
graphite oxidation and as the manganese source. Mn2+ 
ions were absorbed on the surface of GO nanosheets, on 
account of the strong coordination interaction of the oxy-
gen containing groups on the GO nanosheets. After being 
neutralized with KOH and exposed in air, the absorbed 
Mn2+ was in situ converted into Mn3O4 nanoparticles [41]. 
After calcination under high temperature in open air for 
a short time, the GO nanosheets were oxidized to form 
porous structure as confirmed by the characterizations of 
the morphology and structure of the nanocomposites as 
follows.

As displayed in Fig. 1B, the porous structure of p-rGO 
nanosheets can be easily identified from the TEM image, 
and the Mn3O4 nanoparticles uniformly distributed on 
the surface of p-rGO nanosheets. The p-rGO provided 
a great support for the formation of the small Mn3O4 
nanoparticles and prevent them from aggregation. On the 
other hand, Mn3O4 nanoparticles also protect the p-rGO 
nanosheets from burning up at high temperature in open 
air. The typical (101) crystal plane of Mn3O4 nanoparti-
cles can be observed from the crystal plane spacing of 
0.49 nm [26]. As shown in Fig. 1C, the typical diffraction 
peaks in the XRD pattern of the nanocomposites match 
well with the standard hausmannite structure of Mn3O4 
(JCPDS no. 24–0734), suggesting the high purity of the 
Mn3O4 nanoparticles [26, 42]. Besides, the broad peak at 
around 24° implied the existence of the (002) plane of the 
porous graphene nanosheets. In the Raman spectra of the 
nanocomposites (Fig. S1), the intensity ratio between the 
D and G bonds (ID/IG) was 1.05, implying the enhanced 
electron conductivity [43]. Moreover, the prominent peak 
at 647 cm−1 associated with the phonon lines of Mn3O4 
[42, 43]. Thus, the successful composition of p-rGO 
nanosheets and Mn3O4 nanoparticles is confirmed.

Furthermore, XPS was performed to study the electronic 
structure and surface composition of the Mn3O4@p-rGO 
nanocomposites. The XPS survey spectrum (Fig.  1D) 
reveals the presence of Mn, C, and O elements in the 
nanocomposites. As shown in the high-resolution Mn 2p 
spectrum (Fig. S2A), there are two distinct peaks at 641.8 
(Mn 2p3/2) and 653.6 eV (Mn 2p1/2) with a spin-energy 
separation of 11.8 eV, which agrees well with the earlier 
reported Mn3O4 [26, 44]. The C 1 s spectrum (Fig. S2B) 
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can be deconvoluted into four components at 284.8, 286.6, 
288.2, and 289.1 eV, which correspond to the C–C/C = C, 
C-O, C = O, and O-C = O bonds, respectively [42]. Most 
of the oxygen atoms in the surface of porous graphene 
may residue from GO. As shown in Fig. S2C, the O 1 s 
spectrum reveals the presence of Mn–O-Mn (530.2 eV), 
Mn-OH (531.5 eV), and C-O/C = O (532.8 eV), which are 
consistent well with the previous results [42]. Overall, the 
Mn3O4 nanoparticles were successfully deposited on the 
surface of p-rGO.

Enzyme mimicking activity

The typical chromogenic substrates (TMB, ABTS, and 
OPD) were selected to test the oxidase-like performance of 
Mn3O4@p-rGO nanocomposites. As displayed in Fig. 2A 
and Fig. S3, all of these substrates were oxidized to gener-
ate the chromatic products with the characteristic UV–vis 
absorption spectra under the presence of Mn3O4@p-rGO. 

Besides, the obvious color change can be observed, sug-
gesting the versatile applicability of Mn3O4@p-rGO as 
an oxidase mimic. To further evaluate the oxidase-mimic 
activity, TMB was selected as the model substrate, and the 
absorbance intensity at 652 nm (A652 nm) was monitored to 
assess the catalytic performance. As shown in Fig. 2B, the 
catalytic kinetics of different catalysts were investigated. 
Notably, the oxidase activity of the catalysts follows the 
order: Mn3O4@p-rGO > Mn3O4@GO > Mn3O4 > p-rGO. 
Interestingly, the catalytic activity of Mn3O4@p-rGO 
nanocomposites is higher than the sum of the individual 
catalytic activity of Mn3O4 and p-rGO, exhibiting a good 
synergistic effect. Thus, the Mn3O4 nanoparticles deco-
rated on p-rGO exhibited the highest oxidase activity, 
which was selected as the best oxidase-mimic excellent 
candidate. As previously reported, both GO and p-rGO 
were applied as the supports for boosting the catalytic 
activities of nanoparticles, owing to the increased sur-
face area and catalytic sites [30, 45, 46]. Herein, the 

Fig. 1   A Schematic illustration of fabrication process of Mn3O4@p-rGO. B TEM image of Mn3O4@p-rGO nanocomposites. C XRD pattern and 
D XPS spectrum of Mn3O4@p-rGO nanocomposites
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catalytic activity of Mn3O4@p-rGO was superior to that 
of Mn3O4@GO, which may mainly attribute to the better 
electron transfer ability of p-rGO.

Furthermore, the effects of catalyst concentration, reac-
tion pH, temperature, and storage time on the catalytic activ-
ity of the nanozyme were evaluated. As shown in Fig. S4A 
and S4B, 15 mg/L of Mn3O4@p-rGO and pH = 4.0 were 
optimized as the best reaction conditions. The catalytic 
activity of Mn3O4@p-rGO peaked at 45 ℃ over the range 
of 15–65 ℃ (Fig. S4C). To facilitate the practical applica-
tion, the following experiments were carried out at 25 ℃. 
Besides, the catalytic activity of the nanozyme exhibited no 
apparent change even after store for four months (Fig. S4D), 
suggesting its outstanding stability.

To evaluate the oxidase-mimic activity of Mn3O4@p-rGO, 
the steady-state kinetic parameters were further analyzed. By 
monitoring the catalytic reaction velocity (V) with the addi-
tion of different concentrations of TMB, the obtained plot 
follows the typical Michaelis–Menten curve (Fig. 3A). The 
Michaelis constant (Km) and maximum initial velocity (Vmax) 
were calculated to be 0.1135 mM and 164.5 × 10−8 M s−1, 
respectively. Compared with most reported oxidase-mimics 
(including Mn3O4 nanomaterials with different morpholo-
gies and some other nanoparticle-decorated graphene nano-
composites), Mn3O4@p-rGO had a comparable Km value 
and higher Vmax (Table S1), suggesting that Mn3O4@p-rGO 
has a high affinity toward TMB and excellent oxidase-mimic 
activity.

Oxidase-mimic nanozymes can catalyze the substrates 
oxidation in the presence of dissolved O2 as the electron 
acceptor. Hence, the catalytic activity of Mn3O4@p-rGO 
in N2/O2-saturated solution was studied. As shown in 
Fig. 3B, the catalytic activity increased obviously after the 
solution was purged with O2, while it was inhibited under 

a N2-saturated solution. Thus, the dissolved O2 participated 
in the oxidation of TMB.

To further figure out the possible mechanism, different 
kinds of radical scavengers were used to verify the possible 
reactive oxygen species (ROS, including hydroxyl radical 
(·OH), singlet oxygen atom (1O2), and superoxide radical 
(O2

−)) involving the catalytic process. As shown in Fig. 3C, 
TBA (·OH scavenger) and p-benzoquinone (O2

− scavenger) 
exhibited weak effects on the catalytic activity even at high 
concentrations, suggesting that there was almost no ·OH 
and O2

− generated in the reaction system. Obviously, the 
catalytic activity was sharply reduced with the addition of 
NaN3 (1O2 scavenger), indicating the generation of plenty 
of 1O2 in the solution. Furthermore, the existence of these 
reactive oxygen species was investigated by ESR technol-
ogy, DMPO and TEMP were used as the spin-trapping rea-
gents for the capture of O2

− or ·OH, and 1O2, respectively. 
As shown in Fig. S5, the weak EPR signals attributed to 
O2

− and ·OH confirmed the absence of O2
·− or ·OH in the 

reaction solution. In contrast, the strong triplet EPR peaks of 
TEMPOL verified the existence abundant of 1O2 free radi-
cals (Fig. 3D).

Based on these results, the possible catalytic mechanism 
for TMB oxidation can be illustrated as follows: the dis-
solved O2 efficiently adsorbed on the mesoporous structure 
of p-rGO, and then it was immediately activated to generate 
1O2 by the increasing active sites of Mn3O4 nanoparticles. 
Subsequently, the generated 1O2 with strong oxidizing ability 
immediately oxidized TMB to the blue ox-TMB.

Colorimetric detection of AA

AA is a kind of typical antioxidant, which widely exist in 
fruit. With the addition of AA in the Mn3O4@p-rGO-TMB 

Fig. 2   A UV−vis absorption spectra of different reaction systems 
(inset: photographs of different reaction systems); B time-dependent 
absorbance changes under the presence of different catalysts. All data 

were represented as means ± standard deviation of three independent 
measurements
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reaction system, the generated 1O2 can be directly elim-
inated by AA, which greatly inhibits the chromogenic 
reaction of TMB. Meanwhile, the blue ox-TMB can also 
be transformed into colorless TMB in the existence of 
AA. Based on this principle and the excellent oxidase 
enzyme mimic activity of Mn3O4@p-rGO nanocom-
posites, a fast, sensitive assay could be established. As 
displayed in Fig. 4 A, with the increase of AA concen-
tration (0–100 μM), the absorbance of ox-TMB gradu-
ally decreased, and the color of the solution fading dark 
blue to colorless. The absorption differences at 652 nm 
(ΔA652) were further calculated, which exhibited good 
linearity to the AA concentrations in the range of 0.5 μM 
to 80 μM (inset of Fig. 4B). The limit of detection (LOD) 
for AA was calculated to be 0.278 μM according to the 
3σ/m criterion (where σ is the standard deviation of the 
blank and m is the slope of the calibration plot). The pro-
posed Mn3O4@p-rGO-TMB sensing platform exhibited 
higher sensitivity and wider sensing range than most of 
the reported probes (Table S2). Additionally, compared 
with the peroxidase-mimic probes, the proposed sensing 

platform is much easier to operate and facilitates the 
application in complex conditions.

To further assess the selectivity of the Mn3O4@p-rGO-TMB 
detection system toward AA, the potential effects of different 
interferential substances (such as citric acid, benzoic acid, adi-
pic acid, uric acid, and some amino acids) were measured. As 
shown in Fig. 4C, the presence of these interferential substances 
has no influence on the detection of AA, and no obvious color 
change can be observed even in a much higher concentration.

The practical usability of Mn3O4@p-rGO for AA detec-
tion was carried out in some different fresh fruits, such as 
pitaya, grape, and navel orange. As displayed in Table S3, 
the contents of AA in these fruits juice were determined, and 
the standard addition method was applied by adding different 
amounts of AA in the solution. The recoveries of the samples 
range from 97.8 to 104.2%, indicating the feasibility and reli-
ability of the proposed method for AA determination in practi-
cal samples. Furthermore, HPLC method and 2,4-dinitrophe-
nylhydrazine colorimetry method were also applied to detect 
the concentrations of the fruit juices. As listed in Table S4, the 
detected concentrations by our method were consistent with 

Fig. 3   A Steady-state kinetic assay of Mn3O4@p-rGO on TMB oxi-
dation. B Catalytic performance of Mn3O4@p-rGO in N2/O2-satu-
rated conditions. C The effects of different radical scavengers on the 

catalytic activity of Mn3O4@p-rGO. D EPR spectra for detection of 
1O2 before and after reaction for 5 min. All data were represented as 
means ± standard deviation of three independent measurements
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these reference methods, indicating the as-prepared method 
presented acceptable precision and accuracy.

Conclusions

The Mn3O4@p-rGO nanocomposite was successfully pre-
pared through an in-situ fabrication strategy. Owning to 
the synergistic effect between Mn3O4 nanoparticles and 
p-rGO nanosheets, the hybrid exhibited enhanced oxidase-
like activity compared with Mn3O4 nanoparticles or p-rGO 
nanosheets alone. A simple and fast colorimetric sensor of 
Mn3O4@p-rGO-TMB detection system was constructed 
for AA detection with excellent sensitivity and selectiv-
ity. Furthermore, practical application for AA detection in 
real samples also demonstrated its good feasibility and reli-
ability. This work indicates the decoration of nanoparticles 
on specific support is an efficient strategy to enhance their 
enzyme-like activities, which exhibit promising potential in 
food safety, pharmacy, biosensing, and disease diagnosis.
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