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Abstract
A turn-on fluorescent aptasensor based on a paper-based microfluidic chip was developed to detect arsenite via aptamer 
competition strategy and smartphone imaging. The chip was prepared by wax-printing hydrophilic channels on filter paper. 
It is portable, low-cost, and environmentally friendly. Double-stranded DNA consisting of aptamer and fluorescence-labeled 
complementary strands was immobilized on the reaction zone of the paper chip. Due to the specific strong binding between 
aptamer and arsenite, the fluorescent complementary strand was squeezed out and driven by capillary force to the detection 
area of the paper chip, so that the fluorescent signal arose in the detection area under the excitation wavelength of 488 nm. 
Arsenite can be quantified by using smartphone imaging and RGB image analysis. Under the optimal conditions, the paper-
based microfluidic aptasensor exhibited excellent linear response over a wide range of 1 to 1000 nM, with a detection limit 
as low as 0.96 nM (3σ).
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Introduction

Arsenic is a well-known toxic, carcinogenic, and teratogenic 
substance. In the environment, arsenite is more toxic 
than other arsenic species (e.g., arsenate (As(V)) and 
organic As compounds) [1]. According to the regulations 
of the World Health Organization (WHO) and the U.S. 

Environmental Protection Agency (EPA), the maximum 
acceptable level for the total As in drinking water is 10 μg/L 
(133 nM) [2–4]. Some technologies including inductively 
coupled plasma-mass spectrometry (ICP-MS) [5], atomic 
absorption spectroscopy (AAS) [6], and atomic fluorescence 
spectrometry (AFS) [7] are usually used for arsenic 
determination. Although these methods are widely used, 
but they require specific large laboratory instrumentation 
and cannot determine arsenite (As(III)) on-site. Therefore, 
it has a great demand to develop the detection method and 
device for the portable on-site arsenite detection.

In this context, microfluidic paper-based analytical device 
(μPAD) [8–12] and aptamer [13–15] are both efficient and 
interesting approach to explore. Aptamer, as a functional 
single-stranded DNA or RNA sequence, demonstrates high 
specificity in binding to the target [16, 17]. Matsunaga K 
et al. [18] developed a DNA aptamer-based colorimetric 
method by gold nanoparticle for arsenite determination, 
and the detection limit was 2.1 μM. Although the method 
was simple and fast, but the sensitivity was low. Pan J et al. 
[19] used an exonuclease III-assisted fluorescent signal 
amplification strategy to sensitively detect As(III) in water. 
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Highlights   
1. A fluorescent paper-based microfluidic device based on 
smartphone imaging was developed for the on-site detection 
of arsenite.
2. The device was portable, low-cost, and environmentally friendly.
3. The device displayed a low detection limit of 0.96 nM in 
arsenite detection.
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However, the exonuclease assistant aptamer biosensors 
need strict temperature control and a long reaction time, 
which is not suitable for on-site detection. The μPAD shows 
the advantages of low-cost, portable, and strong ability to 
filter impurities [20–22]. Aptamer sensors combined with 
paper-based microfluidic devices have become a new 
trend, which can achieve the purpose of on-site detection. 
He M et al. [23] proposed the first portable upconversion 
nanoparticles (UCNPs)-based paper device for road-side 
field testing of cocaine. Monisha et al. [24] measured Hg2+ 
by a colorimetric method using a paper-based sensor with 
silver nanoparticles (AgNPs) printed by smartphone inkjet.

Here, we present a paper-based microfluidic device to 
detect As(III) on-site based on an aptamer competition 
strategy and smartphone imaging. The chip was prepared 
with hydrophilic and hydrophobic regions through wax 
spray printing. The double-stranded DNA with quenched 
fluorescence was fixed on the reaction area of the paper chip, 
in which one strand was a quencher-modified aptamer and 
the other strand was a fluorophore-modified complementary 
sequence. After adding the arsenite sample, aptamer 
was preferentially combined with arsenite to release the 
complementary sequence [18, 25, 26]. Due to the capillary 
force-driven liquid action in the hydrophilic channel of the 
filter paper, the fluorescein-modified complementary strand 
flowed into the detection area, where the fluorescence signal 
was enhanced. The changes of the fluorescence signal were 
captured by a smartphone camera. Therefore, the proposed 
device indicated the advantages of portable, low cost, and 
less consumption. It has great potential in the field detection 
of pollutants.

Materials and methods

Materials

4-hydroxyethyl piperazine ethanesulfonic acid (HEPES, 
99%) was purchased from Sigma-Aldrich (Shanghai) 
Trading Co., Ltd. (www.​sigma​aldri​ch.​com). Sodium 
arsenite (NaAsO2), sodium phosphite (Na2HPO3), sodium 
hypophosphite (NaH2PO2), sodium arsenate (Na3AsO4), lead 
acetate (Pb(CHCOO)2), cadmium chloride (CdCl2), sodium 
chloride (NaCl), and potassium dichromate (K2Cr2O7) were 
purchased from Shanghai Sinopharm Reagent Co., Ltd. 
(www.​reage​nt.​com.​cn). Whatman No. 1 filter paper was 
purchased from Shanghai Gaoxin ChemicalGlass Co., Ltd. 
(www.​shgxs​hop.​com). All other reagents were of analytical 
grade. Ultrapure water was used throughout.

DNA aptamers designed in our work were synthesized by 
Shanghai Sangon Biotech Co., Ltd. (www.​sangon.​com), and 
their sequences were listed as follows (design details are in 
Table S1 and Fig. S1 of the Supplementary Information):

Q-Apt-34: 5′-BHQ1-ACA​GAA​CAA​CCA​ACG​TCG​CTC​
CGG​GTA​CTT​CTTC-3′

C-FAM-11: 5′-GAG​CGA​CGTTG-FAM-3′

Apparatus

A paper-based chip was printed by a wax jet printer 
(Suzhou Royston Microfluidics). A clamp-type hot press 
machine (MNP-001) was bought from ASONE (Japan). A 
smartphone (Huawei p20 pro) was bought to take the photos 
and then analyzed by the software ImageJ. A fluorescence 
spectrophotometer (RF-6000) was bought from Shimadzu 
(Japan). The 488 nm laser and 520 nm high transmission 
filter were bought from Guangzhou Fuzhe Laser Technology.

Fabrication of the paper‑based chip

The paper-based chip size was 52 × 20 × 0.5 mm (Fig. 1a). 
It was composed of a wax jet printing layer at the top and 
a black hydrophobic plate at the bottom. The top layer of 
the paper-based chip was composed of an injection area, an 
aptamer fixation area, and a detection area. After pressing 
the wax jet printing layer with a hot-pressing plate, a black 
hydrophobic plate was attached to the back of the paper to 
make a paper-based chip (Fig. 1b). (Details are described in 
Supplementary Information).

Manufacture of the detection device

The self-made portable detection device was shown in 
Fig. 2. It was composed of a metal camera obscura, a 488 nm 
laser, and a 520 nm filter. The fluorescent signal photographs 
were taken using a smartphone through a filter window. The 
dimension of the metal box was 27 × 24 × 22 cm, and it was 
all black inside, except for a window with a filter and a door 
for taking the chip was left. As a fluorescent exciter, the 
488 nm laser was fixed inside the camera obscura at an angle 
of 45° to the bottom.

Procedure for detection of As(III) using paper‑based 
microfluidic device with smartphone

The 1.5  μM aptamer (Q-Apt-34) and complementary 
strand (C-FAM-11) were reacted in 25 mM HEPES buffer 
(containing 0.1 M NaCl, pH 7.6) at 4 °C for 10 min to form 
double-stranded DNA. We took 10 μL of the mixture to 
the fixation area of the paper chip and let it sit for 20 min 
in darkness, so that the DNA was completely adsorbed 
on the chip. Then, we added 20 μL As(III) solution in 
the injection area, and the liquid flowed into the fixation 
area  and reacted with aptamer for 30 min. Finally, 40 μL 
of 25 mM HEPES buffer was added to the injection area, 
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which flowed into the detection area after passing through 
the fixation area along the channel. When the liquid filled 
the detection area, the chip was immediately put into the 

camera obscura for photo recording under the excitation 
wavelength of 488 nm. The photo of the detection area was 
analyzed for RGB values using ImageJ software.

Fig. 1   The schematic represen-
tation of the paper-based chip. 
a Real photo of the chip, the 
size of 52 × 20 × 0.5 mm. b Chip 
fabrication process. c Schemati-
cally illustration of the experi-
mental principle. The aptamer 
was fixed; the sample was added 
to the injection area, and after 
full reaction, the buffer was 
added dropwise and detected in 
the detection area

Fig. 2   a Schematic of the 
layout structure of the detection 
device. b Real photo of the 
detection device. c Selection 
of the suitable filter with the 
fluorescence spectrophotom-
eter. The excitation wavelength 
was 488 nm, and the emission 
wavelength was 520 nm (curve 
blue: without filter; curve red: 
used the 520 nm high transmis-
sion filter; curve black: used 
Y-50 filter). d Fluorescence 
signals obtained by smartphone 
photography and the M values 
in the absence and presence of 
As(III), the fluorescence images 
above correspond to 0, 10, and 
100 nM As(III)
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Real samples detection

Tap water and Huangpu River water samples were tested to 
investigate the application of the paper-based microfluidic 
device. The samples were filtered by a 0.22 μm membrane 
and then adjusted pH to 7.6 by adding an appropriate 
amount of NaOH or HCl. The samples with spiked 
concentration of 100 nM and 1000 nM were prepared by 
adding 0.05 mL (10 μM/100 μM) arsenite solution into 
4.95 mL tap water or river water. The prepared samples 
were assayed according to Method 2.5.

Results and discussions

Detection principles of paper‑based chips

The paper-based chips were used to detect As(III) based 
on the strong binding ability of aptamer to heavy metal 
ions. The binding mechanism, as suggested by Kaur 
et al. [27], is that adenine and guanine in the aptamer 
promote specific binding of the aptamer to As(III) through 
directed unsaturated hydrogen bonds with nucleotide bases 
and their self-assembly-induced recognition behavior. 
Figure 1c is a schematic illustration of the experimental 
principle. The double-stranded DNA formed by quencher-
labeled aptamer (Q-Apt-34) and fluorophore-labeled 
complementary strand (C-FAM-11) were added to the 
aptamer fixation area in the paper-based chip. And then, 
double-stranded DNA was adsorbed on filter paper with 
liquid deposition [28, 29]. After adding As(III) in the 
injection area, the solution was propelled to the aptamer 
fixation area through the capillary force-driven liquid 
action of the filter paper, and the sample was simply 
filtered. The specific binding of the aptamer to As(III) 
destroyed the double-stranded structure, and the C-FAM-
11 was competed down. Since C-FAM-11 has fewer 
bases and a smaller molecular mass than Q-Apt-34, when 
sufficient buffer was added, free C-FAM-11 flowed with 
the buffer to the detection area, and the larger detection 
area can hold the free C-FAM-11.

To prevent the liquid from leaking out, a black 
hydrophobic plate was attached to the back of the paper. 
Since the fluorescent background of the paper-based chip 
itself was difficult to remove, it was important to choose 
a good hydrophobic plate. The white background will 
make the background fluorescence stronger. Custom-
made quartz chips can effectively reduce fluorescent 
background, but with high cost and troublesome to use. 
Thus, a low-cost black PVC plate can avoid fluorescence 
noise background and is easy to fit with the paper chip.

Design of the portable detection device

In order to overcome the inconvenience of using 
conventional equipment, a portable detection device was 
designed (Fig. 2a, b). The detection device was composed 
of a camera obscura, a 488 nm laser, and the 520 nm high 
transmission filter. Because different filters have different 
properties, it is important to choose the right filter. Y-50 filter 
and 520 nm high transmission filter were selected for testing, 
and the results showed that the 520 nm high transmission 
filter had the best performance (Fig. 2c). (Details are shown 
in Supplementary Information).

Fluorescent images were collected using a smartphone 
through a filter window and then converting the fluorescent 
signal into color (RGB) data using the software ImageJ. The 
final fluorescence signal (M) was obtained by analyzing the 
data of red channel (R) and green channel (G). G1 and R1 
represent the green and red values of fluorescence photography 
results in the presence of As(III). G0 and R0 represent the green 
and red values of fluorescence photography results without 
As(III). The calculation formula was based on the previous 
literature [30] and modified as follows:

Eq. (1):

Feasibility of the As(III) detection based 
on the paper‑based microfluidic device

In order to verify the feasibility of the established detection 
strategy, fluorescent images of the As(III) samples with 
concentrations of 0, 10  nM, and 100  nM were taken 
under the excitation wavelength of 488 nm and analyzed, 
respectively. As shown in Fig. 2d, the fluorescence signals 
of As(III) samples in the detection area of the paper-based 
microfluidic chip were much stronger than that of the blank 
control. And the M value increased with increasing As(III) 
concentration. It indicated that the paper-based microfluidic 
chip and device designed above successfully detect As(III).

Sensitivity and selectivity of the paper‑based 
microfluidic device

In order to improve sensitivity, experimental conditions 
for the reaction, including the concentration of aptamer, 
amount of the washing fluid on the paper-based chip, and 
time of As(III) reacted with aptamer, were performed. The 
1.5 μM of aptamer, 40 μL of HEPES buffer was added as 
the flushing liquid and 30 min reaction time were found 
to be optimum (Fig. S2 in Supplementary Information). 

(1)M =
G

1
∕R

1
− G

0
∕R

0

G
0
∕R

0
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Under optimal conditions, various concentrations of As(III) 
were examined at the excitation wavelength of 488 nm. As 
shown in Fig. 3a, the M value was boosted with increasing 
As(III) concentrations, and it was linearly correlated to the 
logarithm of As(III) concentration from 1 to 1000 nM. The 
linear regression equation was M = 0.031 + 0.120 lgCAs(III) 
(R2 = 0.9927). The limit of detection (LOD) of As(III) was 
calculated to be 0.96 nM (3σ).

The responses of the microfluidic paper-based chip to 
other metal ions (As(V), Cd(II), Pb(II), Na2HPO3, NaH2PO2, 
Cr(VI)), and mixed metal ions were investigated in Fig. 3b. 
As shown in the figure, NaH2PO2 and Cr(VI) had a certain 
response to the sensor, but compared with As(III) with the 
same concentration, As(III) had a more significant response. 
When all ions were presented simultaneously, the response 
signal produced was almost the same as that produced when 
only As(III) was presented, so that the sensor had excellent 
selectivity to As(III) when there were interfering ions in the 
environment. Such high selectivity was mainly attributed to 
the high specificity of the Q-Apt-34 for As(III).

The storage stability of paper‑based microfluidic 
chips

To ensure the stability, we stored the fabricated paper-
based chips at room temperature for a long time and tested 
the fluorescence signal (M) responded to 100 nM As(III) 

at 1–5 days, 15 days, and 30 days. As shown in Fig. S3, no 
significant decrease in fluorescence signal was observed 
within 30 days, indicating that the paper-based chips had 
good storage stability.

Real samples detection

To further verify the viability and practicability of the 
proposed method, recovery experiments in tap water and 
Huangpu River water were carried out. All the samples 
were filtered by 0.22 μm microporous membrane before 
testing. As shown in Table 1, when the samples were not 
spiked, As(III) was not found in tap water, and 13.84 nM 
of As(III) was detected in the Huangpu River water. 
For the tape water samples with spiked concentration 
of 100 nM and 1000 nM, the recoveries were 95.28% 
and 98.02%, respectively. And the recoveries of the 
Huangpu River water samples with spiked concentration 
of 100 nM and 1000 nM were 103.24% and 108.29%, 
respectively. It should be noted that the recovery values 
of the river water were calculated by deducting the 
background values. All the recoveries of the real samples 
were within the acceptable range with RSD < 15%. It 
means that the proposed method for the determination 
of As(III) has good suitability and reliability in real 
samples.

Fig. 3   Sensitivity and selectiv-
ity of the paper-based micro-
fluidic device. a The signal 
responses of the microfluidic 
paper-based chip to different 
concentrations of As(III) under 
the excitation wavelength of 
488 nm, inset shows the linear 
relationship, the fluorescence 
images above correspond to 
0, 1, 10, 100, 200, 500, and 
1000 nM As(III). b Specificity 
of the paper-based chip. The 
concentration of each ion was 
100 nM. For the mixed sample, 
the final concentration of each 
metal was also 100 nM

Table 1   Recovery in the water 
samples

Sample Added (nM) Total found (nM) RSD(n = 3, %) Recovery(%)

Tap water 0 Not found
100 98.03 ± 9.47 9.67 98.02
1000 952.80 ± 124.43 13.06 95.28

River 0 13.58 ± 1.71 12.59
100 116.82 ± 15.59 13.35 103.24
1000 1096.48 ± 38.27 3.49 108.29
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Performance comparison with the other optical 
methods

The optical method, especially the f luorescence 
spectrophotometer, is a popular detection method of arsenic. 
Herein shows an overview of the recently reported optical 
methods for the detection of As(III) in Table 2. Compared 
with the other reported methods, the fluorescence imaging 
method proposed in this paper exhibited a wide detection 
range and higher sensitivity. Moreover, the detection using 
smartphone imaging improves the detection portability, 
which is conductive to the on-site detection.

Conclusions

In this study, a portable paper-based microfluidic device 
was developed for the sensitive detection of As(III), in 
which the cost of a single detection was less than $0.3. The 
usage of aptamer enables the detection to maintain good 
selectivity in the complex environment and avoids the 
possible interference from other ions. And the combination 
of paper-based chips and smartphone imaging improves 
the detection portability and enables the on-site detection 
of samples. However, the paper-based chips used in the 
proposed strategy have a background fluorescent signal. 
Although its influence is not obvious on a turn-on fluorescent 
biosensor, it does limit the application in developing turn-off 
fluorescent biosensors. Thus, reducing the background noise 
and improving the detection sensitivity is one of our next 
research focuses. We believe that the proposed paper-based 
microfluidic chip and portable detection device will have 
broad application on the rapid on-site detection.
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