
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00604-022-05409-z

ORIGINAL PAPER

Self‑powered photoelectrochemical aptasensor based on  AgInS2@Co/
Ni‑UiO‑66@CDs photoelectrode for estradiosl detection

Ruifang Yuan1 · Xue Zhang2 · Xiaodong Xue2 · Rui Feng1 · Yanxia Zhao1 · Meng Sun1 · Liangguo Yan1 · Tao Yan1,3 · 
Qin Wei3

Received: 28 April 2022 / Accepted: 6 July 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract
A self-powered photoelectrochemical (PEC) aptasensor was constructed to sensitively detect 17β-estradiol  (E2). Firstly, a 
reasonable  AgInS2@Co/Ni-UiO-66@Carbon Nanodots (CDs) photoelectrode with excellent photoelectrochemical perfor-
mance was built by a simple two-step preparation method. The Co and Ni doping markedly improved the activity of UiO-
66; the matched energy level of  AgInS2 and Co/Ni-UiO-66 promoted the separation of electron–hole pairs, and the coupling 
of CDs further enhanced the conductivity and light utilization. Therefore, a steady anode-photocurrent signal output was 
obtained in 0.0 V bias voltage, providing a reliable photoelectric translating platform for assembling a self-powered PEC 
aptasensor. The  E2-aptamer was adopted as a recognition unit to enhance the selectivity and sensitivity of the proposed 
aptasensor. The specific recognition reaction between  E2 and aptamer administering to a raised photocurrent signal and the 
concentration of  E2 was quantified by counting the fluctuation of the anode-photocurrent signal. The linear response range 
of the PEC aptasensor was 1.0 ×  10−5–10 nmol/L, and the detection limit (S/N = 3) was lower than 3.0 fmol/L under optimal 
conditions. The fabricated aptasensor exhibited admirable selectivity, high sensitivity, rapid response, and wide linear range, 
demonstrating an extensive application prospect for environmental endocrine disruptor detection.

Keywords Photoelectrochemical aptasensor · Co/Ni-UiO-66 · Modified carbon nanodots · 17β-estradiol detection · Ternary 
chalcogenides

Introduction

17β-estradiol  (E2) could influence the human reproductive 
system or bring immune deficiency even at trace levels as 
one of the most potential and strongest estrogen [1, 2]. Cur-
rently, various techniques, including liquid chromatography 
[3], surface-enhanced Raman scattering (SERS) [4], electro-
chemical sensor [5], fluorescent sensor [6], and immunosen-
sor [7], have been used for  E2 detection. Nevertheless, most 

of these methods generally suffered the defects of cumber-
some operations and exorbitant equipment and restricted 
their practical application to some extent. As a result of the 
continuous innovation of environmental detection require-
ments, it is urgently needed to explore more efficient meth-
ods for the sensitive detection of  E2.

Photoelectrochemical (PEC) detection technology 
has been constantly studied for quantitative detection of 
various environmental targets given its low cost, simple 
instrumentation, and high sensitivity [8–10]. The aptamer 
recognition strategy has recently been widely used as a 
promising approach to capture target analytes in complex 
environmental mediums due to its good stability, simple 
modification, flexible sequence design, and so on [11–13]. 
Besides, the emerging self-powered devices have attracted 
widespread attention in various fields due to their superior 
energy saving and flexible usage in practice [14]. The pro-
posed self-powered sensing platform primarily provides a 
promising application strategy for rapid on-site environ-
mental detection [15, 16].
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The photoactive materials with superior properties are 
critical for a prominent PEC-sensing platform. Metal–organic 
frameworks (MOFs) materials have been applied to fabricate an 
efficient photoactive matrix for modern PEC sensor construction 
[17–19]. Zirconium-based MOFs (UiO-66) that have become 
more and more attractive due to the metal center clusters (Zr-
O) could greatly shorten the carrier transmission distance and 
improve the electron transfer rate, which remarkedly enhances 
the photocatalytic performance of UiO-66 [20–22]. Meanwhile, 
metal doping could further facilitate the separation efficiency 
of photo-induced carriers due to forming abundant redox sites 
[23–26]. Many metals-doped UiO-66, including Cu-UiO-66 
[23], Fe-UiO-66 [27] and Co/Zr-UiO-66 [28] have been devel-
oped for photocatalytic or photoelectrochemical application. 
Moreover,  AgInS2 is a ternary metal sulfide with a narrow direct 
band gap (1.87–2.03 eV) as well as a higher conduction band 
(CB) position [29, 30], which is generally acted as a photoac-
tive material to boost the light absorption and facilitate the pho-
togenerated electron transfer in photovoltaics and photocatalysis 
fields [31, 32]. Besides, carbon nanodots (CDs) are extensively 
used in establishing PEC-sensing platforms owing to their rapid 
electron transfer, excellent conductivity, and up-conversion pho-
toluminescence [33–35]. For the construction of a self-powered 
PEC-sensing platform,  AgInS2 and CDs–modified UiO-66 pho-
toelectrode is still lacking.

Herein, a novel  AgInS2@Co/Ni-UiO-66@CDs photoelec-
trode with excellent PEC performance was fabricated by a sim-
ple two-step preparation method. Then, a self-powered PEC 
aptasensor was constructed herein for  E2 detection on account 
of the obtained photoactive materials. The co-doped of Co and 
Ni markedly improved the photoelectrochemical activity of 
UiO-66, and the matched energy level of  AgInS2 and Co/Ni-
UiO-66 promoted carrier mobility. Furthermore, the coupling 
of CDs further enhanced the conductivity and light absorp-
tion of the modified photoelectrode. Therefore, an increased 
anode-photocurrent signal was obtained in 0.0 V bias voltage. 
Furthermore, the specific  E2-aptamer was adopted as a target 
marking and recognition unit to facilitate the selectivity and 
sensitivity of the proposed aptasensor. In the detecting process, 
the specific recognition between  E2 and aptamer conduced 
to the conformational change of the aptamers and complete 
dissociation of some aptamers on the PEC-sensing interface, 
resulting in a raised photocurrent signal. The concentration 
of  E2 was quantified by counting the fluctuation of the anode-
photocurrent signal.

Experimental

Materials and reagents

Zirconium tetrachloride  (ZrCl4, ≥ 98%), 2-aminotereph-
thalic acid  (C8H7NO4, ≥ 99%), and Indium trichloride 

 (InCl3, ≥ 99.9%) were acquired from Macleans Chemical 
Technology Co., Ltd (Shanghai, China). N, N-dimethyl-
formamide  (C3H7NO, DMF, AR), silver nitrate  (AgNO3, 
AR), ascorbic acid (AA, AR), and sodium sulfide 
 (Na2S·9H2O, AR) were acquired from Sinopharm Chemi-
cal Reagent Co., Ltd (Shanghai, China). Cobalt chloride 
 (CoCl2·6H2O, ≥ 99.9%) was acquired from Tianjin Fuchen 
Chemical Reagent Factory (Tianjin, China). Estradiol 
(monoclonal antibody, standard sample) was acquired 
from Shenzhen Anti Industrial Technology Co., Ltd (Shen-
zhen, China).

Indium-tin-oxide (ITO) conductive glass was acquired 
from Zhuhai Kaiwei Electronic Components Co., Ltd (Zhuhai, 
China). Terminal aminated aptamer (5′-NH2-GCT-TCC-AGC-
TTA-TTG-AAT-TAC-ACG-CAG-AGG-GTA-GCG-GCT-
CTG-CGC-ATT-CAA-TTG-CTG-CGC-GCT-GAA-GCG-
CGG-AAG-C-3′) was from Shanghai Shenggong Biological 
Engineering Co., Ltd (Shanghai, China).

The other details have been represented in the Electronic 
Supplementary Material (ESM).

Apparatus

Photoelectrochemical workstation (PP211) was purchased 
from Zahner (Germany). UV–Visible spectrophotometer 
(lambda35) was purchased from Perkin-Elmer (USA). 
Ultraviolet–visible diffuse reflectance (UV-3101PC) 
was purchased from Shimadzu Corporation (Japan). The 
other details have been represented in the supplementary 
information.

Synthesis of Co/Ni‑UiO‑66@CDs

0.233 g of  ZrCl4 and 0.181 g of terephthalic acid were dis-
solved into 60 mL (400 rpm) of DMF solution in sequence 
at room temperature. Then, 0.065 g of  CoCl2·6H2O and 
0.064 g of  NiCl2·6H2O were mixed and stirred for 60 min 
(600 rpm) at standard ambient temperature [36]. Then, 
a certain number of CDs, synthesized according to the 
literature [37] (details shown in supplementary informa-
tion), were mixed into the above solution. The compound 
was placed in a Teflon-lined autoclave (100 mL capacity) 
and incubated at 120 °C for 48 h. Ultimately, the mixture 
was thoroughly cleaned with DMF (60 mL) and methanol 
(60 mL) and dried at 60 °C overnight.

Fabrication of  AgInS2@Co/Ni‑UiO‑66@CDs/ITO 
photoelectrode

Before preparing the modified electrode, indium-tin-oxide 
(ITO) substrates had been sliced in earnest into 2.0 × 0.5  cm2 
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pieces. After that, the ITO slices were ultrasonically washed 
thrice with laundry detergent, acetone, and deionized water. 
These electrodes were dried naturally before use.

The Co/Ni-UiO-66@CDs suspension (10 μL, 4 mg/L) 
was coated on the ITO electrode. Then, the Co/Ni-UiO-66@
CDs/ITO electrode was immersed in 0.05 mol/L of  InCl3 eth-
anol solution for 30 s, followed by the Co/Ni-UiO-66@CDs/
ITO electrode that was immersed in 0.1 mol/L  Na2S·9H2O 
solution for 30  s. Afterward, the Co/Ni-UiO-66@CDs/
ITO electrode was flushed with methanol (10 mL) to purge 
away superfluous substances. Then, the obtained electrode 
was immersed in 0.05 mol/L  AgNO3 solution (10 mL), 
maintained for 120 min, and then thoroughly flushed with 
ultrapure water (10 mL) and ethanol (10 mL) multiple times. 
Consequently, the  AgInS2@Co/Ni-UiO-66@CDs/ITO pho-
toelectrode was fabricated and dried naturally before use.

Fabrication of self‑powered PEC aptasensor

This  AgInS2@Co/Ni-UiO-66@CDs/ITO electrode was 
soaked in 3 mmol/L thioglycolic acids (TGA) solution for 
approximately 20 min of touching off the assembly of car-
boxy (-COOH) groups. Subsequently, 5 μL aptamer solu-
tion (2 μmol/L) was coated on the  AgInS2@Co/Ni-UiO-66@
CDs/ITO photoelectrode (4 °C, 1 h). Then, the obtained 
aptamer/TGA/AgInS2@Co/Ni-UiO-66@CDs/ITO electrode 
was rinsed with some unbounded aptamers with phosphate 
buffer solution. Afterward, 10 μL of 1 mmol/L 6-mercapto-
1-hexanol (MCH) was incubated to cut off specific sites. 
And then, the electrodes were rinsed thoroughly with phos-
phate buffer solution. Next,  E2 solutions were dipped on the 

MCH/aptamer/TGA/AgInS2@Co/Ni-UiO-66@CDs/ITO 
electrodes (4 °C, 30 min), then the resulting electrodes were 
washed thoroughly. Finally, the PEC aptasensor was accom-
plished. Scheme 1 showed the preparation of the proposed 
PEC aptasensor.

The PEC testing was conducted minutely at an electro-
chemical workstation using a conventional three-electrode 
system. The bias potential was 0.0 V. The light-emitting 
diode (LED) lamp (λ > 450 nm) was utilized as the irra-
diation source of visible light, and this light intensity was 
180 W/cm2. The other particulars were presented in the sup-
plementary information.

Results and discussion

Characterization of  AgInS2@Co/Ni‑UiO‑66@CDs 
photoelectrode

The as-prepared  AgInS2@Co/Ni-UiO-66@CDs were char-
acterized by scanning electron microscopy (SEM) and trans-
mission electron microscopy (TEM). Figure 1A showed that 
the pristine UiO-66 performed an agglomerated nanocrystal 
form. The doping of Co and Ni could regulate the UiO-
66 morphology [38, 39]. After doping Co and Ni, the 
obtained Co/Ni-UiO-66 manifested a well-dispersive cubic 
morphology with precise edges (Figs. 1B and S1A). Fig-
ure 1C and D show that the rough surface of  AgInS2@Co/
Ni-UiO-66@CDs was distinguishable compared with that 
of Co/Ni-UiO-66. Figure 1D and E also exhibited that CDs 
and  AgInS2 were uniformly decorated on Co/Ni-UiO-66. 

Scheme 1  The fabrication process of the proposed PEC aptasensor
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Figure 1E showed the high-resolution transmission electron 
microscopy (HRTEM) image of  AgInS2@Co/Ni-UiO-66@
CDs, and the clear lattice fringes of d = 0.24 nm correspond-
ing to the (1 2 1) plan of  AgInS2, and the adopted CDs also 
could be revealed on the surface of Co/Ni-UiO-66 [40]. 
These results indicated that the photoactive material had 
been successfully assembled with a tight and compact het-
erojunction interface.

X-ray diffractometer (XRD) was utilized to investigate 
the crystalline phase of the  AgInS2@Co/Ni-UiO-66@CDs 
(Fig. 1F). There were no distinct peaks in the diffraction 
spectrum due to the small amounts and the excellent disper-
sion of Co and Ni, implying that the doping of Co and Ni 
couldn’t transform the crystal phase structure of the UiO-
66, which showed no difference from the previous literature 
[41]. Besides, compared with the pattern of Co/Ni-UiO-66, 
the spectral lines of Co/Ni-UiO-66@CDs showed a weak 
diffraction peak that occurred at 21°, indicating the success-
ful doping of CDs [42]. Moreover, curve c presented a weak 
peak at around 28.4°, corresponding to the (1 2 1) plane of 
 AgInS2 (JCPDS 25–1328) [43, 44], indicating the successful 
doping of  AgInS2.

The optical absorption properties of  AgInS2@Co/
Ni-UiO-66@CDs photoelectrode could be emerged by 
ultraviolet–visible diffuse-reflection spectra (UV–vis 
DRS) (Fig. S5A and B). As we can see, the absorption 
edge of Co/Ni-UiO-66 and  AgInS2 was about 350 and 
600 nm, equivalent to the band gap energy of 3.50 eV and 
2.03 eV, respectively. Furthermore, compared with Co/Ni-
UiO-66, the absorption edge of  AgInS2@Co/Ni-UiO-66@
CDs photoelectrode was red-shifted to the visible light 
region, bearing out the significant advance of the light-
harvesting performance for  AgInS2@Co/Ni-UiO-66@CDs 
photoelectrode.

The Mott-Schottky (M-S) curves demonstrated the 
band structure of Co/Ni-UiO-66 and  AgInS2. As showed 
in Fig. S5C and D, the flat band potential (Vfb) of Co/Ni-
UiO-66 and  AgInS2 were − 0.8 eV (vs. SCE) and − 0.84 eV 
(vs. SCE), in contrast, were equal to − 0.56 eV (vs. NHE) 
and − 0.60 eV (vs. NHE). As previously reported [36], the 
positive slope of the linear region indicated the  AgInS2, Co/
Ni-UiO-66, had the properties of n-type semiconductors 
and the CB potential (ECB) of n-type semiconductors was 
roughly 0.10–0.20 eV negative than the flat band potential. 
Consequently, the ECB of Co/Ni-UiO-66 and  AgInS2 were 
approximately − 0.66 eV and − 0.70 eV (vs. NHE), respec-
tively. According to above data, the valence band (VB) 
potential (EVB) of Co/Ni-UiO-66 and  AgInS2 were estimated 
to be + 2.84 eV and + 1.33 eV (vs. NHE).

Detection mechanism

The electron-transfer mechanism is illustrated in Fig. 2A. 
As we can see, the EVB and ECB of  AgInS2 were higher 
than Co/Ni-UiO-66, and the photo-induced electrons were 
migrated from  AgInS2 to the CB of Co/Ni-UiO-66 when 
excited by visible light and then injected into ITO glass. In 
the meantime, the photoelectrons generated in the organic 
ligand of Co/Ni-UiO-66 could be transferred to the zirco-
nium oxygen cluster to reduce  Zr4+ to  Zr3+ [45]. In addition, 
the photoelectrons could also reduce the oxidation states 
of  Co3+ and  Ni3+ to  Co2+ and  Ni2+, respectively. In con-
trast, the unstable states of  Zr3+,  Co2+, and  Ni2+ were easily 
regenerated into respective oxidation states, further promot-
ing the separation of photo-induced charges. Furthermore, 
the CDs had two functions: on the one side, CDs could act as 
electron conduction bridges, accelerating the electron trans-
fer and separation. On the other side, CDs absorbed longer 

Fig. 1  SEM images of (A) UiO-
66, (B) Co/Ni-UiO-66 and (C) 
 AgInS2@Co/Ni-UiO-66@CDs; 
TEM images of (D)  AgInS2@
Co/Ni-UiO-66@CDs; HRTEM 
images of (E)  AgInS2@Co/Ni-
UiO-66@CDs; (F) XRD pattern 
of (a) Co/Ni-UiO-66, (b) Co/Ni-
UiO-66@CDs and (c)  AgInS2@
Co/Ni-UiO-66@CDs
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wavelength radiation and emitted 400–600 nm light [46], 
further improving light utilization. Moreover, the photogen-
erated holes were transferred from the VB of Co/Ni-UiO-66 
to  AgInS2 and then captured by the AA.

Fig. 2B displayed the distinct photocurrent signals of the 
modified electrodes under visible light illumination. The 
photocurrent of Co/Ni-UiO-66 had been ameliorated (curve 
b) compared with UiO-66 (curve a). After the adoption of 
CDs, the photocurrent response was further enhanced (curve 
c). Distinguishably, with the modification of  AgInS2, the 
photocurrent was significantly improved (curve e), indicat-
ing that the appropriate energy level of  AgInS2 and Co/Ni-
UiO-66 further restrained the recombination of carriers. Fur-
thermore, when a precious number of CDs was incorporated, 
the  AgInS2@Co/Ni-UiO-66@CDs photoelectrode exhibited 
a higher photocurrent intensity than that of  AgInS2@Co/

Ni-UiO-66 (curve d), attributing to the superb electrical 
conductivity of CDs.

Characterization of the fabricated PEC aptasensor

The photo-induced interfacial charge transfer rate was stud-
ied by electrochemical impedance spectroscopy (EIS). The 
diameter of the semicircle in the high-frequency region rep-
resented figuratively the size of the resistance (Ret) [47]. As 
shown in Fig. 3A, for bare ITO electrodes, the semicircle in 
the impedance spectrum displayed a minimal diameter; as 
expected, the Ret value was the smallest (curve a). The Ret 
value increased with the modification of Co/Ni-UiO-66@
CDs (curve b) and  AgInS2 (curve c). When the aptamer 
(curve d) and MCH (curve e) were deposited, Ret value 
further increased, demonstrating that the interface electron 

Fig. 2  (A) Schematic illustration of the photoelectrochemical aptasensor; (B) The transient photocurrent responses of (a) UiO-66, (b) Co/Ni-
UiO-66/ITO, (c) Co/Ni-UiO-66@CDs/ITO, (d)  AgInS2@Co/Ni-UiO-66/ITO, (e)  AgInS2@Co/Ni-UiO-66@CDs/ITO

Fig. 3  (A) EIS (electrolyte: 2.5  mmol/L [Fe(CN)6]3−/4−) and (B) 
photocurrent responses of different modified electrode (electrolyte: 
0.1  mol/L phosphate buffer solution, pH = 7.4): (a) ITO, (b) Co/Ni-
UiO-66@CDs/ITO, (c)  AgInS2@Co/Ni-UiO-66@CDs/ITO, (d) 

aptamer/AgInS2@Co/Ni-UiO-66@CDs/ITO, (e) MCH/aptamer/ 
 AgInS2@Co/Ni-UiO-66@CDs/ITO, (f)  E2/MCH/aptamer/AgInS2@
Co/Ni-UiO-66@CDs/ITO
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transfer was hindered. With the deposition of  E2, the Ret 
value decreased (curve f) on the contrary. This was mainly 
due to the specific recognition reaction, contributing to the 
conformation of the aptamer to transform, shedding off some 
aptamers on the electrode interface [48].

Fig. 3B shows the photocurrent change during the layer-
by-layer modification. The photocurrent of  AgInS2@Co/Ni-
UiO-66@CDs/ITO photoelectrode reached the maximum. 
With the improvement of the  E2-aptamer and the blocking 
of MCH, the photocurrent decreased by degrees. The results 
revealed that modifying the substances mentioned above 
hindered the transfer of electrons and the capture of holes. 
However, when  E2 was caught catching by the aptamer/
TGA/AgInS2@Co/Ni-UiO-66@CDs/ITO, a remarkable 
enhancement in photocurrent was discerned due to the 
aptamer bound to  E2 falling off from the electrode. This 
result indicated the successful modification of the layers of 
electrodes.

Optimization of experimental condition

Fig. S6A revealed different effects of CDs with various mass 
fractions on the Co/Ni-UiO-66@CDs/ITO electrode photo-
current. As the mass fraction of CDs raised, photocurrent 
gradually increased. However, the photocurrent decreased 
as the mass fraction of CDs further extended. Therefore, 
the best mass percentage of CDs was 5%. Moreover, the 
modification of  AgInS2 could be proven to influence the 
anode-photocurrent intensity. As shown in Fig.s S6B and 
S6C, when the number of modified layers was 10 and the 
immersion time of silver nitrate was 120 min, the photocur-
rent reached its peak value. Besides, the soaking time caused 
the photocurrent intensity to decrease. And the results 
revealed that more redundant heterojunction interfaces 
could be leaded due to the excessive  AgInS2, inhibiting the 
photoelectron transfer. When the applied bias voltage varied 
from − 0.2 V to 0.0 V, as revealed in Fig. S6D, the photocur-
rent gradually increased and attained its maximum value at 

0.0 V. Along with external bias voltage was greater than 
0.0 V, the photocurrent dwindled, which might be attributed 
to the higher the applied bias, the more severe damage to 
the modified electrode surface. Therefore, the steady anode-
photocurrent signal output without an external power supply 
provides a reliable photoelectric translating platform for the 
self-powered PEC aptasensor construction.

PEC aptasensor for  E2 detection

Fig. 4A showed the photocurrent intensity when distinct 
concentrations of  E2 were gauged through the self-pow-
ered PEC aptasensor. The concentration range of  E2 was 
10 fmol/L–10 nmol/L. As the consistence of  E2 raised by 
degrees, the photocurrent gradually increased. That was 
probably owing to aptamer dissociating from the electrode 
surface. Further, observation showed a fine linear relation-
ship between enhancement of the photocurrent and loga-
rithm of the  E2 concentration from Fig. 4B. The calibration 
curve equation was I = 16 + 2.04 lgc, the correlation coef-
ficient was 0.996, and the detection limit was lower than 3 
fmol/L (S/N = 3). Contrasting with a majority of previously 
reported detection methods, the self-powered PEC aptasen-
sor as-prepared possessed one acceptable response range and 
a lower detection limit (Table S1).

Selectivity, stability, and reproducibility

Under continuous detection, Fig. S7A showed the stabil-
ity of the PEC aptasensor. The sensing platform worked for 
400 s under the on/off cycle, and the photocurrent signal had 
no significant change, demonstrating that the designed self-
powered PEC aptasensor could possess excellent stability to 
detect  E2. Five representative endocrine disruptors (estriol, 
bisphenol A, Ethinyl  E2, diethylstilbestrol and 4-nonylphe-
nol) were opted as interfering species for interference tests. 
As shown in Fig. S7B, adding different endocrine disruptors 
with a more than 100-fold concentration to five parts of  E2 

Fig. 4  (A) The photocur-
rent responses (electrolyte: 
0.1 mol/L phosphate buffer 
solution, pH = 7.4) of the 
PEC aptasensor at dif-
ferent  E2 concentrations 
(1.0 ×  10−5–10 nmol/L); (B) 
Logarithmic calibration curve 
of different  E2 concentrations
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solution, respectively. These interfering substances had no 
noticeable effect on the photocurrent signal, indicating that 
the obtained self-powered PEC aptasensor possessed high 
anti-interference ability.

The reproducibility of the self-powered PEC aptasen-
sor was demonstrated in Fig. S7C. Five different  E2/MCH/
aptamer/AgInS2@Co/Ni-UiO-66@CDs/ITO electrodes 
were modified similarly with 100 fmol/L  E2 solutions, and 
the tested result exhibited the relative standard deviation 
(RSD) of photocurrent is 2.5%. The results reflected sat-
isfactory photocurrent response and reproducibility of the 
PEC aptasensor. In addition, the storage stability of the pro-
posed sensor was evaluated by storing the PEC aptasensor 
at 4 °C for 8 and 14 days in Fig. S7D. 95% and 92% of the 
initial photocurrent intensity were obtained to detect  E2 (100 
fmol/L), indicating its excellent storage stability.

Real sample analysis

The self-powered PEC aptasensor–analyzed  E2 in actual 
water samples. The samples were from the Jiazi River (Jinan, 
China). Before analysis, the water samples were filtered 
through a 0.22 μm membrane to get rid of suspended solids. 
Then, the actual water samples were tested by the standard 
addition method, and the results were shown in Table S2. 
The standard solution of  E2 with the concentration of 1.0, 
5.0, and 10.0 nmol/L was added to the water sample, and the 
obtained RSD was 3.3%, 3.2%, and 1.9%, the recovery was 
101%, 100%, and 99.5%. The satisfied results indicated that 
the designed aptasensing platform had a promising appli-
cation prospect for  E2 detection in actual water. However, 
the self-powered PEC aptasensor couldn’t be used in mass 
production because the preparation technology is not mature 
enough, and they are mainly used in scientific research. Even 
so, there is no doubt that the constructed aptasensor still has 
excellent potential in actual sample detection, indicating a 
broader application prospect.

Conclusions

In general, a novel self-powered aptasensing platform has 
been successfully established for the sensitive detection 
of  E2 based on the  AgInS2@Co/Ni-UiO-66@CDs photo-
electrode. The well-designed photoelectrode greatly ampli-
fied the signal strength of anode-photocurrent without bias 
voltage, which provides a reliable photoelectric translating 
platform for the self-powered PEC aptasensor. The specific 
recognition between  E2 and aptamer resulted in a raised pho-
tocurrent signal, and the concentration of  E2 was quantified 
by counting the fluctuation of anode-photocurrent signal. 
On this basis, the proposed self-powered aptasensor showed 
high selectivity, stability, and acceptable reproducibility. 

This work provided a promising platform for  E2 detection 
in actual water samples and also widened the design ideas 
of PEC device for ultra-sensitive environmental analysis.
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tary material available at https:// doi. org/ 10. 1007/ s00604- 022- 05409-z.
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