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Abstract
Carbon dots (CDs) are a strong alternative to conventional fluorescent probes for cell imaging due to their brightness, photo-
stability, tunable fluorescence emission, low toxicity, inexpensive preparation, and chemical diversity. Improving the targeting 
efficiency by modulation of the surface functional groups and understanding the mechanisms of targeted imaging are the 
most challenging issues in cell imaging by CDs. Firstly, we briefly discuss important features of fluorescent CDs for live-cell 
imaging application in this review. Then, the newest modulated CDs for targeted live-cell imaging of whole-cell, cell orga-
nelles, pH, ions, small molecules, and proteins are elaborately discussed, and their challenges in these fields are explained.
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Introduction

In vitro live-cell imaging is the study of the cellular struc-
ture and function in living cells, requiring advanced tech-
nologies to record the high-resolution and spatiotemporal 
images of cellular events such as migration, cellular devel-
opment, and intracellular trafficking. The progress of this 
field depends on the efforts to synthesize new fluorescent 
reagents, develop new microscopy techniques, and finally 
increase the understanding of the complex nature of cellular 
structures and functions [1, 2]. Fluorescent reagents used in 
live-cell imaging need to have specialized optical, chemical, 
and biological properties, such as brightness, photostabil-
ity, fluorogenicity, biocompatibility, chemical stability, and 

up-conversion. The fluorescent probes used commonly in 
live-cell imaging are composed of organic dyes, quantum 
dots (QDs), fluorescent proteins, and CDs [3–7].

Currently, great progress has been made in the develop-
ment of green fluorescent proteins, but the development of 
other colors of fluorescent proteins is in the early stages 
[8–14]. In addition, their short fluorescence lifetime and 
high requirements of the operation process are factors that 
limit their development [6]. Organic dyes are the most com-
mon markers that show high brightness in biological envi-
ronments and undergo an appropriate number of switching 
cycles, but the photobleaching and the buffer-dependent 
blinking limit their applications [15–23]. QDs as a new 
nano-size material represents attractive optical properties, 
including very low photobleaching, high absorption coeffi-
cient, and remarkable brightness, but the defect of fast blink-
ing is not resolved yet in these nano-particles. Additionally, 
high on–off duty cycle and high toxicity have reduced the 
QD applications [24–28].

CDs are carbon-based structures and belong to the fluo-
rescent emissive nano-materials [29]. They have applied in 
various new technologies and medical science such as opti-
cal devices, sensors, catalysis, drug delivery, and bioimag-
ing [30]. These nano-particles have zero-dimensional size 
(typically ∼5 nm), unique multicolor emission, appropriate 
solubility, and low toxicity, but their brilliant properties are 
simple and low-cost synthesis procedures. Another exciting 
feature of CDs is their graphitic-like core structure with the 
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possibility of bonding to the various chemical groups, while 
nitrogen, sulfur, and phosphorus doping into its structure 
make them more attractive [31–36]. CDs are easily obtained 
from simple reactants and expose remarkable photostability 
[37, 38]. CDs can emit durable multicolor fluorescence light 
[39, 40] and enable the imaging of live cells via their pho-
tostability and biocompatibility [41, 42]. This nano-particle 
easily interacts with the cellular membranes and penetrates 
to the cytoplasm via the endocytosis process [43]. Depend-
ence of fluorescence emission to the excitation wavelength 
is responsible for multicolor imaging of cells or organelles 
by the CDs [44, 45]. Furthermore, the pH of the cellular 
environment can affect the fluorescent emission of CDs that 
provide the advantage of cell pH detection by these nano-
particles [46]. Hydrophilicity, chemical functional groups, 
and the electrical charges of the CD surface are key factors 
in their penetration into the cells and targeting of organelles 
[45–48]. All of these properties can be modulated rationally 
during the synthesis process and post modification of CDs 
[36, 49].

All these features have led the CDs to various fluores-
cence imaging applications. The aspects of this topic and 
the obtained results have been compiled and categorized 
in some review articles during the last years, covering the 
common uses of CDs in fluorescence in vivo imaging, high-
resolution imaging, and intercellular organelle targeting [3, 
50–58]. Meanwhile, the importance of in vitro live-cell 
imaging technologies in pharmaceuticals and the neces-
sity of the continuous introduction of the new nano-based 
probes with various critical characteristics are still attractive 
and challenging issues in this area. Hence, this review has 
focused on these new possibilities and provides the latest 
progress in live-cell imaging using novel modulated CDs. 

To the best of the authors’ knowledge, no review article has 
been published on this topic. A list of the CD advantages 
and their applications in live-cell imagining are presented 
in Scheme 1.

CD properties for in vitro live‑cell imaging

The properties of CDs vary according to the precursors and 
the synthesis method, which is very explained in various 
review articles [51, 57–65]. Thus, among the features of 
CDs, only important features related to in vitro live-cell 
imaging are briefly summarized in this section.

Red and near infrared (NIR) fluorescence

The CD fluorescent emission wavelength has a broad range 
from deep UV to NIR region [41, 42], with large Stokes 
shifts originating from the different electronic transition 
pathways [42]. NIR fluorescence emission is generally gen-
erated by the large rigid conjugated structure of CDs and 
their quantum confinement effect. In this range, due to the 
reduction of tissue absorption and inherent fluorescence of 
the biological environment, the depth of light penetration is 
greater. Therefore, extensive research has recently been con-
ducted on the synthesis and preparation of long-wavelength 
CDs that have lowered phototoxicity in the biological trans-
parency window [36]. For example, D-π-A-conjugated fluo-
rine and nitrogen-doped CDs were prepared from uric acid 
and  NH4F as doping agents via the solvothermal method. 
Because of the D-π-A-conjugated formation, prepared CDs 
show absorption peaks in the full UV–Vis–NIR spectrum. In 
addition to the excellent cytocompatibility and appropriate 

Scheme 1  Important features, 
advantages, and applications of 
CDs in live-cell imaging
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cellular uptake, the brilliant property of these CDs is their 
very sharp deep-red emission that confirms their competence 
for cell imaging applications (Fig. 1A) [66].

Up‑conversion fluorescence

Up-conversion fluorescence is often cited as an important 
feature in CDs. It can be detected by measuring the exci-
tation intensity dependence of the fluorescence [67]. Mul-
tiphoton excitation provides the capability of deep-tissue 
penetration by using lower energy wavelength during the 
bioimaging process. Recently, a new class of CDs was 
obtained using p-aminoazobenzene as a nitrogen doping pre-
cursor with remarkable properties, including high affinity to 
the RNA, red fluorescence emission, two-photon excitation, 
and photodynamic activity. Owing to these characteristics, 
CDs enable real-time fluorescence monitoring of dynamic 
nucleolar changes during photodynamic therapy. Because 
of the overlapping between CD and RNA adsorption, a two-
photon laser was used to stimulate CD at 700 nm (λem = 625) 
to prevent adsorption overlap (Fig. 1B) [68].

Multicolor imaging

In contrast with organic dyes and inorganic QDs, the emis-
sion peak of some CDs exhibits excitation-dependent behav-
ior. In other words, the emission wavelength of CDs changes 
in the different excitation wavelengths that are considerable 
for multicolor and high-resolution imaging applications 
[69, 70]. This phenomenon is related to the changes in the 
size distribution and the number of surface defects in the 
CDs [71]. According to a novel report, in vitro imaging of 
human umbilical vein endothelial cells were done by the 
VEGF-conjugated CDs. The CDs were firstly obtained via 
the hydrothermal method and then conjugated with VEGF 
by carbodiimide coupling. As shown in Fig. 1C, multicolor 
emission was observed due to the excitation wavelength-
dependent emission of CDs [72].

Photostability

Photobleaching is the biggest problem of fluorescent dyes 
that strongly restricts their imaging efficiency [73]. In addi-
tion, photobleaching makes storing and preparing samples 
difficult because it also occurs under natural light irradiation. 
By resistance to the photobleaching, the CDs provide longer 
imaging time and overcome all mentioned limitations [74]. 
For example, the green synthesis of CDs was prepared by 
using sugarcane as the sole carbon precursor. Based on this 
study, doping of nitrogen and phosphorus is responsible for 
better solubility, high quantum yield (QY), and photostabil-
ity of synthesized CDs. In order to investigate the possibility 
of photobleaching CDs, the effect of continuous ultraviolet 

light was studied using a 365-nm lamp for 2 h. As shown in 
Fig. 1D, CDs display only 23% decay [75].

Photoblinking

Spontaneous photoblinking is the other attractive feature of 
some CDs that is necessary for super-resolution imaging. 
Usually, to prevent emission overlapping from neighboring 
fluorophores, a small section of the sample is isolated and 
selected for the imaging process. Therefore, a kind of photo-
switchable fluorescent probes or devices such as interference 
grids is required for this purpose. Interference grid role is to 
excite a select population of fluorophores at the same time 
within one sample. Some modulated CDs are capable of 
switching from an “on” emission state to an “off” state under 
continuous illumination, so there is no need for additional 
adjustment [76]. Malic acid-CDs are a clear example of a 
photoswitchable probe that exhibited an acceptable signal-
to-noise ratio in different imaging buffer solutions. Because 
of their photoblinking properties, this kind of CD is able to 
significantly enhance spatial resolution in imaging experi-
ments. Figure 1E shows the bright spots of malic acid-CDs 
in the on-state were distributed throughout the imaging ses-
sion [42].

Brightness

The fluorescence output per fluorophore molecule, known 
as brightness, is proportional to the extinction coefficient 
and the fluorescence QY. Lower laser intensity is needed to 
excite fluorophores with higher brightness, providing higher 
resolution imaging and lower phototoxicity for live cells. 
Many different approaches exist to enhance the brightness of 
semiconductor QDs or metal nano-particles, but controlling 
CD synthesis in order to achieve more brightness is signifi-
cantly easy and more accessible. For example, a simple one-
step approach was utilized to prepare bright multicolor CDs 
with QY up to 58%. These CDs were used for bioimaging 
of HeLa cell that showed bright confocal images (Fig. 1F). 
Also, CDs show a high dopamine neurotransmitter fluoro-
metric detection ability in the blood plasma samples without 
any surface functionalization [77].

Stimulus‑responsive fluorescence

CDs are able to change their optical properties in response 
to stimuli such as pH, light radiation, and analytes (gases, 
ions, biologically active molecules, etc.). By responding to 
stimuli, such materials have been used as Forster resonance 
energy transfer (FRET) fluorophores. The ratiometric fluo-
rescence sensing in FRET requires two or more fluorophores 
with different emission bands: one of them is a reference, 
and others act as a response molecule [78]. By considering 
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CD advantages in comparison with common fluorophores, 
CD-based FRET systems are introduced to the biosensing 
and bioimaging application. A recent examination has used 
the pyrolysis method to prepare CDs from porcine pancreatic 
lipase (PPL). The synthesized CDs are used as a fluores-
cence probe for the detection of dopamine. The tendency 
to oxidization into the dopamine-quinone triggered the 

adsorption of dopamine on the CD surface and effectively 
quenched the CD emission. As shown in Fig. 1G(a), the 
absorption spectrum of dopamine-quinone has an overlap 
with the emission spectrum of CDs, and this overlapping 
shows the occurrence of FRET. As a result, quenching of CD 
fluorescent emission is a sensitive sensing way of dopamine 
detection (Fig. 1G(b, c)) [79].
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Fluorogenicity

Fluorogenicity explains the enhancement of a fluorophore 
emission during the interaction with its target molecule. 
This dramatically removes background fluorescence from 
the unspecific localization of probes in live cells and other 
biological environments [80]. For example, CDs exhibit 
fluorescence emission, which is able to photostable, wash-
free, high-resolution, and high-quality nucleolar imaging. 
Most RNAs accumulate in the nucleoli that could be stained 
clearly by CDs. With a high affinity to the nucleolus and 
excellent imaging performance, CDs have exposed more 
advantages to the commercial nucleolar dye (Fig. 1H) [81].

Biocompatibility

Carbon is the basic element of life and constitutes the body 
of living organisms. Therefore, carbon-based nano-materials 
such as CDs are biocompatible with living organisms and 
different cell lines [42, 82–85]. In vivo examination confirms 
the nontoxic nature of CDs in zebrafish as an animal model 
[86]. Water-soluble fluorescent-nitrogen-doped CDs were 
synthesized from the lemon juice and ethylenediamine via 
hydrothermal methods. The fluorescence emission intensity 
of reported CDs depends on the pH value and shows appro-
priate photostability under different salt conditions. Biocom-
patibility and nontoxicity of these CDs were demonstrated 
by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay of the MCF7 cell lines (Fig. 1I) [87].

Applications of CDs for in vitro live‑cell 
imaging

The obvious understanding and tracking of biochemical 
and physiological streams in all biological levels (bio-
macromolecules, cellular level, tissues, and body organs) 
are easily and quickly available via various cell imaging 
methods. The existing organic dyes and semiconductor 
QDs are challenged with related photobleaching, poor 
water solubility, and intrinsic toxicity. Due to their stable 
photoluminescence, multicolor emission, low cytotoxicity, 
and good biocompatibility, CDs are a powerful alternative 
for common bioimaging dyes. In the following, the last 
advances in CD-based in vitro live-cell imaging, including 
whole cell, cell organelles, pH, ion, molecule, and protein 
imaging, are discussed in detail (Scheme 2).

Whole‑cell imaging (cytoplasm imaging)

A wide variety of CDs with different optical properties 
are applied to cell imaging without any requirement for 
external transfection and specific ligand [75, 88–92]. The 
penetration mechanism of CDs into the cells are mainly 
consists of endocytosis, aquaporins aided entrance, and 
diffusion through the ion channels [93].

In an advanced report, Citrus limon was selected as a low-cost 
carbon source for synthesizing nitrogen-doped CDs via a hydro-
thermal approach. The MCF7 cells are treated with 0.025 mg/
mL of obtained CDs to examine their bioimaging potency. All 
blue, green, and red colors luminescence are recorded separately 
in the cytoplasm region, revealing sufficient CD entrance to the 
sample cells. The brightness of stained cells with reported CDs 
proved their competence as a multicolor probe for whole-cell 
imaging [89]. Other high biocompatible nitrogen-doped CDs 
were prepared by the hydrothermal procedure. Figure 2 shows 
the blue, green, and red fluorescence images of the HeLa cells 
after incubation with 100 μg  mL−1 of CDs under different 
times and excitation wavelengths. Increasing the incubation 
time provides more opportunities for accumulation of the CDs 
into the cytoplasm and causes higher fluorescent emission. This 
indicates the appropriate permeability of CDs across the HeLa 
membrane cells [87]. Nitrogen and sulfur-doped CDs were 
synthesized from scallion and applied as imaging agents of the 
A549 cells. After incubation in prepared CDs, the A549 cells 
were excited at 405 nm by fluorescence microscopy. According 
to the observation of the resulting images, the main fluorescent 
light comes from perinuclear regions of the cytosol. As a result, 
surface functional groups and the small size of reported CDs are 
responsible for their excellent cell permeability into the living 
cells [91].

Fig. 1  A Confocal laser scanning microscopy (CLSM) images of 
HepG2 cells treated with CDs, Reproduced with permission from 
ref [66]. Copyright 2020 Wiley–VCH. (B) The emission spectrum of 
prepared CDs excited by a 700-nm two-photon laser and two-photon 
image of HeLa cells incubated with CDs. Reproduced with permis-
sion from ref [68]. Copyright 2021 Elsevier. (C) CLSM images of 
HUVEC cells incubated with CDs taken at different excitation wave-
lengths: (a) bright field, (b) 403, (c) 488, and (d) 640 nm. Reproduced 
with permission from ref [72]. Copyright 2020 American Chemi-
cal Society. (D) CDs show only 23% decay in the period of 2  h at 
365-nm irradiation [75]. (E) On–off fluorescence imaging of CDs. 
Reproduced with permission from ref [42]. Copyright 2018 American 
Chemical Society. (F) CLSM of PC-12 cells treated with CDs: (a) 
bright-field image and (b) confocal images taken by excited at 401. 
Reproduced with permission from ref [77]. Copyright 2017 American 
Chemical Society. (G) (a) Spectral overlap between the fluorescence 
spectrum of CDs and the absorption spectrum of dopamine-quinone 
during the FRET process, the image of MDA-MB 468 cells incubated 
with (b) the 10 µg/mL of CDs, and (c) after adding dopamine solution 
at the excitation wavelength (450–480 nm). Reproduced with permis-
sion from ref [79]. Copyright 2020 Elsevier. (H) Comparative stain-
ing with CDs and SYTO RNASelect. Reproduced with permission 
from ref [81]. Copyright 2019 American Chemical Society. (I) The 
cytotoxic effects of CDs against HeLa cells with 94% cell viability 
even at 500 μg/mL. Reproduced with permission from ref [87]. Copy-
right 2020 American Chemical Society 

◂
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Because of sufficient penetration and accumulation into 
various cells, the emission light of CDs is appropriately 
detected and pictured by fluorescent microscopy. One of 
the entrance ways is related to the basic molecule deriva-
tives such as arginine. The guanidyl group in arginine has 
a positive charge, which can electrostatically bind with the 
negative components of the plasma membrane and trigger 

the endocytosis process [94]. In spite of some reports, there 
is no strong explanation about the exact mechanism of CD 
uptake by the cells.

Organelle imaging

The mechanism of diseases, growth, repair, and many other 
molecular pathways is detectable and understandable via 
subcellular imaging. A wide variety of organelles are tar-
geted in this imaging field, including lysosome, nucleus, 
nucleolus, mitochondria, endoplasmic reticulum (ER), and 
lipid droplet. The main difficulties of organelles imaging are 
the entrance of the probe into the cell and its specific attach-
ment to the target. Typically, the colocalization experiment 
with proven commercial probes such as LysoTracker Deep 
Red and NucRed Live 647 is performed to track the precise 
probe location. The common targets of subcellular imaging 
by using CDs are presented in the following.

Lysosome

The lysosome is a digestive organelle with a spherical shape 
and acidic environment in eukaryotic cells [95]. Lysosome 
participate in macromolecule digestion, energy balance, and 
angiogenesis [96, 97]. Lysosome defections are the cause 
of cardiovascular disease, neurodegenerative diseases, can-
cer, and Alzheimer’s disease [29, 98, 99]. In recent years, 
researchers have been continuously designing lysosome-
targeting CDs [100–105].

The CDs are a fast targeting agent for lysosome imaging 
through clathrin-mediated endocytosis. Detecting lysosomal 

Scheme  2  Application potential of fluorescent CDs as a live-cell 
imaging probe

Fig. 2  Confocal fluorescence 
images of HeLa cells treated 
with prepared CDs for 2, 4, and 
6 h. The 1–4 columns showed 
different excitation wavelengths 
at 405, 488, and 561 nm, Repro-
duced with permission from ref 
[87]. Copyright 2020 American 
Chemical Society 
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polarity can help to better understand the physiological and 
pathological processes of lysosomes. Moreover, the CDs 
show that an obvious fluorescence intensity decreases with 
the increase of polarity with the addition of dithiothrei-
tol (DTT) that stimulates polarity changes in living cells 
(Fig. 3A). Therefore, the mentioned CDs were used success-
fully in monitoring the polarity of lysosomes [106]. New 
finding indicates that the morpholine group in the chemical 
structure of CDs serves as a targeting agent for lysosome 
imaging. These CDs particularly accumulate in the lyso-
some through the endocytic pathway and are able to long-
time tracking of lysosomes in live cells. Figure 3B exposes 
bright orange fluorescence in the live cells when the green 
emission of the CDs was merged with the red emission of 
the LysoTracker Deep dye. In addition, the CDs show loca-
tion conformity with the LysoTracker Deep Red during lyso-
some staining [45]. New CDs prepared from the rose bengal 
and polyethyleneimine via one-step hydrothermal procedure 
amazingly possess an intrinsic affinity to the lysosome. The 
image (Fig. 3C) shows the rapid entrance of prepared CDs 
into the cells within 10 min. Moreover, they accumulated in 
the lysosomes organelle and emitted strong localized fluo-
rescence after the following 30 min. Long-term imaging, 
lack of leakage, ultrahigh photoluminescence efficiency, and 
low cytotoxicity are excellent properties of these CDs as a 
proven alternative for common commercial probes [107]. 
The CDs were prepared from selenocysteine as a precur-
sor using the hydrothermal method and then modified with 
morpholine. Obtained CDs prevent lysosomes from the high 

amount of •OH and are introduced for treating •OH-related 
inflammation [108].

Briefly, CD modification with morpholine and amine 
groups is utilized for specific lysosome targeting. However, 
amino groups show affinity to the ER that faced its specific-
ity to the lysosome with unresolved challenges. The cells 
uptake CDs through energy-dependent, micropinocytosis, 
caveolae-mediated, and clathrin-mediated pathways. CDs 
with various functional groups can be transiently localized 
in lysosomes.

Nucleus

The nucleus is the center of cellular metabolism, activity, 
and many disorders such as cancer. Detail imaging and stain-
ing of the nucleus are one of the most important biological 
and clinical issues because our knowledge about the nucleus 
is incomplete for its desired manipulation. Specific imaging 
of the nucleus is necessary for targeted gene therapy and 
drug delivery, especially cancer therapy. In addition to its 
potential for drug loading and drug delivery, the CDs have 
been found to be applicable in nucleus imaging as a specific 
and stable fluorescent probe [109–112].

The high water-soluble and nontoxic CDs are synthe-
sized by a hydrothermal approach for bioimaging applica-
tions. The proposed mechanism for the nucleus targeting 
potential of reported CDs (Fig. 4A) is related to its posi-
tive surface charge, which creates electrostatic interactions 
with DNA macromolecules existing in the nucleus [109]. 

(A

(B)

A)

)

(C)

Fig. 3  A CLSM images of HeLa cells treated with CDs and 
CDs + DTT, Reproduced with permission from ref [106]. Copyright 
2020 American Chemical Society. (B) The comparative images of 
CDs and Lyso-Tracker Red probe in live HeLa cells. Reproduced 

with permission from ref [45]. Copyright 2017 American Chemical 
Society. (C) Lysosomal imaging of the CDs in the HL-7702 cell line. 
Reproduced with permission from ref [107]. Copyright 2020 Ameri-
can Chemical Society 
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In some cases, the physicochemical environment of the cell 
(L929 cells) causes a blue shift in the fluorescent emission of 
CDs. The lowest and highest intensity of CDs was observed 
in cytosol and nucleus (green and red color), respectively 
(Fig. 4B) [110]. For the first time, an electrostatic assembly 
between positive CDs and negative graphene oxide (GO) 
provides a new biocompatible probe of the nucleus without 
significant affinity to the cytoplasm. GO nano-sheets do not 
quench CD fluorescent emission after assembly. These elec-
trostatic interactions of CD and GO moderate the electrical 
charge of the final nano-structure, which results in selective 
cell nucleus labeling [111].

There are no particular and proven methods for selective 
labeling of the nucleus by using CDs. According to the pre-
vious report, the zwitterionic surfaces of CDs can specify 
their attachment to the nucleus. In a more complex way, 
surface functionalization of CDs is a certain approach of 
nucleus targeting, but this mechanism is also not precisely 
characterized and understood. It is obvious that the utility 
of CDs in nucleus imaging is in its beginning steps and is a 
very attractive field for interested researchers.

Nucleolus

Ribosomes synthesize all proteins needed by the cell that 
the nucleolus is responsible for the production of ribo-
somes [113]. Proteins are the functional form of cellular 
molecules. Therefore, the imaging of the nucleolus provides 
an overview of the cellular status and metabolism [114]. 
Immunohistochemistry (IHC) [115], fluorescence in situ 
hybridization (FISH) [116], and silver staining [117] are 
the most common methods for morphological evaluation 
of nucleolus that are served for fixed cell lines. Although 
organic fluorophores such as SYTO RNA [118] are uti-
lized in both fixed and living cell imaging [119], they suffer 
from photobleaching during the nucleolus imaging process. 
Recent reports confirm the competence of CDs as wash-free, 

high-resolution, and high-quality nucleolar imaging probe 
with a high affinity to the nucleolus (Fig. 5A) [81]. Dop-
ing of fluorine element into the CD structure creates a new 
nucleolus and tunneling nano-tube (TNT) staining agent 
with the high photoluminescence quantum yield (56%), low 
toxicity, anti-photobleaching, and good water solubility 
(Fig. 5B) [120].

In summary, the affinity of CDs to interaction with 
nucleolus RNAs and ribosomes is the main reason for their 
application in nucleolus labeling [68, 120], which is related 
to noncovalent interactions. Although the subcellular labe-
ling, the use of CDs in critical nucleolus diagnostic such 
as immune activation processes, transformation processes, 
and chemo-drug treatment are not reported, which are very 
attractive to examination.

Mitochondrion

The mitochondrion is the factory of energy production in 
mammalian cells by the creation of adenosine triphosphate 
(ATP) as a common form of energy in live cells [121]. 
Therefore any defect in mitochondrion causes significant 
disorders such as cardiac dysfunction, Alzheimer’s, and 
Parkinson’s diseases [122]. The mitochondrion has an inter-
nal negative charge, positive surface charge, and an internal 
alkaline environment (pH = 8) [123, 124]. Hence, two strat-
egies are possible for specific imaging of mitochondrion: 
one is a modification with triphenylphosphonium (TPP) 
or targeting peptides, and the other way is to synthesize 
lipophilic labels containing positive surface groups such as 
ammonium, pyridine, and rhodamine [51].

The TPP ligands are practically utilized for the improve-
ment of CD affinity to the mitochondria [125]. In spite of 
appropriate targeted imaging of mitochondria using these 
CDs, TPP shows high toxicity against various cell lines. On 
the other side, some works are in progress to obtain CDs 
with intrinsic mitochondrial targeting property [42, 123, 

Fig. 4  A Fluorescence images 
of A549, HEK293, and MDA-
MB-231 cells treated with CDs, 
fluorescence signal accumulated 
in nuclear substance, especially 
in A549 and MDA-MB-231 
cells, Reproduced with permis-
sion from ref [109]. Copyright 
2021 Elsevier. (B) The nuclei of 
NIH/3T3 cells filled with CDs 
(red color). False colored maps 
of intensity. Reproduced with 
permission from ref [110]. Pub-
lished under a CC BY license 

(A) (BB)
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126]. Long-term photostable, water-soluble, mono-sized, 
and biocompatible CDs were synthesized with intrinsic 
mitochondrial affinity and tunable long-wavelength fluores-
cence emission from green to red colors. A high-resolution 
mitochondrial image of HeLa cells was obtained using as-
synthesized CDs (Fig. 6A) [127]. The fast and simple micro-
wave-assisted method was applied as a synthesis method of 
new excellent CDs with shuttling label features between the 
mitochondria and the nucleolus. These positive CDs pre-
fer to accumulate in mitochondria with negative membrane 
within the healthy cells. However, in the case of damaged 
cells, such as inhibition of the cell metabolism by reactive 
oxygen species (ROS) agents such as  H2O2, the negative 
charge of mitochondria decreases, and CDs move out from 
mitochondria and localize into the nucleolus. Amazingly, 
if the damaged cell succeeds in recovering itself in the 

presence of powerful antioxidants such as ascorbic acid 
(AA), the negative charge of mitochondria will recover 
too, which triggers the return of CDs to the mitochondria 
(Fig. 6B). In this way, the viability of a particular cell can 
be easily visualized [128].

Endoplasmic reticulum

The main functionality of ER in the cell is the formation 
of proteins, transporting of protein, synthesis and storage 
of lipids, storage and regulation of calcium, and glucose 
metabolism. Therefore, ER plays a vital role in cell metabo-
lism and regulation [129]. Polarity is one of the most impor-
tant properties of healthy cells, and it is responsible for lots 
of cellular functions and metabolism. ER can affect cell 
polarity and consequently cell functionality via protein post 

(A) (B)

Fig. 5  A The confocal image of the nucleolus of A549 (I, II, and III) 
cells targeted by CDs, Reproduced with permission from ref [81]. 
Copyright 2019 American Chemical Society. (B) CLSM images of 

living 4T1 cells treated with CDs, the nucleolus (left), and tunneling 
nano-tubes (right) were visualized with sharp fluorescent signals. 
Reproduced with permission from ref [120]. Copyright 2019 Springer 

Fig. 6  A Confocal images of 
HeLa cells incubated with 
green, yellow, orange, and red 
CDs, Reproduced with permis-
sion from ref [127]. Copyright 
20,193 Wiley–VCH. (B) Shut-
tling of CDs between mitochon-
dria and the nucleolus, (top) 
schematic and (bottom) fluo-
rescent images of HeLa cells. 
Reproduced with permission 
from ref [128]. Copyright 2020 
American Chemical Society 

((A) (BB)
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translational modification, the transformation of particular 
proteins, and the synthesis of secretory proteins. As a result, 
any disorder in ER polarity can be a significant symptom 
of human diseases such as diabetes and Alzheimer’s [130]. 
Accordingly, clear imaging of ER provides proven informa-
tion about cell functionality and human diseases.

Dual emissive CDs for ER labeling are obtained from 
o-phenylenediamine (OPD) and lysine. Adding lysine into 
the flask of OPD carbonization reaction strongly suppressed 
the reaction and caused emission shifting from green to blue. 
The synthesized CDs have entered the ER lumen via lipid 
raft-mediated endocytosis pathway because of their lipophi-
licity and electrophilicity. Introduced CDs are responsive to 
the changes of ER polarity in living cells that indicate their 
potential to the imaging of the ER stresses [131].

Briefly, CDs can electively visualize ER and provide suf-
ficient morphological information. More information about 
the activity of ER and other organelles can be obtained 
via the aggregation and fluorescence responses of the CDs 
inside ER to environmental differences, including pH values 
within these organelles.

Lipid droplet

Lipid droplets (LDs) are a hydrophobic core made from lipid 
covered by a monolayer of phospholipid membrane [132]. 
LDs roles in the cell are lipid storage, membrane synthesis, 
and transportation, so it is supposed to be related to lipid 
metabolic diseases such as obesity, atherosclerosis, and can-
cer [133]. Consequently, imaging lipid droplets with CDs is 
an advantageous method of tracking cellular lipid metabo-
lism and related diseases.

The biocompatible and amphiphilic CDs were synthe-
sized via the hydrothermal method for LD imaging. The 
high cell viability, photostability, intracellular retention abil-
ity, and long-term ability to LD tracking are the highlight 
properties of prepared CDs. After six passages, selective 
fluorescence CDs can still be observed in LDs in the cyto-
plasm of the cells (Fig. 7A). The imaging of autophagy in 

the catabolic process and the effect of atorvastatin (a typi-
cal drug for lowering lipid levels) on hepatocyte cells are 
accomplished by reported CD [134]. The CDs with the abil-
ity of intrinsic LD targeting are obtained from 4-piperidi-
noaniline (PA) as a lipophilic reactant. By using these CDs, 
the dynamic behavior of LDs and also fatty liver disease-like 
changes in LD are visualized (Fig. 7B) [135].

Detecting and imaging of intracellular pH

Similar to all chemical reactions, intracellular pH values 
play a central role in cellular functions, including metabo-
lism pathways, growth, proliferation, apoptosis, and disease. 
A little variation in the cellular pH can be a signal of par-
ticular metabolic reactions, disorders, and diseases such as 
Alzheimer’s, cancer, and stroke [136, 137].

Application of common nano-size pH probes such as 
organic dyes and QDs [138–140] are restricted by their dis-
ability to cell entrance and high toxicity. The CDs are new 
alternatives for overcoming all previous obstacles [141, 
142]. A biocompatible, tunable, and multicolor CD was 
prepared from ammonium persulfate, glucose, and ethylen-
ediamine via the hydrothermal method. Recently, designed 
CDs could be used as a fluorescence platform to monitor pH 
fluctuations in living cells. The HepG2 cells labeled with 
these CDs emitted multi-color fluorescence at pH 5.0. As the 
pH increases from 5 to 9, the fluorescent brightness labeled 
cells decreases. Therefore, the changes in the brightness of 
CDs in the living cells can be translated to the intracellular 
pH variation. The prepared CDs are able to easily penetrate 
into the living cells and simultaneously visualize the pH 
statements of the cells (Fig. 8A) [136]. Also, the pH-respon-
sive nitrogen- and chloride-doped CDs were synthesized by 
choline chloride and glycerin as an intracellular pH sensing 
probe (Fig. 8B) [143]. Another hydrothermal synthesis of 
nitrogen-rich CDs as pH sensor from melamine and trietha-
nolamine was recently reported. A wide range of sensing, 
low cell cytotoxicity, and excellent biocompatibility were 

Fig. 7  A Confocal images of 
LoVo cells treated with CDs at 
different passages. CDs: excita-
tion at 405 nm, Reproduced 
with permission from ref [134]. 
Copyright 2021 American 
Chemical Society. (B) Monitor-
ing of the LD movement by PA 
CDs: the movement of LDs at 
0, 30, 60, and 90 s is illustrated 
by four different colors, and the 
merged of all images. Repro-
duced with permission from ref 
[135]. Copyright 2021 Ameri-
can Chemical Society 

(A

(B

A)

B)
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the remarkable properties of prepared CDs that confirm via 
imaging of pH sensing in live T24 cells (Fig. 8C) [144].

In spite of the proposed mechanism of pH imaging by 
CDs, including protonation or deprotonation, energy level 
variation, particle aggregation, protective shell, and proton 
transfer, there is a priority to exact explanation about this 
phenomenon [145].

Detecting and imaging of intracellular ion

Heavy metal ions are toxic to life in nature, but the main 
concern about heavy metals relates to their unknown and 
intricate effects on living organisms. So, any method of 
detecting this heavy metal ion has its own priority for 

researchers [146, 147]. Functionalized CDs are one of the 
recent tendencies to metal ion detection [49, 148]. The 
attractive CDs with high sensitivity to  Fe3+ were obtained 
via microwave pyrolysis within just 4 min. As an intrinsic 
fluorescence probe, CDs practically visualize intracel-
lular  Fe3+ in live HeLa cells (Fig. 9A) [149]. Also, the 
CDs prepared from microalgal biomass are a candidate 
as potent endogenous imaging labels of Hg (II)- and Cr 
(VI)-contaminated live cells (Fig. 9B) [150].

The reported mechanisms of heavy metal detection 
by CDs are coordination/complexation, inner filter effect 
(IFE), light-induced electron transfer (LET), and ion 
aggregation [151]. CDs have a great potential for visuali-
zation of other heavy metal ions such as Cr and As.

(A) (B) (C)

Fig. 8  A  Confocal images of HePG2 cells treated with CDs at pH 
(5.0, 7.0, 9.0), Reproduced with permission from ref [136]. Copyright 
2020 Elsevier. (B) Confocal images of HeLa cell incubation with 
CDs at pH (5.37, 6.38, 7.38, 8.34, and 9.57). Reproduced with per-

mission from ref [143]. Copyright 2018 American Chemical Society. 
(C) Confocal images of T24 cells treated with CDs at pH (5.0, 7.0, 
9.0). Reproduced with permission from ref [144]. Copyright 2016 
Elsevier 

(A) (B)

Fig. 9  A Bright-field transmission images and their corresponding 
fluorescent microscopy images of HeLa cells that were incubated 
with CDs and then Fe3 + , Reproduced with permission from ref 
[149]. Copyright 2018 Springer. (B) Cell imaging of HEK-293 cell 

line after treatment of 50 µg/mL of CDs, 100 µM Hg (II), and 100 µM 
Cr (VI). Reproduced with permission from ref [150]. Copyright 2018 
Elsevier 
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Detecting and imaging of intracellular small 
molecule

High-resolution imaging of small cellular molecules 
such as glutathione and dopamine always provides more 
details about biochemical pathways, the mechanism of 
cellular activity, and the pathophysiology of disease pro-
gression [152, 153]. The new NIR fluorescence CDs can 
be directly used for the quantitative evaluation of  H2S. 
More surprising, this kind of CD could specifically be 
used for imaging of the cell membrane  H2S transporting. 
As shown in Fig. 10A, the MCF-7 cells incubated only 
with CDs emit a bright red fluorescence from the cell 
membrane, while the fluorescence intensity of the NIR 
channel decreases obviously in the presence of the  H2S. 
In addition to the labeling of the cell membrane by CDs, 
more detail about the signal pathways and cell–cell com-
munications are accessible by visualization of gaseous 
signal molecule transportation across the cell membrane. 
The mechanism of fluorescent quenching and affinity to 
the  H2S by CDs are not illustrated yet [154]. Simple and 
fast preparation of CDs from L-tartaric acid and triethyl-
enetetramine was examined via the microwave-assisted 
method. Fluorescent quenching is the mechanism of met-
ronidazole (MNZ) detection by these biocompatible CDs. 
Accordingly, CDs are a potent tool for cell imaging and 
MNZ detection (Fig. 10B) [155]. Also, CD-based fluo-
rescent nano-probes for intracellular biothiols (cysteine, 
homocysteine, and glutathione) imaging in living cells 
were introduced due to their appropriate biocompatibility 
[156, 157].

Detecting and imaging of intracellular protein

The imaging of protein distribution and tracking of their cel-
lular movement is necessary for a complete understanding 
of biological pathways and disorders [158]. Conjugation of 
Au nano-rods (AuNR) and red-emissive CDs (RCDs) pro-
vides a specific fluorescent label for caspase-1 activity assay 
(Fig. 11A). The emission of fluorescent energy occurs by 
CD and adsorbs by the Au nano-rods via surface energy 
transfer (SET) phenomena. The obtained fluorescent probe 
shows high sensitivity, specificity, and stability for in situ 
monitoring and imaging of the caspase-1 activity level in 
the living cells (Fig. 11B) [159]. As an imaging agent, CDs 
show selective emission response to cytochrome C (cyt-c) 
via an unclear mechanism. The HeLa cells were incubated 
with synthesized CDs and dexamethasone for various times. 
The dexamethasone triggers cyt-c releasing from the mito-
chondria and simultaneously the beginning of the apoptosis 
process, which could be monitored by confocal fluorescence 
imaging (Fig. 11C) [143].

Table 1 shows precursors, emission color, size, biocom-
patibility, and important features and targets of CDs for live-
cell imaging reported in the literature. In this table, we have 
tried to summarize the latest published articles in this field 
during the last few years.

Conclusion and future perspective

Cellular imaging is intricate and expensive, but it is one of 
the most valid techniques for understanding metabolic path-
ways and the mechanism of disease. The unlimited amounts 

Fig. 10  A Red channel images 
(λex = 640 nm) of MCF-7 cells 
incubated with CDs (top) and 
CDs + NaHS (sodium hydro-
sulfide) (bottom), Reproduced 
with permission from ref [154]. 
Copyright 2021 Elsevier. (B) 
CLSM images of MCF-7 cells 
treated with CDs in with or no 
MNZ. Reproduced with permis-
sion from ref [155]. Copyright 
2020 Elsevier 

(A) (B)
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(A)

(C)

(B)

Fig. 11  A  Schematic synthesis procedure of the caspase-1 and its 
response mechanism of the AuNR-Pep-RCD nano-probe. (B) Confo-
cal images of MCF-7 and RAW264.7 cells treated with AuNR-Pep-
RCD. The red color is related to the nano-probe response to active 
caspase-1, and the blue color comes from Hoechst 33,342 for cellular 
nucleus staining, Reproduced with permission from ref [159]. Copy-

right 2021 Elsevier. (C) Confocal fluorescence images of HeLa cells 
incubated with CDs for 5 h followed by further incubation for 0, 8, 
16, and 24 min in the presence of dexamethasone. Reproduced with 
permission from ref [143]. Copyright 2018 American Chemical Soci-
ety
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Table 1  An overview of the use of different CDs for in vitro live-cell imaging
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Table 1  (continued)
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of biological molecules are synthesized, modified, and trans-
formed per second in the cells, interfering in targeted chemi-
cal labels. CDs can answer the highly variable and streaming 
nature of cells by the possibility of preparation by unlimited 
and cheap precursors from pure citric acid to contaminant 
waste water. Therefore, a wide variety of surface chemi-
cal groups and surface modifications are available in the 
designation of CDs as a selective probe for cellular orga-
nelles and bioactive molecules. High-resolution imaging, 
stable fluorescent emitting, ability to cell penetration, sur-
face multifunctional capabilities, biocompatibility, low-cost 
synthetic, and low toxicity are the additional advantages of 
CDs against the common dyes and nano-probes. The newest 
progress in in vitro live-cell imaging based on CDs, includ-
ing the whole cells, cell organelles, pH, ions, molecules, and 
proteins imaging, are elaborately presented in this review. 
However, the fundamental mechanism of selective behavior 
of CDs against a particular organelle or biomolecule is not 
clearly reported. Undoubtedly, the future progress in cell 
imaging depends on the illustration of the mechanism of 
cellular and subcellular specific imaging by various chemi-
cally CDs. In spite of attempts to improve the targeting abil-
ity of CDs via post surface modification such as chemical 

conjugation with Au nano-rods, researchers are tending to 
achieve this goal by altering simple and low-cost reactions to 
synthesize CDs with intrinsic affinity to a particular target.
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