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Abstract
Prominent electrochemiluminescence (ECL) in Ti-Fe–O nanotube arrays (Ti-Fe–O NTs) with K2S2O8 as the cathode core-
actant is reported for the first time. Compared with pure titanium dioxide nanotubes (TiO2 NTs), this heterojunction could 
effectively reduce the band gap, facilitate electronic transitions, and move the ECL potential to a positive direction. The 
ECL performance motivated the development of an ultrasensitive ECL immunosensor for detecting cytokeratin fragment 
21–1 (CYFRA21-1). Magnetic beads loaded with conductive carbon black (CCB/MNTs) were used to efficiently quench 
the ECL signal of a Ti-Fe–O NTs electrode and were combined with an ECL immunoassay to realize sensitive detection of 
CYFRA21-1. Over a CYFRA21-1 concentration range of 1.0 pg·mL−1 ~ 100 ng·mL−1, the change in the ECL signal was 
highly linear with the logarithm of the CYFRA21-1 concentration, and the limit of detection (LOD) was 0.114 pg·mL−1. This 
ECL immunosensor was used to successfully determine the CYFRA21-1 content in serum. The recovery of CYFRA21-1 in 
actual serum was 88.6 – 104.4%, and the RSD was 1.4 – 3.0%. The coreaction solution used in this work was PBS (0.1 M, 
pH = 7.4) containing 0.05 M K2S2O8, the scanning range was −1.0 – 0 V, the photomultiplier tube (PMT) was set to 750 V, 
and the scanning rate was 100 mV·s−1.
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Introduction

Titanium dioxide nanotubes (TiO2 NTs) have been widely 
used in solar cells, photocatalysis, biosensors, etc., due to 
their large specific surface area, environmental protection, 
and relatively low cost [1–5]. Recently, Oriol’s group [6] 
reported the photoelectrocatalytic treatment of indigo car-
mine in an acidic aqueous solution using TiO2 NTs as photo-
anodes with good results. Although the application of TiO2 
NTs to photoelectrochemical (PEC) and electrochemical 
(EC) fields has been extensively studied, the application of 
TiO2 NTs to the field of electrochemiluminescence (ECL) 
has rarely been studied. The main reason for this lack of 
research is that the wide band gap (3.2 eV) of TiO2 NTs 

makes it difficult to excite electrons, resulting in poor ECL 
performance. Generally, the band gap can be modified by 
methods such as dye sensitization [7], ion doping [8], metal 
deposition [9–11], and loaded nanomaterials [12–14].

The heterojunction of TiO2 and Fe2O3 has attracted 
increasing attention because of good performance. This het-
erojunction has effectively reduced the band gap (2.2 eV), 
promotes the electronic transitions, and enhanced ECL prop-
erty compared to TiO2 NTs [15, 16]. The doping of Fe2O3 
onto TiO2 has been implemented in a sol–gel system [17]. 
However, Fe2O3 has not been able to be atomically doped 
onto TiO2 in most studies [18]. Ti-Fe–O nanotubes (Ti-Fe–O 
NTs) have considerably extended the utilization of visible 
light owing to the unique tubular structure and uniform atom 
doping of these NTs. To the best of our knowledge, Ti-Fe–O 
NTs are a mature application in the field of lithium-ion bat-
teries and PECs [18–20] but have rarely been reported for 
applications in the ECL field.

ECL has been widely used in the fields of biological sci-
ences, immunoassays, and food analysis because of a high 
speed, low background noise, high sensitivity, and simple 
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equipment [21–23]. Lung cancer has become one of the 
deadliest malignant tumors due to its high fatality rate [24]. 
Cytokeratin fragment 21–1 (CYFRA 21–1) can be used to 
detect non-small lung cancer cell markers. Due to its high 
specificity, it has been widely used in immunoassays and 
has become an important tool for the quantitative analysis of 
tumor markers [25, 26]. Therefore, it is of great significance 
to use Ti-Fe–O NTs as electrodes to target CYFRA21-1.

This article is the first report of ECL in Ti-Fe–O NTs 
with K2S2O8 as the cathode coreactant; an immunosensor 
for detecting CYFRA21-1 was designed with a Ti-Fe–O NTs 
electrode as an ECL emitter, and the principle is shown in 
Scheme 1. Magnetic beads loaded with conductive carbon 
black (CCB/MNPs) were used as amplifying quenchers and 
combined with Ab2 to detect CYFRA21-1 in serum. Experi-
mental results showed that a Ti-Fe–O NTs electrode in a 
K2S2O8 coreactant produced ECL signals with high stability 
and reproducibility.

Experimental

Reagents and chemicals

CYFRA21-1 and cytokeratin 19 fragment antigen 21–1 
antibodies (antiCYFRA21-1) were obtained from Shanghai 
Linc-Bio Science Co., Ltd. Prostate protein antigen (PSA) 
and carcinoembryonic antigen (CEA) were obtained from 
the Huayang Zhenglong Biochemical Products Research 
Office. Bovine serum albumin (BSA) and tetracycline-BSA 
(TC-BSA) were purchased from Shenzhen Kejie Bio Co., 
Ltd. N-(3-dimethylaminopropyl)-N’-ethyl-carbodiimide 
hydrochloride (EDC) and N-hydroxysuccinimide (NHS) 
were purchased from Shanghai Sinopharm Chemical 

Reagent Co., Ltd. HIV-1 Tat protein was purchased from 
Shanghai Sangon Biotech Co., Ltd. Ulinastatin (UTI) was 
obtained from Eddie Pharmaceutical Co., Ltd. CCB was 
purchased from Nanjing Xianfeng Nano Co., Ltd. Affimag 
magnetic microspheres (MNPS) were obtained from the 
Tianjin Beisle Chromatography Technology Development 
Center. Hydrofluoric acid (HF) was purchased from Yantai 
Sanhe Chemical Reagent Co., Ltd. Oxalic acid (OA) was 
purchased from Tianjin Guangcheng Chemical Reagent Co., 
Ltd. Absolute ethanol (C2H5OH) was obtained from Sinop-
harm Chemical Reagent Co., Ltd. Ti-Fe alloy plates were 
purchased from Yinuo Metal Materials Co., Ltd. A Ti-Fe 
alloy plate was cut into 6 × 0.7 cm pieces (Fe ≤ 0.3).

Instrumentation

The ECL and other electrochemical properties were meas-
ured on an MPI-E ECL analysis system produced by Xi’an 
Raymine Analytical Instruments Co., Ltd. Scanning electron 
microscopy (SEM) was performed on an S-4800 electron 
microscope (Hitachi, Ltd., Japan). Energy dispersive spec-
troscopy (EDS) was carried out using an OXFORD Ultim 
Extreme. X-ray photoelectron spectroscopy (XPS) was car-
ried out using a Thermo ESCALAB-250 (USA).

Preparation of an ECL biosensor

Ti-Fe–O NTs were successfully synthesized according to 
the literature [27]. The Ti-Fe–O NTs electrode was placed 
in 1 mL of PBS containing 3 mM OA, reacted for 5 h at 
4 °C, and rinsed with ultrapure water and PBS. The OA-Ti-
Fe–O NTs electrode was immersed in 1.0 mL of a solution 
containing 20 mg of EDC and 10 mg of NHS methyl imida-
zole to activate the carboxyl groups of OA at 25 °C for 1 h. 

Scheme 1   Schematic of the 
Ti-Fe–O NTs for detecting 
CYFRA21-1
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Washed with PBS to remove excess EDC and NHS on the 
electrode. Placed the electrode in Ab1 at 4 °C and assembled 
for 15 h. The Ti-Fe–O NTs electrode assembled with Ab1 
was placed in a 3% BSA solution at 4 ºC for 2 h to seal the 
non-specific active adsorption sites on the array electrode. 
The obtained electrode was labeled Ab1/Ti-Fe–O NTs.

The Ab1/Ti-Fe–O NTs were immersed in CYFRA21-1 
at concentrations of 100 ng·mL−1, 10 ng·mL−1, 1 ng·mL−1, 
500 pg·mL−1, 100 pg·mL−1, 10 pg·mL−1, and 1 pg·mL−1 and 
incubated at 37 °C for 1 h. The Ab1/Ti-Fe–O NTs bound to 
the antigen were labeled CYFRA21-1/Ab1/Ti-Fe–O NTs. 
The cells were further incubated with 1 mL of the Ab2/
CCB/MNPs solution for 1 h at 25 °C. Finally, the cells were 
washed with ultrapure water and PBS and stored at 4 °C. 
The other conditions were as follows: the scanning potential 
was − 1.0 ~ 0 V, the scan speed was 100 mV·s−1, and the 
strength of the photomultiplier tube was 750 V.

Results and discussion

Characterization of nanocomposites

The morphologies of the Ti-Fe–O NTs were first investi-
gated using SEM (Fig. 1a). The results showed the mate-
rial had a continuous porous nanotube structure. The inner 
diameter of the nanotubes was approximately 60 ~ 70 nm. 
The EDS results demonstrated the presence of Ti, O, and Fe 
(Fig. 1b). The atomic ratios of Ti, Fe, and O were 46.64%, 
0.1%, and 53.26%, respectively.

The elemental composition and valence state of the syn-
thesized Ti-Fe–O NTs were analyzed by XPS. The results 

showed the presence of elemental Ti, Fe, O, and C in the 
material. Figure S1A shows 4 distinct peaks at approxi-
mately 284.94, 459.42, 531.57, and 711.75 eV that were 
attributed to C 1 s, Ti 2p, O 1 s, and Fe 2p, respectively. We 
analyzed the Fe elemental peak, which is shown in Fig. S1B. 
The XPS Fe 2p spectrum exhibits two main peaks at approx-
imately 711.84 and 723.72 eV, corresponding to Fe 2p3/2 
and Fe 2p1/2, respectively, and confirming the presence of 
Fe3+ [18]. The satellite vibration peak of 715.98 eV fur-
ther confirmed that the nanotubes contained Fe3+ [19, 28]. 
Given the multiple confirmations of the presence of Fe2O3, 
the obtained nanotubes were considered to be Ti-Fe–O NTs 
during the whole experiment.

Figure 2a shows the ECL performance of the pure TiO2 
NTs and Ti-Fe–O NTs electrodes in the K2S2O8 coreactant 
solution. Compared with the electrode modified with pure 
TiO2 NTs, the ECL intensity of the Ti-Fe–O NTs electrode 
was 5.7-fold higher, and the onset ECL potential was posi-
tively shifted to approximately 200 mV. The ECL intensity 
of the electrode modified with TiO2 NTs and Ti-Fe–O NTs 
was measured under the action of a filter with a wavelength 
of 420 ~ 640 nm, and the results are shown in Fig. 2b. The 
maximum emission wavelength of the ECL emission peak 
was approximately 540 nm. Compared with the TiO2 NTs 
electrode with a wavelength of 500 nm, the Ti-Fe–O NTs 
electrode exhibited a clear redshift, and the luminescent 
potential was positively shifted [27]. Compared to the TiO2 
NTs, the Ti-Fe–O NTs had a narrower band gap, which is 
consistent with the results in the literature [18], such that 
electrons in the Ti-Fe–O NTs were more easily excited to 
produce the ECL phenomenon.

Fig. 1   a SEM image of Ti-Fe–O NTs (the scale in the SEM micrograph is 100 nm). b EDS of Ti-Fe–O NTs (elemental Ti, Fe, and O are present)
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In order to further explore the performance of CCB/
MNPs as quenching agents, the UV–vis absorption is shown 
in Fig. S2. It can be seen from the figure that there is a broad 
absorption peak in the wavelength range of 280 ~ 800 nm. 
This proved that CCB/MNPs were similar to blackbody 
materials. In addition, CCB was more environmentally 
friendly than common CdTe nanoparticles. Therefore, CCB/
MNPs can be considered as a good quencher.

Optimization of experimental conditions

The pH of the coreactant significantly influenced the ECL of 
the Ti-Fe–O NTs electrode. Therefore, the pH of the K2S2O8 
coreactant was optimized, and the result is shown in Fig. S3. 
As the pH of the K2S2O8 coreactant increased from 4 to 11, 
the ECL intensity first increased and then decreased. The 
ECL intensity had a maximum value at a K2S2O8 coreactant 
pH of 7.4, which was hence chosen as the optimal detection 
condition in this study.

ECL behavior of Ti‑Fe–O NTs

In a previous report on TiO2 NTs [29], the ECL behavior of 
Ti-Fe–O NTs with K2S2O8 as a coreactant was studied, and 
the following mechanism for inducing ECL was proposed.

(1)S
2
O2−

8
+ e− → SO

2−

4
+ SO

⋅−

4

(2)SO
4

⋅−
→ SO

4

2−
+ h+

(3)Ti − Fe − O + h+ → Ti − Fe − O(h+)

First, during a negative scan, S2O8
2− is reduced at the Ti-

Fe–O NTs electrode surface, and holes (h+) are generated, 
as shown in Eqs. (1) and (2). The resulting h+ is injected 
into the valence band of Ti-Fe–O (Eq. (3)). As the scanning 
potential develops in the negative direction, electrons fill the 
conduction band and generate the excited species Ti-Fe–O* 
(Eq. (4)). Finally, when Ti-Fe–O* returns from the excited 
state to the ground state, an ECL signal is emitted (Eq. (5)).

In this study, Ti-Fe–O NTs were selected to modify elec-
trodes, resulting in excellent ECL performance. CCB/MNPs 
were used as quenchers to suppress the Ti-Fe–O NTs signal. 
Therefore, an ultrasensitive ECL biosensor was fabricated to 
detect a CYFRA21-1 cell marker.

ECL detection of CYFRA21‑1

In this paper, we selected CYFRA21-1 as an antigen for 
analysis and investigated the potential of using Ti-Fe–O NTs 
as ECL electrode materials and CCB/MNPs as quenchers. 
Figure S4 shows the change in the ECL signal when detect-
ing 100 ng·mL−1 CYFRA21-1 with different quenchers. 
Curves (a) and (b) show that the ECL strength decreased 
by 20% after CYFRA21-1 was assembled on the Ti-Fe–O 
NTs electrode. The main reason for this result was that 
CYFRA21-1 partially hindered electron transfer during 
the ECL reaction process. When the CYFRA21-1/Ab1/Ti-
Fe–O NTs electrode was immersed in the Ab2/CCB/MNPs 
solution, the ECL signal was quenched by 89% (curve c). 
However, when the electrode assembled with CYFRA21-1 

(4)Ti − Fe − O(h+) + e− → Ti − Fe − O∗

(5)Ti − Fe − O∗
→ Ti − Fe − O + hv

Fig. 2   a ECL curves of the Ti-Fe–O NTs electrode and TiO2 NTs electrode. b The ECL spectrum of the Ti-Fe–O NTs and TiO2 NTs electrode
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only combined with Ab2/MNPs, the ECL signal was only 
quenched by 42% (curve d). A comparative analysis of the 
results shows that only the combination of CCB and MNPs 
achieved effective quenching. Therefore, CCB/MNPs were 
selected as quenchers for subsequent experiments.

In this paper, the obtained biosensor uses the ECL method 
to detect different concentrations of CYFRA21-1, and the 
results are shown in Fig. 3. It can be clearly seen from 
Fig. 3a that as the concentration of CYFRA21-1 increases 
from 1 pg·mL−1 to 100 ng·mL−1, the intensity of ECL gradu-
ally increases. Figure 3b is showing the relationship between 
the logarithm of the concentration of CYFRA21-1 and 
ΔI. The linear regression equation ΔI = 1978 logc + 2812 
(R2 = 0.996), where ΔI is I0-I, I0 is the ECL intensity of the 

electrode after incubation in CYFRA21-1 solution, and I is 
the ECL intensity of CYFRA21-1/Ab1/Ti-Fe–O NTs elec-
trode. In addition, the detection limit of detection (LOD) 
was 0.114 pg·mL−1.

Stability, repeatability, and selectivity

The prepared biosensor was maintained at 4 °C for 5 days. 
The result is shown in Fig. S5A, that is, the ECL curve of 
Ti-Fe–O NTs hardly changes in intensity over 5 days. This 
result indicates that the prepared ECL sensor had high sta-
bility. Figure S5B shows the results of a repeatability test 
performed on 5 different Ti-Fe–O NTs electrodes. The ECL 

Fig. 3   a The ECL curves of Ti-Fe–O NTs in different concentrations of CYFRA21-1. b Logarithmic calibration curve for CYFRA21-1 detection

Fig. 4   a ECL behavior of Ti-Fe–O NTs in PBS (0.1 M, pH = 7.4) containing 0.05 M K2S2O8. b Selectivity of the obtained ECL biosensor incu-
bated in PSA, CEA, TC-BSA, HIV-1, and UTI for CYFRA21-1 under the same experimental conditions
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strength of the 5 electrodes was almost stable, proving that 
the titanium ferrite electrode had good repeatability.

Figure 4a shows that Ti-Fe–O NTs generated strong and 
stable ECL signals. We investigated the selectivity of the 
CYFRA21-1 ECL biosensor. Under fixed detection condi-
tions, we selected interfering proteins, including PSA, CEA, 
UTI, TC-BSA, and HIV-1 (at a 100 ng·mL−1 concentration), 
for detection. The results are shown in Fig. 4b: the interfer-
ing substances had almost no effect on the ECL biosensor, 
indicating that the biosensor had particularly good selectivity. 
Finally, we compared the performance of ECL methods that 
have been used to detect CYFRA21-1 over the past few years, 
and the results are shown in Table 1. The results show that 
our prepared biosensor for detecting CYFRA21-1 has a larger 
detection range and lower LOD than other detection methods.

Detection of real samples

In order to verify the practicability of real samples, the stand-
ard addition method is used to complete the relevant detec-
tion. The Affiliated Hospital of Yantai University provides 
serum with 0.5 ng·mL−1 of CYFRA21-1 in healthy students. 
Then, different concentrations of CYFRA21-1 (0.1 ng·mL−1, 
1 ng·mL−1, 10 ng·mL−1) were added to the serum, and the 
mixture was used as the target for detection. Table 2 shows that 
the recoveries of CYFRA21-1 in actual samples ranged from 
88.6 to 104.4%, and the RSD was below 3.0%. The results 
showed that the biosensor can be effectively applied to detect 
CYFRA21-1 in serum.

Conclusions

In this paper, the properties and applications of Ti-Fe–O-
NTs electrodes were investigated using the ECL method. 
The Ti-Fe–O NTs electrode has high sensitivity and sta-
ble ECL signal. However, compared with the common 
glassy carbon electrode, the preparation process of this 
electrode is more complicated, takes longer, and needs to 
be stored at 4 °C. The Ti-Fe–O NTs electrode was used to 
generate the ECL signal, and a CCB/MNP complex was 
quenched with high efficiency to design a sandwich immu-
nosensor for CYFRA21-1 detection, with the LOD being 
0.114 pg·mL−1. The fabricated biosensor was applied to 
the detection of CYFRA21-1 in human serum, and sat-
isfactory results were obtained. This result indicated the 
good potential of the biosensor prepared in this study for 
practical applications.
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