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Abstract
Simultaneous detection of different biomarkers from a single specimen in a single test, allowing more rapid, efficient, and 
low-cost analysis, is of great significance for accurate diagnosis of disease and efficient monitoring of therapy. Recently, 
developments in microfabrication and nanotechnology have advanced the integration of nanomaterials in microfluidic devices 
toward multiplex assays of biomarkers, combining both the advantages of microfluidics and the unique properties of nano-
materials. In this review, we focus on the state of the art in multiplexed detection of biomarkers based on nanomaterial-
assisted microfluidics. Following an overview of the typical microfluidic analytical techniques and the most commonly used 
nanomaterials for biochemistry analysis, we highlight in detail the nanomaterial-assisted microfluidic strategies for different 
biomarkers. These highly integrated platforms with minimum sample consumption, high sensitivity and specificity, low 
detection limit, enhanced signals, and reduced detection time have been extensively applied in various domains and show 
great potential in future point-of-care testing and clinical diagnostics.

Keywords Multiplexed detection · Biomarkers · Integrated-microfluidic devices · Nanomaterials · Point-of-care testing · 
Biochemical analysis

Introduction

Biomarkers are “a characteristic that is objectively measured 
and evaluated as an indicator of normal biological processes, 
pathogenic processes, or pharmacologic responses to a ther-
apeutic intervention,” as defined by the National Institutes of 
Health Biomarkers Definitions Working Group in 2001 [1]. 

Biomarkers could provide valuable information regarding 
biological processes in the body, reflecting normal or abnor-
mal physiological states. According to their functions, bio-
markers can be classified into five categories: (i) antecedent 
biomarkers that evaluate the risk of developing a disease; (ii) 
screening biomarkers that identify individuals with subclini-
cal disease; (iii) diagnostic biomarkers that help recognize 
overt disease; (iv) staging biomarkers that reveal the stage 
of disease; and (v) prognostic biomarkers that offer informa-
tion on the outcome of a disease, monitor therapy efficiency, 
and provide evidence of recurrence [2–4]. Hence, monitor-
ing biomarkers plays an essential role in clinical practice, 
molecular biology, and personalized medicine, especially 
for the early diagnosis of disease, tracking of disease pro-
gression, elucidation of disease mechanisms, prediction of 
treatment efficiency, and guidance of therapy.

Indeed, in many cases, the decision made based only 
on a single biomarker does not allow an accurate diagno-
sis of disease or efficient monitoring of therapy. Sequential 
assessment of multiple potential targets not only increases 
experimental time, cost, and the amount of data generated 
but also requires a large quantity of specimens that may be 
valuable or difficult to collect, for example, extremely rare 
circulating tumor cells (CTCs) in patient whole blood [5]. 
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Multiplex assays, referring to the simultaneous detection of 
multiple targets from a single specimen in a single test, are 
time-saving and cost-effective, and meet the challenge of 
limited sample analysis [6, 7]. Currently, three strategies 
are mainly used to realize multiplexing: (i) using spots or 
wells to spatially separate the detection sites; (ii) utilizing 
enzymes, dyes, or nanomaterials to label the reagents; and 
(iii) employing discrete zones of a channel network or elec-
trode arrays to create separated regions [7].

With the innovation of nanotechnology and nanofabrica-
tion that allows miniaturization and incorporation of sophis-
ticated analytical functions on a single platform, microflu-
idics has rapidly emerged as a promising technology in 
multiplex assays. Being capable of precisely manipulating 
small volumes of fluids (typically in the range of picoliters 
to nanoliters) and of realizing large-scale parallel analysis 
with reduced time [8, 9], microfluidic technologies possess 
numerous advantages for analytical chemistry, especially 
for multiplexed analysis of biomarkers in complex biologi-
cal specimens, including high integration, high throughput, 
low sample and reagent consumption, easy portability, short 
turnaround time, low cost, etc. [10].

Nevertheless, only using microfluidic devices frequently 
encounters limitations in sensitivity and selectivity, which 
restricts their further employment for the assessment of 
complex clinical samples. The combination of microfluidics 

with nanomaterials preserving the advantages of both tech-
nologies has become a recent trend for ultrahigh-sensitivity 
detection. First, the nanoscale size allows them to liberally 
flow through the microchannels and to be easily confined in 
the microstructures, serving as efficient capturing or signal-
ing agents, which may contribute to improving the detec-
tion sensitivity. Second nanomaterials possess remarkable 
unique characteristics, such as specific catalytic properties, 
extraordinary magnetic or optical properties, a high surface-
to-volume ratio, and easy chemical functionalization, which 
could facilitate reactions, promote sample separation, favor 
signal transmission, serve as labels, etc., thus dramatically 
improving the analytical features of the microfluidic devices 
toward the improvement of sensitivity and specificity [11]. 
In brief, nanomaterial-assisted microfluidics offers new 
opportunities for more rapid, precise, and sensitive detec-
tion of biomarkers [12, 13].

In this review, we will give an overview of recent 
advances in nanomaterial-assisted microfluidic approaches 
for multiplexed detection and analysis of various biomark-
ers (Fig. 1). First, we briefly summarize the most commonly 
used microfluidic analytical approaches for multiplex assays, 
including microfluidic arrays, droplet microfluidics, micro-
fluidic paper-based analytical devices, and microfluidic slip-
driven devices. Next, a variety of nanomaterials that have 
contributed to improving the performance of microfluidic 

Fig. 1  Schematic illustration of multiplexed analysis of biomarkers using nanomaterial-assisted microfluidic devices
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analytical systems are briefly presented, such as metal nano-
particles, quantum dots, magnetic nanoparticles, upconver-
sion nanoparticles, and carbon nanotubes. Then, we focus 
on the utilization of nanomaterial-assisted microfluidic 
platforms for multiplexed analysis of biomarkers, includ-
ing proteins, nucleic acids, and small molecules. For each 
type of biomarker, we highlight their characteristics, clini-
cal significance, and typical detection strategies. Finally, we 
discuss some potential applications of nanomaterial-assisted 
microfluidics in disease diagnosis, environmental monitor-
ing, and food safety control, followed by a brief summary 
and outlook. As the field of microfluidics is expanding rap-
idly, readers should be aware that this review is limited to 
the current state of knowledge.

Microfluidic devices for multiplex assays

Microfluidics refers to the manipulation of fluids at small 
scales (typically from  10–8 to  10–18 L) in narrow  (10–6 to 
 10–8 m) channels or chambers [10] and is also termed a 
micro total analysis system (μTAS) or lab-on-a-chip (LOC). 
Recently, numerous microfluidic devices have been devel-
oped for multiplex assays based on different techniques. 
Herein, we will highlight several of the most commonly 
used classes, including microfluidic arrays, droplet micro-
fluidics, microfluidic paper-based devices, and microfluidic 
slip-driven devices. Other microfluidic devices such as con-
tinuous flow chip [14, 15], microwell-based platform [16, 
17], and self-powered microfluidic chip [18–20] have also 
been reported to be applied for multiplex assays and readers 
could refer to more complete descriptions elsewhere [21].

Microfluidic array

A microfluidic array, also termed a microarray, refers to an 
ordered arrangement of thousands of assay units in a sin-
gle miniaturized device, which allows high-throughput and 
simultaneous analysis of a large number of biomolecules or 
parameters in a single test. This technique, which requires 
reduced consumption of samples and reagents, builds a sim-
ple, fast, and sensitive analytical technology.

The two main categories of microfluidic arrays are 
protein microarrays aiming at protein–protein interac-
tion analysis or protein profiling [22–24], and nucleic 
acid microarrays focusing on the qualitative or quantita-
tive detection of nucleic acid sequences via hybridization 
[25]. Microarrays can also be classified according to their 
formats as follows: (i) two-dimensional planar arrays 
(Fig. 2A) based on dense microspots of ligands (such as 
protein, peptide, and aptamer) deposited onto a glass or 
other solid support [24] and (ii) three-dimensional suspen-
sion microsphere arrays (Fig. 2B) based on microspheres 

functionalized or coated with capture molecules to bind 
the specific analytes in a biological sample [26]. Both for-
mats have respective characteristics. The target molecule 
needs to diffuse to the planar surface to ensure solid bind-
ing, which is less favorable than in the case of suspension 
arrays [27], while the microspheres should be labeled for 
facile recognition [28]. By fixing different capture agents 
at different zones of planar substrates or onto sphere sur-
faces, microarrays provide a fast and cost-effective way to 
simultaneously detect various proteins or genes and have 
been used in a wide range of application areas, such as bio-
marker discovery [29, 30], protein interaction studies [31], 
functional proteomic studies [22, 23], sequence analysis 
and genotyping [32, 33], drug discovery and development 
[34], and personalized medicine [35].

Droplet microfluidics

Unlike other continuous flow systems, droplet microfluid-
ics involves the creation of discrete volumes (droplets) 
ranging from picoliters to nanoliters [43], using immis-
cible phases in microdevices. Droplet formation and 
manipulation (such as sorting, coalescence, splitting, mix-
ing, and trapping) can be achieved using passive meth-
ods, including coflow, cross-flow and flow focusing, or 
active methods (with external forces), including electri-
cal fields, magnetic fields, thermal control, mechanical 
forces, etc. [44, 36] (Fig. 2C). With the capacity to han-
dle miniature fluid volumes, droplet microfluidics allows 
enhanced mixing and mass transfer, facilitating faster reac-
tions. Moreover, each droplet is independent and can be 
individually transported, mixed, and analyzed, allowing 
parallel and high-throughput analysis [45].

The typical protocol for bioassays in droplet microfluid-
ics mainly consists of reagent encapsulation in droplets, 
initiation of reaction by mixing or coalescence of liquids, 
and signal readout [37] (Fig. 2D). It should also be noted 
that droplet indexing (Fig. 2E), for example, by encap-
sulating fluorescent dyes [38], nanomaterials possessing 
particular optical properties [46, 47] or DNA-barcoded 
microbeads [48] into droplets, or by directly barcoding 
the droplet contents with DNA oligonucleotide before 
encapsulation [48, 49], is crucial for exact differentiation 
between droplets involving various reagents for multiplex 
assays.

With remarkable advantages, including miniaturization, 
compartmentalization, monodispersity, parallelization and 
high throughput, droplet microfluidics for biochemical 
analysis has now been widely applied in DNA identification 
and sequencing, protein–protein interaction studies, immu-
noassays, clinical diagnosis, drug screening, environmental 
monitoring, etc. [50].
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Microfluidic paper‑based analytical device

A microfluidic paper-based analytical device, abbreviated 
as “μPAD,” refers to a microfluidic device made of paper or 
other porous membranes and is fabricated by either shap-
ing/cutting the paper to create microfluidic channels or 
patterning hydrophobic barriers on the substrate via vari-
ous techniques such as photolithography and wax printing 

[51–54]. Paper folding (origami) is also a popular way to 
fabricate a three-dimensional μPAD (Fig. 2F) [39]. The first 
μPAD was developed by Martinez et al. [55] in 2007 using 
chromatography paper patterned with SU-8 photoresist via 
photolithography. By guiding reagents to appropriate areas, 
this device was suitable for measuring multiple targets in 
parallel (Fig. 2G) [40]. Using porous paper as the substrate, 
fluids are generated and driven by capillary forces, with the 
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flow speed controlled by the porosity and the flow direction 
defined by the hydrophobic barrier geometry. Without the 
need for external equipment, this technique is simple, cost-
effective, portable, easy to use, and easy to dispose, and 
offers the possibility of multivariate detection [56].

Combined with various signal readout strategies, such as 
optical microscopy, electrochemistry, chemiluminescence, 
and electrochemiluminescence, μPAD has been extensively 
employed for the analysis of various biomolecules, including 
glucose uric acid (UA), lactic acid, nitrite, cholesterol, pro-
teins, RNA, and DNA [51, 57]. Possessing unique properties 
such as portability, low cost, and easy disposal, μPAD offers 
advantageous solutions for point-of-care testing (POCT) [58, 
59], food contamination control [60], environmental moni-
toring [61], medical diagnosis [62], etc.

Microfluidic slip‑driven device

A microfluidic slip-driven device consists of two or more 
plates that can be moved relative to one another by slip-
ping motion to manipulate fluids. The wells or ducts with 
preloaded or user-loaded reagents and samples will be con-
nected or disconnected through the relative movement of 
plates, generating reactions for sample detection [63, 64].

Since the report of the first slip-driven device, named 
SlipChip (Fig. 2H), in 2009 [41], numerous variants have 
been developed based on different materials [65–69], dif-
ferent mechanisms of motion [70–73], or different readout 
strategies [72, 74–75]. The most famous forms include 
SlipPAD, Slipdisc, and volumetric bar-chart chip (V-Chip). 
SlipPAD is a paper analytical device based on the SlipChip 
concept composed of two chromatographic paper layers pat-
terned by printing wax attached to rigid substrates, bringing 

advantages of robustness and high throughput to the inherent 
simplicity of paper-based microfluidics [68, 76]. Slipdisc is 
a rotational slip-driven chip working based on a clockwork 
mechanism, which allows accurate and controlled movement 
of every step in an assay [72]. V-Chip uses an ink-based 
bar chart for volumetric measurement of oxygen production 
during the chemical reaction (Fig. 2I), allowing direct and 
visualized readout of results without using external instru-
ments [42].

Without the need for external pumps, valves, or other 
complex instruments and capable of performing multistep 
and multiplexed analysis by simple slip manipulation, slip-
driven devices have become an attractive platform in a large 
number of studies, including nucleic acid analysis [77], pro-
tein crystallization [78], immunoassays [79], and point-of-
care diagnostics of variant biomarkers [80].

Nanomaterials integrated into microfluidic 
devices

A nanomaterial, defined by the European Commission, is 
“a natural, incidental or manufactured material containing 
particles, in an unbound state or as an aggregate or as an 
agglomerate and where for 50% or more of the particles in 
the number size distribution, one or more external dimen-
sions is in the size range 1–100 nm” [81]. A common cat-
egorization of nanomaterials is according to the number of 
sizes beyond the nanometer scale, yielding 0-D nanomate-
rials (nanoparticles, nanospheres, nanodots), 1-D nanoma-
terials (nanofibers, nanowires, nanorods, nanotubes), 2-D 
nanomaterials (nanolayers), and 3-D nanomaterials (nano-
composites) [82].

The integration of nanomaterials in microfluidics benefits 
greatly from the distinct properties of nanomaterials and 
could significantly improve the performances of microflu-
idic devices [11] in the multiplexed analysis of biomarkers, 
especially in the following aspects: (i) more efficient target 
preconcentration and separation by nanomaterials taking 
advantage of their large surface area-to-volume ratio and 
relatively easy functionalization; (ii) more rapid and facile 
analytical reactions thanks to nanomaterials acting as cata-
lysts or electron-transfer mediators; (iii) enhanced signal 
readout and increased detection sensitivity owing to the 
unique electrical, optical, or plasmonic properties of nano-
materials; and (iv) improved multiplexity profiting from the 
significant encoding capacity of several nanomaterial types.

Herein, we discuss some of the most popular biocompat-
ible nanomaterials suitable for biomarker analysis, including 
metal nanoparticles, quantum dots, magnetic nanoparticles, 
upconversion nanoparticles, and carbon nanotubes, along 
with their functions in microfluidic assays.

Fig. 2  Commonly used microfluidic devices for multiplexed detec-
tion of biomarkers. (A) Planar microarray holding 10,800 spots for 
protein–protein interaction detection. Reprinted with permission from 
[24]. Copyright 2000, American Association for the Advancement of 
Science. (B) Suspension array of encoded microspheres. Reprinted 
with permission from [28]. Copyright 2014, Royal Society of Chem-
istry. (C) Different methods for droplet formation. Reprinted with 
permission from [36]. Copyright 2017, Royal Society of Chemistry. 
(D) Schematic illustration of the droplet analysis protocol, including 
reagent encapsulation, reaction, and signal release. Reprinted with 
permission from [37]. Copyright 2014, American Institute of Physics. 
(E) Optical encoding in microfluidic droplets. Reprinted with permis-
sion from [38]. Copyright 2019, National Academy of Sciences.  (F) 
3D μPAD fabricated by the origami-based method. Reprinted with 
permission from [39]. Copyright 2011, American Chemistry Society. 
(G) Simultaneous detection of glucose, uric acid, lactate, and choline 
by a double-layered μPAD using multiple colorimetric indicators as 
readouts. Reprinted with permission from [40]. Copyright 2019, Else-
vier. (H) Composition and working principle of SlipChip. Reprinted 
with permission from [41]. Copyright 2009, Royal Society of Chem-
istry. (I) Volumetric measurement and direct colorimetric readout in 
the V-chip. Reprinted with permission from [42]. Copyright 2012, 
Nature Publishing Group

◂
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Many other nanomaterials, including but not limited to gra-
phene oxide, silicon nanowires, silicon nanopillars, and gold 
nanosheets, have also been reported to be applied in microfluidic 
multiplex assays due to their specific properties, and readers can 
refer to other works [83, 84] for more complete comprehension.

Metal nanoparticles

Metal nanoparticles are nanosized metals with dimensions 
ranging from 10 to 100 nm. Their remarkable properties 
make them the most popular candidate along with microflu-
idic analytical systems.

Nobel metals such as gold nanoparticles (AuNPs) and sil-
ver nanoparticles (AgNPs) possess localized surface plasmon 
resonance (LSPR), i.e., the resonance oscillation occurring on 
the surface and their absorption in the ultraviolet–visible range 
is dependent on particle sizes [85]. Therefore, modification of 
size, shape, and aggregation degree results in a color change, 
which could be used as labeling or colorimetric signals. In 
addition, modification or functionalization of metal nanopar-
ticles could amplify the LSPR for signal enhancement [86] in 
microfluidic analytical systems (Fig. 3A).

Due to the favorable plasmonic response, metal nano-
particles can also enhance the electromagnetic field around 

Raman reporters to realize surface-enhanced Raman scatter-
ing (SERS) [91, 92]. For example, SERS nanotags are gen-
erally composed of a metal colloid with a Raman reporter 
protected within a shell and have been applied in the simulta-
neous detection of protein biomarkers in microfluidic devices 
[93–95].

Furthermore, the excellent catalytic performance endows 
metal nanoparticles with another important ability, i.e., act-
ing as a catalyst to promote reactions, which helps improve 
the detection sensitivity [96, 97].

Quantum dots

Quantum dots (QDs) are semiconductor core–shell struc-
tured nanoparticles based on II-VI, III-V, I-III-V compounds 
or perovskites [98]. QDs have unique optical properties, 
including broad excitation, narrow emission, tunable emis-
sion wavelength, long fluorescence lifetime, high photolu-
minescence (PL), and photochemical stability. Specifically, 
QDs of different sizes excited at a single wavelength can 
emit at different wavelengths. This property is known as the 
quantum size effect (Fig. 3B) [87], making QDs ideal fluo-
rescent labels [99] contributing to a dramatic improvement 

Fig. 3  Nanomaterials commonly used in biomarker analysis. (A) 
Gold nanoparticles enhancing surface plasmon resonance. Reprinted 
with permission from [86]. Copyright 2016, Elsevier. (B) Quantum 
size effect of quantum dots. Reprinted with permission from [87]. 
Copyright 2011, American Chemistry Society. (C) Magnetic nano-
particles contributing to cell isolation. Reprinted with permission 

from [88]. Copyright 2015, Nature Publishing Group. (D) Energy 
migration within upconversion nanoparticles. Reprinted with permis-
sion from [89]. Copyright 2018, Nature Publishing Group. (E) Col-
vant and noncolvant functionalization of carbon nanotubes. Reprinted 
with permission from [90]. Copyright 2019, Elsevier
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of detection multiplexity [100] in microfluidic analytical 
devices [46, 47] for a variety of applications [101].

The theoretical coding capacity of QDs is determined 
according to the formula Nm – 1, where N is the number 
of intensity levels and m is the number of emission colors 
in the encoding system [102]. This is particularly advan-
tageous over traditional fluorescent dyes whose encoding 
capacity is the product of the number of dyes times the 
number of dye concentrations [103]. Nevertheless, despite 
advances in fluorescence microscopy development, only six 
fluorescent colors can be distinguished [104], and the prac-
tical encoding capacity is further limited to approximately 
100 by the spectral overlap [105] and energy transfer [47, 
106].

Magnetic nanoparticles

Magnetic nanoparticles (MNPs) are nanoparticles display-
ing superparamagnetic properties. They could be iron oxide 
(maghemite γ-Fe2O3 or magnetite  Fe3O4), alloys (FePt), or 
pure metals (Fe and Co). MNPs show remarkable properties 
[107], such as high saturation magnetization, high field irre-
versibility, extra anisotropy contributions, and shifted loops 
after field cooling. Indeed, MNPs can be manipulated by 
applying an external magnetic field and are easily recovered 
when the magnetic field is removed. This unique property 
makes MNPs ideal support for target separation (Fig. 3C) 
[108, 109] when they are conjugated with selective agents 
such as enzymes and antibodies, which allows for simple, 
rapid, efficient, and reversible target isolation and recogni-
tion. MNPs are easily decorated with other nanomaterials, 
organic or inorganic coatings, and biomolecules to attain 
biocompatibility and to enhance the separation efficiency 
[110, 88]. The integration of functionalized MNPs in micro-
fluidics has been demonstrated to improve the sensitivity and 
selectivity of biomarker detection [111, 112].

Upconversion nanoparticles

Upconversion nanoparticles (UCNPs) are lanthanide-doped 
rare-earth-element luminescent materials that exhibit an 
anti-stoker shift (upconversion luminescence), i.e., emitting 
a photon with higher energy (shorter wavelength) than the 
absorbed one [113, 114]. That is, UCNPs could be excited 
with near-infrared radiation and emit visible radiation 
(Fig. 3D), making them hold multiple outstanding photo-
physical properties. Near-infrared excitation permits a large 
penetration depth in samples and decreases the autofluo-
rescence, resulting in a strong signal-to-background ratio, 
which could help improve the detection sensitivity of the 
analytical devices.

The photoluminescence of UCNPs arises from the 4f 
electron transitions, and the optical properties (including 

colors) of UCNPs are tunable through variation of lantha-
nide dopants, for example, by changing ion type and com-
position [89, 115]. Therefore, UCNPs are also extraordi-
nary optical labeling nanomaterials with a great encoding 
capacity (n intensity levels with m colors could generate 
nm – 1 unique codes) [116] and display good performance 
in the multiplexed analysis of proteins [117]. Labeling using 
UCNPs is even more convenient, straightforward, and less 
limited than QDs since UCNPs emit light in the visible 
wavelength range.

Carbon nanotubes

Carbon nanotubes (CNTs) are cylindrical fullerenes consist-
ing of “rolled-up” graphitic sheets with an approximate inner 
diameter on the nanometer scale and were first discovered 
in 1991 by Iijima during fullerene synthesis [118]. CNTs 
can be classified into three types according to the number 
of concentric tubes: single-walled carbon nanotubes (SWC-
NTs), double-walled carbon nanotubes (DWNTs), and multi-
walled carbon nanotubes (MWNTs) [119]. Their unique 
properties, including a high aspect ratio, chemical stability 
and outstanding mechanical strength make CNTs ideal sup-
ports for a wide variety of molecules such as nucleotides, 
amino acids, surfactant molecules, DNA, antibodies and 
enzymes through either covalent or noncovalent function-
alization (Fig. 3E) [90]. The large surface area permitted 
attachment of more abundant reagents or targets, thus can 
enhance the output signals and improve the detection sen-
sitivity. In addition, they possess excellent electrical and 
thermal conductivity, allowing for electrochemical sensing 
[120, 121]. CNTs are widely used in microfluidic devices 
for the detection of proteins [122, 123], nucleic acids [120, 
121], and other molecules [124], with improved detection 
sensitivity.

Multiplexed detection of biomarkers 
by nanomaterial‑assisted microfluidic 
platforms

Biomarkers could be physical traits such as blood glucose 
level, physiologic measurements such as blood pressure, 
and imaging tests such as echocardiogram [2], but currently 
they are more typically referred to as traits of biochemical 
molecules (proteins, genomics, cholesterol, glucose, etc.) [3, 
125]. In this section, we classify three important groups of 
molecular biomarkers, i.e., proteins, nucleic acids and small 
molecules, and give a brief overview of their characteristics 
and detection methodologies by highlighting their multi-
plexed measurement using nanomaterial-assisted microflu-
idic techniques.
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Proteins

Proteins are important biological macromolecules involved in 
numerous biological functions, including protection against 
viruses, providing structure and support for cells, transmit-
ting signals, and catalyzing reactions. Many diseases are 
associated with abnormal protein expression, e.g., Alzhei-
mer’s disease, cardiovascular disease, and cancer [126–128]. 
Thus, protein biomarker investigation in a complex biological 
sample could provide the basis for early disease diagnosis, 
novel therapeutic methodology intervention, new pharma-
ceutical development, etc.

Protein studies may include structural characterization 
of known purified proteins or protein–protein interactions, 
and qualitative or quantitative detection of target proteins 
in a biological sample, with the latter being emphasized in 
the following. Numerous techniques have been developed 
and applied for protein detection and can be roughly clas-
sified into three categories according to different detection 
fundamentals. (i) Immunoassay based on antibody-antigen 
affinity: An antibody, also named immunoglobulin, is a 
protein component of the immune system that can bind to 
a specific antigen. This specific chemical affinity between 
antibodies and antigens is called immunoaffinity, allowing 
highly selective recognition of proteins. The test measuring 
the presence or concentration of an analyte based on the 
immunoaffinity is termed “immunoassay,” which is now the 
most commonly used protein analysis strategy [129–131]. 
Currently, enzyme-linked immunosorbent assay (ELISA) 
[132, 133], enzyme-linked immunospot (ELISPOT) [134], 
and western blot [135, 136] are among the most popular 
immunoassays, and ELISA is regarded as the gold standard 
tool for protein detection and quantification. (ii) Aptamer-
based assay: aptamers are artificial, single-stranded DNA 
or RNA oligonucleotides selected in vitro using the SELEX 
(selective evolution of ligands by exponential enrichment) 
process from random-sequence nucleic acid libraries. 
Aptamers can bind to proteins with high affinity and speci-
ficity, thus giving rise to aptamer-based methods, such as 
enzyme-linked aptamer assays (ELAAs) [137], for protein 
detection. (iii) Mass spectrometry [138]: mass spectrometry 
can be used to determine the component of an unknown 
sample via measurement of the mass-to-charge ratio of ions. 
During this experiment, proteins are digested into peptides, 
which are then separated, fragmented, ionized, and analyzed 
by the mass spectrometer to generate peaks corresponding 
to each peptide fragment ion. Proteins are finally identified 
from the peaks of the captured mass spectra.

These techniques favor protein detection with high selec-
tivity; however, challenges remain. First, a biological sam-
ple always contains many other interfering molecules, which 
increases the complexity for selective detection of the tar-
get protein. Second, some target proteins may be of low 

concentrations and thus difficult to detect, especially in the 
presence of abundant potentially interfering molecules. Third, 
concentrations of different proteins in a sample may differ 
by many orders of magnitude, limiting the multiplex assays.

To date, new and emerging techniques have been developed 
to address these challenges. Nanomaterial-assisted microfluid-
ics may be an ideal solution due to the inherent superiorities of 
microfluidic techniques, such as high throughput, paralleliza-
tion, portability, fast reaction time, and reduced reagent con-
sumption. In addition, the integration of various nanomaterials 
contributes to the increase of multiplexity, improvement of 
detection sensitivity, and enhancement of signals.

QDs, possessing a great encoding capacity [139], have been 
demonstrated to encode microbeads as labels in microarray 
platforms to achieve multiplex assays, for example, for the 
simultaneous detection of anti-IgG and anti-IgM (Fig. 4A) 
[140]. Compared with the commercially available Luminex® 
xMAP™ technology utilizing microspheres (Luminex beads) 
stained with different proportions of red and infrared fluoro-
phores[141] which also showed successful application for mul-
tiplexed detection of proteins in a microfluidic device [142], 
QD-encoded microbeads have drastically more coding possi-
bilities. Incorporation of encoded microbeads or microspheres 
into microfluidics significantly improves the capability of per-
forming multiplexed analysis [143–145].

The integration of biomolecule-functionalized nanomate-
rials, especially antibody-functionalized nanomaterials, has 
been proven to be a practical solution to improve the detec-
tion sensitivity, as they could serve as an amplified capture in 
a sandwich immunoassay and thus enhance the capture effi-
ciency of target proteins. In particular, horseradish peroxidase 
(HRP), and capture antibody-functionalized AuNPs integrated 
into a microbead-based microfluidic array platform have been 
reported to greatly improve the detection sensitivity of the can-
cer biomarker α-fetoprotein (AFP) down to 0.2 pg/mL [150]. 
Antibody-conjugated SWCNTs have also been used as capture 
agents, along with labeled antibody-decorated silica nanoparti-
cles as detection agents, to help realize a sandwich immunoas-
say in a 3D microarray. The device succeeded in ultrasensitive 
detection of eight proteins with limits of detection down to 
78–110 fg/mL in diluted serum [151]. Another strategy has 
been proposed in μPAD where antibody-functionalized AuNPs 
as amplified capture agents and signal probes (Fig. 4B) help 
the platform simultaneously determine three acute myocardial 
infarction (AMI) biomarkers, i.e., heart-type fatty acid-binding 
protein (FABP), cardiac troponin I (cTnI) and copeptin, with 
extremely low limits of detection of 0.06, 0.3, and 0.4 pg/mL, 
respectively [146].

The combination of nanomaterials in microfluidic devices 
could also enhance the generated signals, for example, by 
employing metal nanomaterial SERS tags, nanowires, or 
nanotubes of a high aspect ratio. A SERS-assisted 3D micro-
fluidic platform was developed using gold@silver core–shell 
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nanorods as SERS tags, where 2D spatial arrays help to dif-
ferentiate target protein analytes and SERS spectroscopic 
information allows quantitative and simultaneous analysis 
of target proteins (Fig. 4C). This platform achieved simul-
taneous detection of six different antibodies with a detection 
sensitivity as low as 10 fg/mL [147]. Zinc oxide nanowires 
(ZnO NWs) have also been reported to enhance the fluo-
rescence intensity in microfluidic chips (Fig. 4D), allowing 
for the detection of proteins with high sensitivity [148]. A 
fivefold enhancement of fluorescence intensities (Fig. 4E) 
was achieved in a paper-based fluorogenic immunodevice 
integrated with ZnO NWs for the detection of three cardiac 
biomarkers, FABP, cTnI, and myoglobin [149].

Nucleic acids

Nucleic acids are another classification of biological macro-
molecules and consist deoxyribonucleic acid (DNA), which 

is an ideal carrier of genetic information, and ribonucleic 
acid (RNA), which serves as the first intermediate in the con-
version of the genetic information encoded in DNA to direct 
protein fabrication. Nucleic acids play an essential role in 
cell functioning and life continuity and are commonly used 
as biomarkers for cancer and other diseases such as neurode-
generative [152] and infectious diseases [153]. Specifically, 
evaluation of increased levels of circulating nucleic acids 
shed by apoptotic and necrotic cells into biological fluids is 
becoming an emerging diagnostic technique for low-cost and 
noninvasive cancer detection [154, 155]. Rapid and efficient 
nucleic acid detection plays a crucial role in many clinical 
applications, such as disease diagnostics, severity assess-
ment, and treatment selection.

The detection of nucleic acids essentially uncovers their 
nucleotide sequence that is unique and can be considered as 
its identity. Nucleic acid detection can be achieved either by 
hybridization or by sequencing. (i) The hybridization-based 

Fig. 4  Multiplexed detection of proteins using nanomaterial-assisted 
microfluidic devices. (A) Simultaneous analysis of anti-IgG and anti-
IgM by planar microarray integrated with antibody-functionalized 
QDs. Reprinted with permission from [140]. Copyright 2015, Else-
vier. (B) Dual-signal amplification strategy by functionalized nano-
particles in 3D μPAD. Reprinted with permission from [146]. Copy-
right 2020, Elsevier. (C) SERS nanotag-assisted 3D microfluidic chip 

allowing quantitative multiplex assay for proteins. Reprinted with 
permission from [147]. Copyright 2015, Wiley. (D) Immunoassay for 
protein detection in microfluidic channels integrated with ZnO NWs. 
Reprinted with permission from [148], Copyright 2018, Elsevier. (E) 
Detection of three cardiac biomarkers in ZnO NW-integrated μPAD 
with enhanced fluorescence signals. Reprinted with permission from 
[149]. Copyright 2019, American Chemistry Society
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method involves the hybridization of a labeled probe com-
plementary to the target sequence followed by detection 
of the label. Numerous methods have been developed cor-
responding to this fundamental, including Northern blot, 
Southern blot, quantitative PCR (qPCR), and real-time PCR, 
with the latter two the gold standard tools for nucleic acid 
analysis. (ii) Sequencing-based methods involve the determi-
nation of the order of nucleotides within the nucleic acid for 
identification, including Sanger sequencing, pyrosequenc-
ing, and next-generation sequencing (NGS) [156]. NGS, 
enabling high-throughput sequencing of nucleotide at a 
relatively low cost, is one of the most extensively employed 
technologies in fundamental research.

Challenges in nucleic acid detection mainly arise from 
the following reasons: (i) biological specimens may contain 
abundant interfering molecules such as proteins, carbohy-
drates, or other types of nucleic acids, further complicating 
the detection of target DNAs or RNAs; (ii) both intracellu-
lar and extracellular concentrations of DNAs and RNAs are 
extremely low, requiring the development of methods with 
a very low limit of detection; and (iii) there are approxi-
mately three billion nucleotides in the human genome; thus, 
the throughput and multiplexity of the detection method are 
essential to reduce testing time and cost.

To meet these challenges, three key processes are essen-
tial in a typical nucleic acid detection protocol: sample 
preparation, target amplification, and signal readout [157]. 
First, nucleic acids are isolated from the complex mixture to 
eliminate the interference of other molecules, e.g., by using 
magnetic particles [108]. Second, amplification is essential 
because the extremely low concentration of nucleic acids is 
insufficient for direct detection. Amplification could greatly 
improve the specificity and sensitivity of target detection. 
The most relevant amplification methods in diagnostics 
include rolling circle amplification (RCA), polymerase 
chain reaction (PCR), strand displacement amplification 
(SDA), loop-mediated isothermal amplification (LAMP), 
and nucleic acid sequence-based amplification (NASBA). 
Finally, the signal readout is normally realized by traditional 
laboratory-based methods, such as chemiluminescence, elec-
trochemiluminescence, and fluorescence intensity.

Nevertheless, traditional detection techniques still suffer 
from long preparation and analysis times, limited specificity 
and sensitivity, sophisticated operation procedures, and com-
plex external equipment, which limits the effectiveness of 
these methods in POCT. Nanomaterial-assisted microfluidics 
is a promising tool in nucleic acid detection for increasing 
multiplexity, improving detection sensitivity, and enhancing 
readout signals by taking advantage of the unique properties 
of different nanomaterials. Nucleic acid microarrays, droplet 
microfluidics, and paper-based microfluidic devices are the 
main microfluidic techniques employed here.

A variety of nanomaterials (such as QDs, UCNPs, and 
AuNPs) have been integrated into DNA microarrays to 
achieve multiplexed assays. Similar to its function in pro-
tein detection, QD-encoded microbeads are ideal candi-
dates for the simultaneous detection of nucleic acids [158]. 
A QD-encoded microbead-based array implementation 
was reported to successfully identify three miRNA bio-
markers (miRNA-21, miRNA-221, and miRNA-16) [159]. 
Encapsulating multicolored QDs into droplets as fluores-
cent labels allowed for multiplexed detection of miRNAs 
based on a microfluidic droplet chip [160]. The combined 
use of one single type of UCNP and three different kinds 
of QDs in a μPAD has been successfully employed for 
the simultaneous detection of three gene fragments (uidA, 
Stx1A and tetA) from serum samples [161]. AuNPs, ben-
efiting from a high degree of polyvalency and plasmonic 
properties, have been reported to display an advantageous 
capacity of multiplexity [162]. Multiplexed DNA detec-
tion has been achieved on a spotted array chip based on a 
sandwich assay process with the help of barcoded DNA-
functionalized AuNPs (Fig. 5A) [163].

Similar to their role in microfluidic protein detec-
tion, biomolecule-functionalized AuNPs have also been 
employed to improve nucleic acid detection sensitivity in 
DNA microarrays. HRP and DNA-functionalized AuNPs 
integrated into a bead-based microarray device (Fig. 5B) 
were demonstrated for sensitive genotyping of human 
papillomavirus DNA with a threefold detection sensitiv-
ity [164]. Another competitive DNA microarray platform 
was proposed by using single-strand DNA (ssDNA)-con-
jugated AuNPs to optimize hybridization competition. 
The device showed excellent performance in multiplexed 
detection of eight miRNAs, reaching a limit of detection 
not higher than 0.8 pM [166]. In addition, other nano-
materials and techniques have also shown a capacity for 
ultrasensitive multiplexed nucleic acid detection. Due 
to their fluorescence resonance energy transfer (FRET) 
sensing ability and enzyme protection capability, molyb-
denum disulfide  (MoS2) nanosheets have been applied in 
a droplet microarray for simultaneous detection of five 
viral nucleic acids (Fig. 5C) with limits of detection down 
to 1.24 and 1.26 nM for HIV-1 and HIV-2 genes, respec-
tively [165].

Apart from the formation of core–shell-structured 
SERS tags, other modifications on metal nanoparticles 
could also result in signal amplification [167]. For exam-
ple, surface roughness-controlled AuNPs were employed 
to significantly enhance SERS and contribute to the devel-
opment of an ultrasensitive and reliable SERS sensor for 
the simultaneous detection of three microRNA biomarkers 
that are related to liver cancer: miRNA-21, miRNA-122, 
and miRNA-223 [168].

139   Page 10 of 23 Microchim Acta (2022) 189: 139



1 3

Small molecules

Proteins and nucleic acids represent the two classes of mac-
romolecular biomarkers, and small molecular biomarkers 
are also of great value and deserve deep investigation. These 
small molecules may be intermediates or products derived 
from metabolic processes and can be found either locally 
in the tissue where they are produced or systematically in 
different biofluids, such as blood, urine, saliva, and cerebral 
spinal fluid. The two types of small molecules most fre-
quently used in the clinical diagnosis of common diseases 
are lipids (LDL cholesterol, HDL cholesterol, triglycerides, 
phospholipids, prostaglandins, etc.) and carbohydrates (glu-
cose, glycan, sucrose, etc.). Others may include but are not 
limited to reactive oxygen species such as  H2O2, uric acid, 
lactate, urea, and creatinine. Changes in small molecular 
biomarker concentrations can provide information on bio-
logical processes that are strongly related to diseases and 
therapeutic responses, for example, cholesterol and triacyl-
glycerol for cardiovascular disease [169], blood glucose and 
hemoglobin A1c for diabetes, neurofilaments for neurologi-
cal disorders [170], and brain natriuretic peptide (BNP) for 
heart failure [171]. The detection of small molecular bio-
markers shows great significance in the clinical diagnosis of 
disease, evaluation of therapeutic efficiency, prognosis, etc.

Since small molecular biomarkers contain a large number 
of substances with particular biological and chemical proper-
ties, their detection fundamentals and approaches vary from 
one substance to another. Here, we highlight several interesting 
nanomaterial-assisted microfluidics implementations for the 
simultaneous detection of small molecule biomarkers, com-
monly developed based on droplet microfluidics, paper-based 
chips, and slip-driven devices. More complete overviews of 
these molecular biomarker detection methods can be found 
elsewhere [172].

Multiplexity in nanomaterial-assisted microfluidics is 
frequently satisfied using nanomaterials with particular 
optical properties. For example, the optical properties of 
AuNPs on paper change with their aggregation degrees 
and hydrophobic properties influenced by the analyte 
concentrations. A novel plasmonic AuNP-based 3D 
paper microfluidic platform was pioneered for colorimet-
ric assays without utilizing enzymes or any chromogenic 
substrates (Fig. 6A). This device showed success in the 
multiplexed detection of glucose, uric acid, and free cho-
lesterol [173].

The employment of ZnO nanomaterials in μPADs could 
provide higher detection sensitivity due to their high sur-
face-to-volume ratio and high enzyme-capturing efficiency. 
Successful integration of ZnO nanowires [175] in μPADs 

Fig. 5  Detection of multiple nucleic acids based on nanomaterial-
assisted microfluidic devices. (A) A spotted array chip combined 
with DNA-functionalized AuNPs for multiplexed detection of DNA. 
Reprinted with permission from [163]. Copyright 2006, Wiley. (B) 
HRP-AuNPs-DNA conjugates in a bead-based microarray device 

assisting DNA detection. Reprinted with permission from [164]. Cop-
yright 2011, Elsevier. (C) Droplet microarray platform modified with 
 MoS2 for multiplexed detection of five viral nucleic acids. Reprinted 
with permission from [165]. Copyright 2020, American Chemical 
Society
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was reported for the highly sensitive detection of glucose. 
CuNWs, displaying electrocatalytic activity toward carbo-
hydrates, are considered excellent candidates for rapid and 
highly sensitive carbohydrate detection. CuNWs coupled 
with microfluidic chips were demonstrated to be success-
fully used as electrochemical sensors for the simultane-
ous detection of galactose 1-phosphate (Gal 1-P), galac-
tose (Gal), and uridyl diphosphate galactose (UDP-Gal) 
in precious newborn urine samples for the diagnosis of 
type I, II, and III galactosemia diseases [176]. Magnetic 
nanoparticles can promote target separation and extraction, 
thus dramatically improving the detection sensitivity. A 
SERS-microfluidic droplet platform was developed where 
AgNP-decorated  Fe3O4 magnetic nanocomposites along 
with one single cell were encapsulated into droplets for 
simultaneous measurement of single-cell secreted pyru-
vates, adenosine triphosphate (ATP), and lactate at low 
concentrations (Fig. 6B).

Nanomaterials in microfluidic devices could also 
enhance the signal readout. Silica nanoparticles were used 
in a μPAD to promote the adsorption of selected enzymes 
and prevent the washing away effect in the colorimetric 
measurements, thus yielding a dramatic improvement in 
color intensity and homogeneity. The platform succeeded 
in the simultaneous quantification of lactate, glucose, 
and glutamate in artificial urine samples [177]. A cerium 
metal–organic framework (Ce-MOF)-based origami paper 
SlipChip (OPSlipChip) was fabricated by our group [178], 
where the Ce-MOF nanoparticle significantly improved 
the uniformity and stability of the colorimetric readout. 
This nanoplatform was employed for highly selective 
detection of glucose and urine acid directly from human 
serum samples without any pretreatment, with limits of 
detection of 0.069 mM and 39.6 μM, respectively. 

Applications

Nanomaterial-assisted microfluidics enables accurate, 
highly sensitive, and multiple detection of biomarkers 
(Table 1). By incorporating a specific detection apparatus 
for signal readout, these devices are applicable for analysis 
of complex biological or chemical samples in extensive 
areas, including disease diagnosis, environmental monitor-
ing, food safety control, etc. Herein, we briefly introduce 
severa l aspects of their applications.

Disease diagnosis

Early diagnosis of diseases is of great significance, as it 
could offer prompt treatment and improve the prognosis 
of patients. Nanomaterial-assisted microfluidic technol-
ogy combines the advantages of microfluidics and the 
particular properties of nanomaterials, which allows the 
simultaneous investigation of multiple biomarkers, mini-
mization of sample quantity requirements, reduction of 
analysis time, and improvement of detection sensitivity 
and selectivity. This interdisciplinary technology shows 
tremendous potential in disease diagnosis [13].

One of the most frequent and important roles of using 
nanomaterials in microfluidic devices is the improvement 
of the detection sensitivity of rare cancer biomarkers. An 
immunoarray was proposed [122] based on the principle 
of ELISA with capture antibodies attached to the SWCNT-
decorated electrode surface to enhance the capture effi-
ciency of targets for the simultaneous detection of four 
prostate cancer biomarkers from 40 μL clinical serum 
samples, including prostate-specific antigen (PSA), pros-
tate-specific membrane antigen (PSMA), platelet factor-4 

Fig. 6  Multiplexed detection of small molecules using nanomaterial-
assisted microfluidic devices. (A) AuNP-based 3D paper microfluidic 
platform for colorimetric assays of glucose, uric acid, and free choles-
terol. Reprinted with permission from [173]. Copyright 2021, Ameri-

can Chemical Society. (B) Encapsulation of AgNP-decorated  Fe3O4 
magnetic microspheres into droplets along with single cells for mul-
tiplexed detection of cellular metabolites. Reprinted with permission 
from [174]. Copyright 2019, American Chemical Society
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Table 1  An overview of recent nanomaterial-assisted microfluidic methods for multiplexed detection of biomarkers

Microfluidic technique Nanomaterial Analytes Role of the integrated-
nanomaterial

Limit of Detection Ref

Microarray QDs anti-IgG, anti-IgM, PSA Multiplexity PSA: 1 ng/mL [140]
Microarray SWCNTs, Silica NPs IGF-1, PSA, PF-4, CD-14, 

VEGF-D, GOLM-1, 
PSMA, IGFBP-3

Sensitivity improvement 78 to 110 fg/mL [151]

Microarray Au@Ag NRs human IgG, mouse IgG Signal enhancement 10 fg/mL [147]
Microarray QDs miRNA-21, miRNA-221, 

miRNA-16
Multiplexity N.A. [159]

Microarray AuNPs eight miRNA let-7 family 
members

Sensitivity improvement 0.2 to 0.8 pM [166]

Microarray SWCNT PSA, PSMA, PF-4, IL-6 Sensitivity improvement PSA: 1 ng/mL
PSMA: 10 ng/mL
PF-4: 1 ng/mL
IL-6: 0.03 ng/mL

[122]

Microarray AuNPs PSA, IL-6 Sensitivity improvement PSA: 0.23 pg/mL
IL-6: 0.30 pg/mL

[179]

Microarray SiNW cTnT, CK-MM, CK-MB Sensitivity improvement 1 pg/mL [180]
Microarray AuNRs IL-2, IL-4, IL-6, IL-10, 

IFN-γ, TNF-α
Signal enhancement 6.46 to 20.56 pg/mL [181]

Droplet microfluidics QDs miRNA-20a, miRNA-21, 
miRNA-155, miRNA-221

Multiplexity 35 to 39 pmol/L [160]

Droplet microfluidics MoS2 nanosheets HIV-1, HIV-2 Sensitivity improvement HIV-1: 1.24 nM
HIV-2: 1.26 nM

[165]

Droplet microfluidics AgNPs Pyruvates, ATP, lactate Sensitivity improvement N.A. [174]
μPAD AuNPs FABP, cTnI, copeptin Sensitivity improvement FABP: 0.06 pg/mL cTnI: 

0.3 pg/mL copeptin: 
0.4 pg/mL

[146]

μPAD ZnO NWs FABP, cTnI, myoglobin Signal enhancement FABP: 1.36 ng/mL
cTnI: 1.00 ng/mL
myoglobin: 2.38 ng/mL

[149]

μPAD GO, QDs lysozyme, β-conglutin 
lupine

Sensitivity improvement lysozyme: 343 ng/mL
β-conglutin lupine: 2.5 ng/

mL

[182]

μPAD QDs, UCNP uidA, Stx1A, tetA Multiplexity, Signal 
enhancement

uidA: 26 fmol
Stx1A: 56 fmol
tetA: 76 fmol

[161]

μPAD AuNPs glucose, uric acid, free 
cholesterol

Multiplexity glucose: 1.25 mM
uric acid: 71 μM
cholesterol: 81 μM

[173]

μPAD Silica NPs lactate, glucose, glutamate 
in artificial urine samples

Signal enhancement lactate: 0.63 mM
glucose: 0.50 mM
glutamate: 0.25 mM

[177]

SlipChip Ce-MOF NPs gluocose, urine acide Signal enhancement glucose: 0.069 mM
irine acide: 39.6 μM

[178]

Slip-driven device PtNPs CK-MB, troponin I, myo-
globin

Sensitivity improvement N.A. [183]

Other microfluidics CuNWs Gal 1-P, Gal, UDP-Gal Sensitivity improvement Gal 1-P: 16 μM
Gal: 15 μM
UDP-Gal: 120 μM

[176]

Other microfluidics AuNPs AFP, PSA Sensitivity improvement 500 pg/mL [184]
Other microfluidics GO miR-125, miR-126, miR-

191, miR-155, miR-21
Sensitivity improvement 0.146 aM [185]

Other microfluidics GO Staphylococcus aureus, 
Salmonella enterica

Sensitivity improvement 11.0 CFU/mL [186]
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(PF-4), and interleukin-6 (IL-6), with limits of detection 
down to 1, 10, 1 and 0.03 ng/mL, respectively. A similar 
sandwich immunoarray platform was developed by the 
same group [179] by attaching capture antibodies strongly 
to the AuNP-modified electrode surface for the detection 
of PSA and IL-6 in the diluted serum of prostate cancer 
patients, with detection limits of 0.23 and 0.30 pg/mL, 
respectively. Another strategy is to functionalize the glass 
substrate of the PDMS microfluidic chip with AuNPs to 
provide LSPR and thus increase the detection sensitivity 
in such a way that the AuNPs are exactly located through 
the flow paths defined by the PDMS slab (Fig. 7A). This 
novel implementation was demonstrated to detect can-
cer-relevant biomarkers (human AFP and PSA) down to 
500 pg/mL in a 50% diluted serum sample [184]. More 
recently, an attomole-level ultrasensitive microfluidic chip 
was reported (Fig. 7B), consisting of three-layer compo-
nents, among which the glass substrate is functionalized 
with graphene oxide (GO) and poly-L-lysine (PLL) for 
more efficient miRNA trapping [185]. Five miRNAs (miR-
125, miR-126, miR-191, miR-155, and miR-21) in real 
samples from breast cancer patients and healthy humans 
were simultaneously detected with an ultralow limit of 
detection. This platform showed excellent performance in 
clinical applications, especially for early cancer screening.

Apart from cancer diagnosis, nanomaterial-assisted 
microfluidics has also been applied for the diagnosis of other 
diseases or infections, with a reduction in sample consump-
tion to a great extent. An integrated volumetric bar-chart 
chip (IV-Chip) was reported by using antibody-conjugated 
PtNPs as detection probes, where the PtNPs showed excel-
lent catalytic activity to produce  O2 (readout signal) from 
 H2O2 reduction [183]. The IV-Chip realized the multiplexed 
detection of myocardial infarction biomarkers creatine 
kinase (CK)-MB, troponin I, and myoglobin with only 1 
μL of serum from finger-prick blood (Fig. 7C). A silicon 
nanowire (SiNW) array chip with SiNWs as sensitive sen-
sors enabled the detection of three cardiac disease biomark-
ers, troponin T (cTnT), creatine kinase MM (CK-MM), and 
CK-MB, from a 2 μL fingerpick blood sample (Fig. 7D), 
with a low limit of detection of 1 pg/m [180]. Antibody-
functionalized gold nanorods (AuNRs) were integrated into 
a microarray platform for parallel and quantitative measure-
ment of multiple cytokines, e.g., bioactive proteins dynami-
cally regulating the growth, maturation, and responsiveness 
of immune cells. Due to the enhancement of LSPR by the 
AuNRs, this microarray successfully monitored the inflam-
matory response in a 1 μL serum sample within 40 min of 
two infant patients with congenital heart defects after cardio-
pulmonary bypass surgery by measuring six different types 
of cytokines: interleukin-2 (IL-2), interleukin-4 (IL-4), inter-
leukin-6 (IL-6), interleukin-10 (IL-10), interferon-gamma 
(IFN-γ), and tumor necrosis factor alpha (TNF-α) [181].

Environmental monitoring

Environmental monitoring is the observation and investiga-
tion of the environment and mainly includes soil monitoring, 
air monitoring, water monitoring, and waster monitoring. 
Because of its portable, robust, accurate, and fast analysis, 
nanomaterial-assisted microfluidic techniques make it possi-
ble to carry out in situ real-time environmental analysis that 
could reduce the cost, minimize the risk of contamination, 
and shorten the assay time by eliminating sample transporta-
tion [188, 189].

Soil pollution resulting from industrialization and urbani-
zation has become a serious worldwide environmental prob-
lem that not only severely degrades soil fertility but also 
affects the whole ecosystem, since hazardous substances in 
soil may diffuse through water, air, plants, and animals, ulti-
mately threatening human health. µPAD has been found in a 
wide variety of applications in the detection of soil contami-
nants such as phosphate, chlorate, explosive residues, heavy 
metals, etc. [61]. A special paper-based sensor printed with 
AgNPs to enhance the capture efficiency of airborne mol-
ecules was fabricated to probe trinitrotoluene (TNT) crystals 
and residues in an open environment. The TNT concentra-
tion in the soil was evaluated to be 1.4 ppm, with a detection 
limit of 1.6 ×  10−17 g/cm2 [190].

The contamination of water resources by heavy metals, 
pesticides, bacteria, pathogens, or even nuclear elements 
can have serious adverse health effects. Microfluidic devices 
have been widely used for water quality control [191–193]. 
A zigzag microfluidic chip integrated with AgNPs was 
proposed for the highly sensitive detection of As(III) ions 
[194] in local drinking water samples. A 3D origami μPAD 
combined with fluorescent QDs and molecularly imprinted 
polymers (MIPs) was developed to realize specific and sen-
sitive detection of phycocyanin. QDs could act as fluores-
cent sensors by taking advantage of the quenched fluores-
cence of QDs by phycocyanin. Quantitative measurements 
were performed on both seawater and lake water samples, 
demonstrating the potential for water monitoring [195]. A 
similar technique was further employed by the same group 
to fabricate a 3D origami ion-imprinted μPAD integrated 
with QDs for simultaneous detection of  Cu2+ and  Hg2+ ions 
from seawater and lake water (Fig. 7E), where 0.07 μg/L 
 Hg2+ and 0.32 μg/L  Cu2+ in the lake water samples and 
0.23 μg/L  Hg2+ and 0.85 μg/L  Cu2+ in the seawater samples 
were measured, satisfying the urban drinking water standard 
of these two ion concentrations [187]. These studies suggest 
new routines for water monitoring through nanomaterial-
assisted microfluidic devices. AuNPs, having size-depend-
ent colorimetric and fluorescent properties, can be highly 
sensitive sensors assisting microfluidic analytical devices 
for pollutant detection in groundwater samples [196]. This 
platform reached limits of detection down to 0.6 μg/L and 
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Fig. 7  Employment of nanomaterial-assisted microfluidics for the 
diagnosis of cancer and other diseases. (A) A microfluidic device 
integrated with AuNPs for cancer diagnosis. Reprinted with permis-
sion from [184]. Copyright 2014, American Chemical Society. (B) 
Biochip for multiple miRNA detection for breast cancer diagnosis. 
Reprinted with permission from [185]. Copyright 2021, American 
Chemical Society. (C) IV-Chip with antibody-conjugated PtNPs for 
myocardial infarction diagnosis. Reprinted with permission from 
[183]. Copyright 2016, Royal Society of Chemistry. (D) Antibody-

functionalized AuNR microarrays for parallel measurement of mul-
tiple cytokines. Reprinted with permission from  [181]. Copyright 
2015, American Chemical Society. (E) 3D origami paper-based 
microfluidic chip for duplex detection of heavy metal ions. Reprinted 
with permission from [187]. Copyright 2017, Elsevier. (F) A hybrid 
microfluidic system integrated with fluorescently labeled aptamer-
functionalized GO for multiple pathogen detection. Reprinted with 
permission from [186]. Copyright 2013, Royal Society of Chemistry
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16 μg/L for the heavy metals Hg and dithiocarbamate pes-
ticides, respectively.

Food safety control

Food safety monitoring is another application that can ben-
efit greatly from nanomaterial-assisted microfluidics. Food 
safety has now attracted increasing attention since foodborne 
diseases caused by unsafe foods containing pathogenic 
bacteria, chemical contamination, allergens, etc., may not 
only influence individual health but also pose public health 
threats and economic problems [197, 198]. Traditional tech-
niques, such as chromatography and spectroscopy, involve 
bulk instrumentations and are not suitable for rapid POCT. 
Highly integrated, miniaturized nanomaterial-integrated 
microfluidic devices have emerged as promising approaches 
to realize fast, cost-effective, efficient food safety control.

Pathogenic bacteria, mainly concerning Escherichia coli, 
Salmonella, Campylobacter, Listeria monocytogenes, and 
Clostridium perfringens, which can cause the majority of 
foodborne diseases, is the most common and severe food 
safety problem. Nanomaterial-assisted microfluidics pro-
vides a new routine to detect foodborne pathogens in a faster 
and more sensitive manner. A microfluidic chip integrated 
with magnetic beads for target separation and antibody-
conjugated QDs for fluorescent labeling was proposed for 
Salmonella typhimurium detection in chicken samples with 
a sensitivity of 103 CFU/mL [199]. Zuo et al. [186] reported 
a microfluidic system integrated with graphene oxide (GO) 
functionalized with fluorescently labeled aptamers. GO has 
a reversible fluorescence quenching property when the fluo-
rescently labeled aptamers are adsorbed or desorbed, thus 
can serve as a sensitive fluorescence sensor for multiplexed 
pathogen detection (Fig. 7F). The device simultaneously 
detected Staphylococcus aureus and Salmonella enterica, 
reaching a detection limit of 11.0 CFU/mL, displaying great 
potential for extensive application in the detection of other 
bacterial and viral pathogens in food.

Heavy metal contamination in food may cause damage to 
neurological and kidney tissues, hence is very dangerous to 
human health. Similarly, fluorescently labeled DNA-func-
tionalized GO holds the role of fluorescent sensor and was 
integrated into a μPAD to simultaneously detect different 
chemical contaminants in food, including the heavy metal 
 Hg2+,  Ag+, and aminoglycoside antibiotic residues in food. 
This low-cost and simple device offers attractive applica-
tions in food safety control [60].

Food allergies are another food safety problem that should 
be considered. It is of great importance to detect allergens 
in food to avoid food for allergic individuals. A microfluidic 
platform integrated with QDs-aptamer-functionalized GO 
as a fluorescent sensor was developed to detect the peanut 
allergen Ara h1 and reached high detection sensitivity and 

selectivity [200]. Later, the same group fabricated a μPAD 
by using the same fundamental to realize the detection of 
egg allergens white lysozyme and β-conglutin lupine within 
5 min [182].

Other food contaminants, including pesticide residues, 
biotoxins, antibiotics, harmful additives, etc., may also 
threaten the health or life of humans. An electrochemical 
microfluidic chip was integrated with GO-supported AuNPs 
for signal amplification, and the device was reported to 
determine the insecticide carbofuran with improved sensi-
tivity, achieving a limit of detection down to 67 pM [201]. 
An integrated microfluidic chip based on a smectite-poly-
acrylamide nanocomposite was developed for the quantita-
tive detection of aflatoxin in corn samples, and a very low 
limit of detection, at the sub100 ppb level, was achieved 
[202].

Summary and outlook

Capable of precisely controlling small volumes of liquids, 
microfluidics has emerged as an ideal platform for biochemi-
cal analysis, exhibiting advantages such as parallelization, 
high throughput, minimal sample consumption, low cost, 
and short reaction time. In addition, modern nanofabrica-
tion technology ensured the integration of complicated func-
tions into microfluidic devices, enlarging the employment of 
microfluidic techniques toward the development of highly 
integrated POCT devices. Nanomaterials possess unique 
characteristics, including high surface-to-volume ratio, 
easy functionalization, intrinsic catalytic activity, enhanced 
surface plasmon resonance, and tuned optical properties, 
making them outstanding candidates for biological analy-
sis. Nanomaterial-assisted microfluidics benefitting from the 
advantages of both components, enables multiplexed detec-
tion of biomarkers using a minimum amount of sample with 
increased sensitivity, high specificity, low detection limit, 
intensive signals, short detection time, etc. Compared with 
other traditional or commercial techniques such as lateral 
flow assays (LFA) and mass spectrometry (MS), these tech-
niques show great capability to overcome the challenges in 
biomarker analysis in complex biological samples, including 
small quantities of available samples, low concentration of 
target molecules and long reaction time for detecting mul-
tiple analytes. Extensive applications have been reported in 
disease diagnostics by the assessment of biomarkers for can-
cer or other diseases, in environmental monitoring through 
the detection of contaminants, heavy metals or organic pol-
lutants in water and soil, and in food safety control via the 
evaluation of harmful substances such as pathogenic bacte-
ria, heavy metals, allergens, and toxins.

Nevertheless, there is still a long way for these innovative 
and powerful devices to be commercialized and universally 
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applied in future POCT and clinical diagnostics. First, since 
most of the outstanding properties of nanomaterials highly 
depend on their sizes and shapes, the reproducible synthe-
sis of abundant nanoparticles with consistent properties 
satisfying clinical requirements remains a major challenge. 
Then, the currently reported nanomaterial-assisted micro-
fluidic techniques are laboratory concepts for fundamental 
research, far from the large-scale commercialization for clin-
ical applications. Therefore, global standardization of the 
microfluidic devices is indispensable for a more extensive 
implementation. Finally, it is challenging to fabricate minia-
turized, automatic, and easy-to-handle nanomaterial-assisted 
microfluidic devices with convenient operation, fast reaction, 
and straightforward signal readout, suitable for clinical diag-
nostics and quotidian use.

Going forward, the field needs to continue to evolve along 
with nanomaterial engineering in terms of reproducible syn-
thesis, functionalization, new nanomaterial design, etc., and 
microfabrication technology in terms of nanomaterial inte-
gration, standardized fabrication, novel architecture design, 
etc., to realize compact, integrated, miniaturized, and east-
to-use devices for portable analysis. Nanomaterial-assisted 
microfluidics has been incredibly successful in recent years, 
and it can be reasonably expected that, in the near future, 
numerous nanomaterial-assisted microfluidic devices will 
be found in laboratories, hospitals, food factories, nursing 
homes, and even at home.
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