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Abstract
A novel time-resolved fluorescence (TRF) pobe is constructed to detect human serum albumin (HSA) by exploiting ZnGeO:Mn 
persistent luminescence nanorods (ZnGeO:Mn PLNRs) and polydopamine nanoparticles (PDA NPs). HSA-induced dynamic 
quenching leads to the fluorescence decrease of ZnGeO:Mn PLNRs, providing the basis for quantitative analysis of HSA. The 
excellent photo-thermal conversion performance of PDA NPs is helpful to the collision process between ZnGeO:Mn PLNRs 
and HSA, inducing significant improvement of sensitivity. HSA is quantified by measuring time-resolved fluorescence at 
540 nm under excitation of 250-nm light. Under optimal conditions, HSA in the linear range 0.1–100 ng  mL−1 are detected 
by this PDA-mediated ZnGeO:Mn probe with high sensitivity and selectivity, and the detection limit is 36 pg  mL−1 (3σ/s). 
The RSD for the quantification of HSA (5 ng  mL−1, n = 11) is 5.2%. The practicability of this TRF probe is confirmed by 
accurate monitoring HSA contents in urine samples, giving rise to satisfactory spiking recoveries of 96.2–106.0%.
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Introduction

Human serum albumin (HSA) is one of the most important 
proteins in the human body, attributing to the momentous 
role in adjusting osmotic pressure of plasma, disposing of 

exogenous ligands and transporting substances of circula-
tory system [1–3]. A normal amount of HSA in urine is less 
than 30 mg  L−1 and excess HSA level is closely related to a 
series of diseases, such as micro-/macro-albuminuria, car-
diovascular disease, diabetes mellitus, and progressive glo-
merular failure of kidneys [4–6]. It is extremely necessary to 
detect albumin in urine, due to its important role in diagnosis 
and prevention medicine. The determination of HSA have 
attracted much attention of scientists, and varieties of meth-
ods have been adopted, including capillary electrophoresis, 
surface-enhanced Raman scattering spectroscopy (SERS), 
absorption spectrophotometry, and fluorescence techniques 
[7–10]. The capillary electrophoresis exhibits poor prepara-
tion ability, SERS usually requires expensive instruments, 
and absorption spectrophotometry has low sensitivity. 
Among them, fluorescence analysis techniques have been 
gaining increasing interest and widely applying to sensing 
and imaging. However, the components of urine samples are 
complex, which contains numerous proteins, nucleic acids, 
small molecules, and inorganic salt. The auto-fluorescence 
and scattering light of these components give rise to high 
background noise, causing a limited sensitivity and accuracy 
[11, 12].
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In this regard, time-resolved fluorescence (TRF) analysis 
can effectively eliminate interference of autofluorescence 
and scattering light by using the long-lived luminescent 
materials and setting up a delay time of fluorescence collec-
tion. The lifetime of long-lived luminescent materials are 
longer than short-lived autofluorescence and the signals of 
long-lived materials can be collected after complete decay 
of background signals [13, 14]. The detection sensitivity of 
TRF analysis is thus significantly improved compared to 
traditional fluorescence analysis, making it a fairly suitable 
technique for the detection of substances in complex samples 
[15, 16]. Therefore, TRF analysis has been widely applied in 
immunoassays, biosensing and bioimaging [17, 18].

Persistent luminescence nanoparticles (PLNPs) are long-
lived luminescent materials with excellent long afterglow 
luminescence after ceasing excitation [19]. PLNPs can 
store energy from excitation sources and slow release it in 
the forms of light radiation. Compared to other long-lived 
luminescent materials, PLNPs exhibit many outstanding 
characteristics: (i) readily available and reusable; (ii) good 
biocompatibility; and (iii) low toxicity [20, 21]. As a branch 
of PLNPs, persistent luminescence nanorods (PLNRs) have 
larger sizes and more binding sites for acceptor. The growth 
direction of doping elements and host structures are designed 
to get nanorods with certain length, width, and the ratios of 
length to width, leading to adjustable characteristic bands 
of nanorods. Therefore, larger Stokes shifts in nanorods are 
obtained due to the effects of different dimensional spatial 
quantum confinement [22, 23].

With the ability to efficiently convert photon energy into 
heat energy, polydopamine nanoparticles (PDA NPs) have 
been widely utilized in photothermal therapy as a worthy 
photothermal reagent [24]. In the present study, a novel 
PDA-mediated ZnGeO:Mn probe is developed through mix-
ing ZnGeO:Mn PLNRs and PDA NPs for HSA detection. 
This proposed PDA-mediated ZnGeO:Mn probe exhibits 
good analysis performance for urinary HSA, which provides 
a novel method for kidney disease diagnosis. To the best of 
our knowledge, it is the first time that a TRF probe platform 
is designed and applied to the HSA detection.

Experimental

Materials and instruments

All reagents and chemicals were analytical grade and 
used without further purification. Zn(NO3)2·6H2O,  GeO2, 
Mn(NO3)2·6H2O,  NH3·H2O (28 wt%), and dopamine hydro-
chloride were obtained from Aladdin Bio-Chem Technol-
ogy Co., Ltd. (Shanghai, China, https:// www. aladd in-e. 
com).  MgCl2,  Na2SO4,  (NH4)2SO4,  CH3COOK, NaOH, 
 HNO3,  H3PO4, acetic acid, boric acid, uric acid, creatinine, 

and urea were purchased from Sinopharm Chemical Rea-
gent Co., Ltd. (Shanghai, China, http:// www. reage nt. com. 
cn). Human serum albumin, casein, transferrin, myoglobin, 
immunoglobulins (IgG), lactoferrin, lysozyme, and trypsin 
were obtained from Sigma-Aldrich (Milwaukee, WI, USA, 
https:// www. sigma aldri ch. cn). Ultrapure water was used 
through the whole experiment.

The TRF measurements and UV–vis absorption spectra 
were measured on a Spectra Max M5e (Molecular Devices 
Co. Ltd, USA). The emission delay curves were conducted 
on a FLS980 steady/transient fluorescence spectrometer 
(Edinburgh, UK). The morphology of ZnGeO:Mn PLNRs 
was characterized via a Tecnai G2F20 STWIN (200 kV) 
transmission electron microscope (FEI, USA). The X-ray 
photoelectron spectrometer (XPS) characterization of 
ZnGeO:Mn PLNRs was carried out on a Thermo Scien-
tific™ K-Alpha™+ spectrometer equipped with a monochro-
matic Al Kα X-ray source (1486.6 eV) operating at 100 W.

TRF detection of HSA with PDA‑mediated ZnGeO:Mn 
probe

ZnGeO:Mn PLNRs and PDA NPs were prepared by the 
reported methods with minor modification [25, 26] and the 
preparation process were described in detail in the Support-
ing Information. PDA NPs and ZnGeO:Mn PLNRs with 3.5 
times the mass ratio were added to a BR buffer of pH 5.0 
to prepare PDA-mediated ZnGeO:Mn probe. Ninety micro-
liters of PDA-mediated ZnGeO:Mn solution and 10 μL of 
HSA solution (1–1000 ng  mL−1, prepared in a BR buffer of 
pH 5.0) were mixed in a black 96-well plate with 10-min 
vibration. Sample was tested in triplicate. Under excitation 
of 250 nm, the TRF intensity at 540 nm was recorded with 
delay time of 100 μs and integration time of 1000 μs. The 
fluorescence quenching efficiency (q) was calculated from 
the formula of q = 1 − F/F0, in which F and F0 refer to TRF 
intensity of PDA-mediated ZnGeO:Mn after and before the 
addition of HSA, respectively.

Real sample analysis

Urine samples were provided by the Wuxi People’s Hospital, 
which were acquired from healthy volunteers and diabetic 
patients (the study has been approved by the ethics com-
mittee and the number of approval protocol is YL202115). 
Samples were spiked before filtrating through a 0.45-μm 
filter membrane and 100-fold diluting with BR (pH 5.0). The 
spiking concentrations are determined by the range of albu-
min content in the actual samples from healthy volunteers 
and diabetic patients [27, 28]. The quantitative analysis of 
urine samples were performed under the same conditions as 
HSA standard solutions, and the results were compared with 
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those obtained by commercialized turbidimetric inhibition 
immunoassay kits.

Results and discussion

Mechanism of HSA detection

The successful preparation of ZnGeO:Mn PLNRs is proved 
through high-resolution transmission electron microscopy 
(HRTEM) and XPS (Fig. S1 and Fig. S2). The obtained 
ZnGeO:Mn PLNRs show a relatively narrow absorption at 
240 nm in the deep ultraviolet region (Fig. 1A, line a). The 
excitation and emission maxima of ZnGeO:Mn PLNRs in 
the fluorescence spectra are 250 and 540 nm, respectively 
(Fig. 1A, line b and c). Figure 1B illustrates the fluores-
cence decay profiles of ZnGeO:Mn PLNRs, and its life-
time is deduced to be 13.52 ms through a two-exponential 
function. The TRF intensity of ZnGeO:Mn PLNRs under 
0–2.0 mol  L−1 NaCl is monitored, and virtually no fluctua-
tion is observed even at a high ionic strength (Fig. S3A). 
The fluorescence stability of ZnGeO:Mn PLNRs is also 

investigated by continuously detecting the TRF intensity for 
1 h, and results indicate that the fluorescence is extremely 
stable (Fig. S3B).

Initial experiments indicate that the fluorescence of 
ZnGeO:Mn PLNRs can be quenched by the addition of 
PDA NPs, and quenched more after further addition of HSA 
(Fig. 1A, line d and e). PDA NPs shows a main absorp-
tion peak at 250 nm (Fig. 1A, line f), which is overlap well 
with the excitation spectra of ZnGeO:Mn PLNRs. Hence, 
PDA NPs shield the excitation light of ZnGeO:Mn PLNRs 
and the fluorescence quenching of ZnGeO:Mn PLNRs is 
caused by inner filter effect. We assume that the addition of 
HSA enhances the inner filter effect through increasing the 
absorption of PDA NPs to the excitation light at 250 nm. 
However, the absorption of PDA NPs at 250 nm has no sig-
nificate changes after mixing with different concentrations of 
HSA (Fig. 2A), indicating that HSA have no influence in the 
inner filter effect between ZnGeO:Mn PLNRs and PDA NPs.

We further suppose that the fluorescence quenching might 
be attributed to the interaction between HSA and ZnGeO:Mn 
PLNRs. The TRF intensity of ZnGeO:Mn PLNRs under 
HSA is presented as pentagon points and corresponding 
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Fig. 1  A UV–vis absorption spectra of ZnGeO:Mn PLNRs (a) and 
PDA NPs (f), fluorescence excitation spectra (λem = 540  nm, b), 
and fluorescence emission spectra (λex = 250  nm, c) of ZnGeO:Mn 
PLNRs, fluorescence emission spectra of PDA-mediated ZnGeO:Mn 

probe in absence (d) and presence (e) of 5 ng  mL−1 HSA. B Lumines-
cence decay curves of ZnGeO:Mn PLNRs in absence and presence of 
50 ng  mL−1 HSA

Fig. 2  A The absorption at 
250 nm of PDA NPs and the 
fluorescence quenching effi-
ciency of ZnGeO:Mn PLNRs 
under the addition of HSA. 
B Fluorescence intensity of 
ZnGeO:Mn PLNRs at 540 nm 
in absence and presence of 
5 ng  mL−1 HSA under different 
temperatures
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lines in Fig. 2A. It can be seen that the fluorescence quench-
ing efficiency increases with HSA concentration. Because 
the maximum absorption peak of HSA is at 280 nm, the 
internal filtration effect between HSA and ZnGeO:Mn 
PLNRs can be excluded. A Stern–Volmer plot is explored 
to study the quenching mechanism. As shown in Fig. S4, 
the plot of F0/F versus HSA concentration fits the conven-
tional Stern–Volmer equation (F0/F = 0.0951CHSA + 0.998, 
R = 0.996) over the concentration range of 0.1–2 μg  mL−1. 
This result indicates that the dynamic quenching is involved 
in ZnGeO:Mn PLNRs and HSA.

The quenching mechanism can be further verified by 
measuring the fluorescence lifetime of ZnGeO:Mn PLNRs 
before and after adding HSA of 50 ng  mL−1, respectively 
(Fig. 1B). The lifetime of ZnGeO:Mn PLNRs shorten from 
13.52 ms to 11.16 ms in the presence of HSA, proving the 
dynamic quenching between ZnGeO:Mn PLNRs and HSA 
[29].

The effect of temperature on TRF quenching of 
ZnGeO:Mn PLNRs is carried out to further confirm the 
mechanism of dynamic quenching. As illustrated in Fig. 2B, 
stable fluorescence signals of ZnGeO:Mn PLNRs are 
obtained with rising temperature and the emission gradu-
ally decreases range from 5 to 55 °C upon the addition of 
5 ng  mL−1 HSA. Therefore, the quenching mechanism of 
the probe is a typical collisional quenching process between 
ZnGeO:Mn PLNRs and HSA.

The PDA-mediated ZnGeO:Mn probe is developed by 
simply adding PDA NPs to ZnGeO:Mn PLNRs aqueous 
solution and vibrating for 10 min (Scheme 1). Anisotropic 
ZnGeO:Mn PLNRs are used as a TRF agent and possess 

long luminescence time, which fluorescence intensity 
decrease upon the addition of HSA in a certain concentra-
tion range due to dynamic quenching mechanism. Accord-
ing to the plot of fluorescence quenching efficiency (q) and 
the logarithm of HSA concentration (0.03–30 μg  mL−1) 
without PDA NPs (Fig.  2A), a regression equation of 
q = 0.0324 logCHSA + 0.046 (R = 0.997) is obtained with a 
detection limit of 10 ng  mL−1. After the disappearance of 
excitation light, ZnGeO:Mn PLNRs can continue to glow 
and the autofluorescence of coexisted contents decays rap-
idly. Due to the excellent photo-thermal effect of PDA NPs, 
the solution temperature increases under the light, leading 
to the increase of collision and then fluorescence quench-
ing between ZnGeO:Mn PLNRs and HSA. Therefore, 
ZnGeO:Mn PLNRs show better detection performance in 
the presence of PDA NPs.

HSA determination

According to the optimized conditions (Fig. S5), a PDA: 
ZnGeO:Mn concentration ratio of 3.5:1, pH of 5.0, and an 
incubation time of 10 min are used to detect HSA in sub-
sequent experiments. To explore the analysis performance 
of PDA-mediated ZnGeO:Mn probe to HSA, the TRF 
intensity (Ex = 250 nm, Em = 540 nm) of PDA-mediated 
ZnGeO:Mn probe are recorded after mixing with HSA 
solutions of different concentrations. Experimental results 
show that TRF intensity decrease upon the introduction 
of HSA. As shown in Fig. 3A, the fluorescence quench-
ing efficiency (q) is linearly proportional to the logarithm 
of HSA concentration in the range of 0.1–100 ng  mL−1, 

Scheme 1  Schematic illustra-
tion of detection mechanism 
for HSA by the PDA-mediated 
ZnGeO:Mn probe

ZnGeO:Mn PLNRs PDA NPs Urine

HSA

Uv

Uv

Heat

Interfering molecules Interfering ions
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with a regression equation of q = 0.133 logCHSA + 0.221 
(R = 0.994). The detection limit to HSA is deduced from 
the ratio of triple standard deviation of blank signal 
to the slope of calibration plot (3σ/s, n = 11). With the 
help of PDA NPs, the detection limit of PDA-mediated 
ZnGeO:Mn probe reduce from 10 ng  mL−1 to 36 pg  mL−1, 
and the sensitivity increase two orders of magnitude.

Table 1 compares the performance of PDA-mediated 
ZnGeO:Mn probe with other fluorescent HSA sensors in 
terms of linear range and limit of detection. It can be seen 
that PDA-mediated ZnGeO:Mn probe developed in this 
study exhibit the highest sensitivity.

To investigate the selectivity of PDA-mediated 
ZnGeO:Mn probe toward HSA, potential interfering 
substances including metal cations  (Zn2+,  Mn2+,  Mg2+, 
 Na+,  NH4

+,  K+), anions  (NO3
−,  Cl−,  SO4

2−,  CH3COO−), 
proteins (casein, transferrin, myoglobin, IgG, lactofer-
rin, lysozyme, trypsin), urea, uric acid, and creatinine are 
added to PDA-mediated ZnGeO:Mn solution. The concen-
trations of ions, proteins, urea, uric acid, and creatinine 
are 20 μg  mL−1, 2 ng  mL−1, 40 μg  mL−1, 4 μg  mL−1, and 
4 μg  mL−1 respectively. As verified in Fig. 3B, there is no 
significant fluorescence quenching in presence of interfer-
ence, demonstrating the selectivity of this probe on HSA.

Detection of urinary albumin

Nephropathy as a complication of diabetes, about 4.9–10% 
of patients with diabetes have proteinuria [35]. It is 
extremely necessary to detect albumin in urine, due to its 
important role in early diagnosis of diabetic nephropathy. 
For the practical application of PDA-mediated ZnGeO:Mn 
probe in HSA determination, we estimate the albumin levels 
in NIM-RM3651 solution (1 mL of solution contains 5 mg 
of powder) and human urine samples from TRF intensity 
values using the calibration plot. The HSA contents in the 
urine samples are also detected by the turbidimetric inhibi-
tion immunoassay.

Table 2 illustrates the determination results from healthy 
volunteers and diabetic. The spiked recoveries are in the 
range of 96.2–106.0%, indicating the potential feasibility of 
this HSA probe. The results obtained by the present PDA-
mediated ZnGeO:Mn probe are in reasonable agreement 
with those obtained by the turbidimetric inhibition immu-
noassay, demonstrating the accuracy of the present probe. 
The results indicated that one of the volunteers with diabetes 
has higher HSA levels than normal level, which is consistent 
with clinical results.
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Fig. 3  A Linear plot of 1 − F/F0 vs Log CHSA in the concentration 
ranges of 0.1–100  ng   mL−1. B Fluorescence response of the pro-
posed probe toward various ions and biomolecules (the concentra-

tions of HSA, ions, other proteins, urea, uric acid, and creatinine are 
5  ng   mL−1, 20  μg   mL−1, 2  ng   mL−1, 40  μg   mL−1, 4  μg   mL−1, and 
4 μg  mL−1 respectively)

Table 1  Comparisons on the performances of this probe with various fluorescent sensors for HSA detection

Fluorescence sensor Linear range (μg.mL−1) LOD (μg.mL−1) Refs

Urea derivative containing anthracene and naphthalene 2.0 × 10–8.0 ×  102 5.0 [30]
Berberine analogues with hydrophobic substitutions 4.0–6.6 × 10 1.1 [31]
Graphene oxide-mediated fluorescence quenching aptasensor 1.0 ×  10–1–6.0 ×  102 5.0 ×  10–2 [32]
Ionic liquid decorated AIE luminogen 2.0 ×  10–2–1.0 × 10 7.0 ×  10–3 [33]
The push–pull dyes based sodium sulfonate probe 1.0–3.6 ×  102 3.0 ×  10–1 [34]
PDA-mediated ZnGeO:Mn probe 1.0 ×  10–4–1.0 ×  10–1 3.6 ×  10–5 This study
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Conclusions

We have established a TRF probe for HSA analysis based 
on PDA-mediated ZnGeO:Mn via simply mixing of label-
free ZnGeO:Mn PLNRs and PDA NPs. The specific col-
lision between HSA and ZnGeO:Mn PLNRs induce the 
fluorescence quenching of ZnGeO:Mn PLNRs. The large 
surface area and outstanding long afterglow luminescence 
of ZnGeO:Mn PLNRs provide the basis for high sensi-
tive TRF detection of HSA. The incorporation of PDA 
NPs can increase the ambient temperature of solution and 
promote the dynamic quenching of ZnGeO:Mn PLNRs, 
further improving the detection sensitivity for HSA. Com-
pared to the reported method, the developed PDA-mediated 
ZnGeO:Mn probe is much simpler and exhibit higher sen-
sitivity in HSA quantifying, allowing successful determina-
tion of albumin in human urine. In other words, the PDA-
mediated ZnGeO:Mn probe developed in this study can be 
employed for early screening of diabetic nephropathy. Tak-
ing advantage of the easy access and adjustment to PLNRs, 
we believe that the detection of other biomolecules can also 
be achieved by modifying functional groups and ligands on 
ZnGeO:Mn PLNRs. However, owing to the strong scattering 
and absorption coefficient of urine to the UV excitation light, 
the excitation efficiency and signal-to-noise ratio is reduced. 
Visible light excitable PLNPs and near-infrared excitable 
PLNPs are new options for future applications. In addition, 
a POCT (point-of-care testing) system based on this simple 
and sensitive TRF probe should be developed to facilitate 
the practical application.
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