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Abstract
A novel strategy for microRNAs (miRNAs) detection has been developed utilizing duplex-specific nuclease-assisted signal
amplification (DSNSA) and guanine-rich DNA-enhanced fluorescence of DNA-templated silver nanoclusters (AgNCs). The
combination between target miRNA, DSNSA, and AgNCs is achieved by the unique design of DNA sequences. Target miRNA
opens the hairpin structure of the Hairpin DNA probe (HP) by hybridizing with the HP and initiates the duplex-specific nuclease-
assisted signal amplification (DSNSA) reaction. The DSNSA reaction generates the release of the guanine-rich DNA sequence,
which can turn on the fluorescence of the dark AgNCs by hybridizing with the DNA template of the dark AgNCs. The
fluorescence intensity of AgNCs corresponds to the dosage of the target miRNA. This is measured at 630 nm by exciting at
560 nm. The constructed method exhibits a low detection limit (~8.3 fmol), a great dynamic range of more than three orders of
magnitude, and excellent selectivity. Moreover, it has a good performance for miR-21 detection in complex biological samples.
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Fluorescence enhancement

Introduction

Silver nanoclusters (AgNCs), having sufficiently small size
(2~8 Ag atoms), show some molecular-like properties, espe-
cially the absorption and emission of light [1]. AgNCs as the

emerging fluorophores in recent years have attracted tremen-
dous attention in chemical/biomolecular detection and cellular
imaging [2–5]. Compared with other fluorescence materials,
AgNCs exhibit smaller size, lower toxicity than quantum dots,
and better brightness and photostability than organic dyes.
Furthermore, the fluorescence wavelength of the AgNCs de-
pending on the DNA template as a scaffold (DNA-templated
AgNCs) is adjustable according to the change of DNA tem-
plate sequence and its microenvironment. The sensitive re-
sponse of fluorescence of DNA-templated AgNCs is superior
to that of other fluorescence materials, such as quantum dots
and organic dyes. This characteristic of DNA-templated
AgNCs is beneficial for their application in complex and
changeable biological environments [6, 7]. The variations in
the microenvironment of the DNA template might give rise
to the “turn on” or “turn off” of the fluorescence. Werner
et al. have reported that a 500-fold enhancement in red
fluorescence of DNA-templated AgNCs is observed in
proximity to guanine-rich DNA sequences [8]. It is worth
mentioning that using DNA as the template is beneficial to
combine with nucleic acid amplification technology to im-
prove the sensitivity of the detection method. And the lower
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toxicity can increase the compatibility of DNA-templated
AgNCs with biological samples. DNA-templated AgNCs
have been widely applied in biochemical analysis and de-
tection [9–13].

MicroRNAs (MiRNAs) are single-stranded and non-
coding RNA of ~22 nucleotides in length. They can reg-
ulate gene expression and contribute to many biological
processes. Furthermore, the development of many dis-
eases is also closely associated with the aberrant expres-
sion of miRNAs, such as cardiovascular diseases, fibrotic
diseases, diabetes, and even cancer [14–18]. Thus, moni-
toring miRNAs expression levels is crucial for studying
miRNA effects and early clinical diagnosis. However,
miRNAs exhibit low abundance in vivo and high similar-
ity of homologous sequences. And the series of miRNAs
are short. It is not conducive to amplify the signal by
polymerase chain reaction (PCR). These unique character-
istics make the sensitive detection of miRNAs full of
challenges [19]. So, using amplification means is of great
significance to improve the sensitivity of miRNA
detection.

Conventional approaches for miRNA detection are
Northern blotting [20–22] and DNA microarray [23, 24].
They contribute to early miRNA analysis; however, insuffi-
cient sensitivity and large sample consumption hamper their
application in practice. To overcome the shortcomings, vari-
ous amplification strategies for miRNA analysis are proposed
with improved sensitivity and selectivity, such as real-time
polymerase chain reaction (RT-PCR) [25], ligase chain reac-
tion (LCR) [26, 27], rolling circle amplification (RCA)
[28–30], exponential amplification reaction (EXPAR) [31],
loop-mediated isothermal amplification (LAMP) [32, 33],
and duplex-specific nuclease (DSN) signal amplification
(DSNSA) [34–36]. Among these amplification approaches,
DSN shows a unique advantage owing to its characteristic in
the degradation of DNA in DNA-RNA heteroduplex, remain-
ing the RNA intact. The released RNA can be recycled to
realize the signal amplification. Furthermore, no polymerase
is involved in the DSNSA reaction, which effectively avoided
the appearance of non-specific amplification signals caused
by polymerases.

MiR-21 plays a crucial role in many biological functions
and diseases, such as cardiovascular diseases, inflammation,
and cancer. It can regulate various immunological and devel-
opment processes. MiR-21 has become an attractive target for
genetic diagnosis and therapy in many disease conditions
[37]. Herein, by integrating the DSNSA as amplification
means and guanine-rich DNA-enhanced fluorescence of
DNA-templated AgNCs for signal readout, a turn-on fluores-
cence strategy for miRNA-21(miR-21) detection is devel-
oped. The proposed method shows high sensitivity
(D.L.~8.3 fmol), excellent selectivity, and good performance
for miR-21 detection in complex biological samples.

Experimental section

Materials and apparatus

Silver nitrate (AgNO3) is purchased from Tianjin Fengchuan
Chemical Reagent Co., Ltd. (Tianjin, China, http://www.
tjhxsj.com/). Sodium borohydride (NaBH4) is obtained from
Sigma Aldrich (Shanghai) Trading Co., Ltd. (Shanghai,
China, https://www.aladdin-e.com/). Duplex-specific nucle-
ase (DSN) is obtained from Evrogen Joint Stock Company
(Moscow, Russia, http://evrogen.com/). 1 mol/L Tris (pH =
8) and 1 mol/L MgCl2 are obtained from ThermoFisher
Scientific (China) Co., Ltd. (Shanghai, China, https://www.
thermofisher.com/cn/zh/home.html). RNAiso for small RNA
kit, Recombinant RNase Inhibitor, the RNase-free water, and
DNA and RNA sequences are obtained from TaKaRa
Biotechnology Co. Ltd. (Dalian, China, http://www.takara.
com.cn/).

The DSNSA reaction is performed on a 2720 Thermal
Cycler (Applied Biosystems, Thermo Fisher Scientific
Inc. USA, http://www.thermofisher.com/cn/zh/home.
html). The fluorescence of AgNCs is recorded by a
Fluorolog 3-211 fluorescence spectrophotometer (Horiba
Jobin Yvon, France, https://www.horiba.com/cn/). The
UV-vis absorption spectra are measured on a TU-1901
double-beam UV-visible spectrophotometer (Beijing
Purkinje General Instrument Co., Ltd., China, http://
www.pgeneral.com/). The TEM image of AgNCs is
recorded by FEI Tecnai G2 F20 field emission
transmission electron microscope (ThermoFisher
Scientific Inc. USA, https://www.thermofisher.cn/cn/zh/
home.html).

The sequences of DNA and RNA are as follows (5′-3′):
SsDNA probe: CCCTTAATCCCCCAGTCTGA

TAAGCTA
Hairpin structure DNA probe (HP):
TAGCTTATCAGACTGGGCTGGGGTGGGTGGGT

GGGGTCAACATCAGTCTGATAAGCTA
M i c r o R N A - 2 1 ( M i R - 2 1 ) :

UAGCUUAUCAGACUGAUGUUGA
Let-7a: UGAGGUAGUAGGUUGUAUAGUU
M i c r o R N A - 1 4 3 ( M i R - 1 4 3 ) :

UGAGAUGAAGCACUGUAGCUC
M i c r o R N A - 2 2 1 ( M i R - 2 2 1 ) :

AGCUACAUUGUCUGCUGGGUUUC
M i c r o RNA - 3 9 6 (M i R - 3 9 6 ) : UUCCACAG

CUUUCUUGAACUG
M i c r o R N A - 1 7 2 ( M i R - 1 7 2 ) :

AGAAUCUUGAUGAUGCUGCAU
SsDNA probe-a: CCCTTAATCCCCCAGCCTAC

TACCTCA
HP-a:TGAGGTAGTAGGCTGGGCTGGGGTGG

GTGGGTGGGGAACTATACAACCTACTACCTCA
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Let-7b: UGAGGUAGUAGGUUGUGUGGUU
Let-7c: UGAGGUAGUAGGUUGUAUGGUU
The experiment buffer solutions are as follows:
10× DSN reaction buffer: 500 mM Tris-HCl, pH 8.0;

50 mM MgCl2
10× PB buffer: 200 mM PB, 0.5 M NaCl, pH 6.6

Preparation of the dark silver nanoclusters

According to the literature method, the dark silver
nanoclusters (AgNCs) are prepared via the reduction of
AgNO3 by NaBH4 [38]. The detailed preparation of AgNCs
is shown in the ESI. The concentration of dark AgNCs is
calculated by the concentration of ssDNA probe. 10 μmol/L
dark AgNCs are prepared.

Duplex-specific nuclease signal amplification and
fluorescence detection

Firstly, 75 pmol HP is heated to 95 °C for 5 min, naturally
cooled to room temperature, and then kept for 1 h to form
hairpin structures. 75 pmol HP, 4 U Recombinant RNase
Inhibitor, a certain amount of miR-21, and 0.2 U DSN are
mixed with 1× DSN reaction buffer in the total volume of
10 μL. The mixture is kept for 120 min at 52 °C to perform
the DSNSA reaction. Subsequently, 4 μL 10 μmol/L dark
AgNCs and 5 μL 10× PB are added into the above reaction
solution. After that, 31 μL double distilled water is added to
meet the final volume of the mixture of 50 μL. The mixture is
incubated for 60 min at 25 °C so that the products of DSNSA
can hybridize with the ssDNA probe of dark AgNCs
completely. After two-fold dilution of the resulting solution,
the fluorescence spectra are recorded from 580 to 720 nmwith
an excitation wavelength of 560 nm. The fluorescence inten-
sities are determined at 630 nm by exciting at 560 nm. The slit
width is 6 nm. All the fluorescence intensities are analyzed
three times, and the results are the average values.

Detection of miR-21 in the Hela cell extract

Small RNA samples are extracted from Hela cells by RNAiso
for a small RNA kit following the manufacturer’s instructions.
The content of Hela cell number is 4.7 × 106/mL in the extract
solution. The concentration of small RNA extracted fromHela
cells is determined by Nanodrop 2000 to be 1.13 μg/μL.
1.13 μg small RNA is added to determine the concentration
of miR-21 according to the procedure described in the
“Experimental” section. Additionally, 10 and 15 pmol syn-
thetic miR-21 are added to the 1.13 μg small RNA samples
to measure the recovery rates of standard addition under the
same conditions.

Results and discussion

The strategy of miRNA assay

The principle of AgNCs-based fluorescence assay for miR-21
is illustrated in Fig.1. A special ssDNA probe has been de-
signed, which contains two sequences. One is the DNA tem-
plate sequence of synthetic dark AgNCs at its 5′ terminal,
which is named “a,” indicated with gray. Another is called
“b” and marked with black at its 3′ terminal, which can hy-
bridize with the “b’” sequence of HP. HP consists of three
parts. One is the recognition sequence of miR-21 at its 3′
terminal (c, blue); b’ sequence in black hybridizes with part
of “c” sequence to form the stem of HP; the third part is a
guanine-rich sequence (g, green) in the ring of HP, which can
turn on the fluorescence of the dark AgNCs. Firstly, the
ssDNA probe is used to synthesize the dark AgNCs, whose
fluorescence is off (Fig.1A). In the presence of miR-21, the
hairpin of HP is opened by hybridization between miR-21 and
the “c” sequence of HP, forming a DNA-RNA double strand.
DSN digests DNA in DNA-RNA heteroduplex selectively,
remaining RNA intact. So, “c” sequence in the DNA-RNA
heteroduplex is degraded by DSN, resulting in the release of
miR-21 and the “b’-g” sequence. The released miR-21
recombines with a new HP to initiate a new reaction of DSN
digestion. In this manner, duplex-specific nuclease-assisted
signal amplification (DSNSA) is realized, and many “b’-g”
sequences are released. The released “b’-g” hybridizes with
“b” sequence of dark AgNCs, which narrows the distance
between the dark AgNCs and the G-rich sequence and stimu-
lates AgNCs to emit strong red fluorescence. At present, the
physical mechanism of the enhancement in red fluorescence
of DNA-AgNCs has not been understood. Werner thinks it is
due to electron transfer from guanine to the nanoclusters. The
prepared dark AgNCs with low fluorescence are non-emissive
state. They can serve as electron acceptors. Guanines, with
the strongest reduction potential in the four nucleotides, as
electron donors can reduce dark AgNCs to emit the bright
red fluorescence [8, 39]. By contrast, when miR-21 is ab-
sent, the double-stranded structure in the stem of HP is
degraded by DSN, generating an ssDNA containing “g”
and part of “c.” The released ssDNA fails to combine with
the DNA of AgNCs. So, the fluorescence of dark AgNCs is
still off in the control group.

Characterization of DNA-templated AgNCs

The UV-vis absorption spectrum of DNA-emplated AgNCs is
shown in Fig.2. It has three absorption peaks. Comparing with
which of the control experiments including AgNO3, DNA,
and the mixture of AgNO3 and DNA (Fig.2A), obviously,
DNA causes the absorption peak at 260 nm; another two
broad and weak bands respectively characterized at 402 nm
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and 445 nm, with no associated fluorescence, may be scatter-
ing peaks caused by the aggregation of DNA-AgNCs [40].

Figure 2B shows the excitation and emission spectra of
DNA-templated AgNCs. The optimal excitation and emission
wavelengths are 560 nm and 630 nm, respectively.
Comparing with the fluorescence spectra of control experi-
ments, including the curves of AgNO3, DNA, and the mixture
of AgNO3 and DNA (Fig.S1), the fluorescence intensity of
AgNCs at 630 nm is stronger than which of the control exper-
iments at the same wavelength. It also proves the formation of
fluorescence DNA-templated AgNCs.

From the TEM image of DNA-templated AgNCs (ESI,
Fig.S2), we can observe that the AgNCs are spherical. They
have varying diameter size. The diameters of the smaller are
less than 2 nm, which is in agreement with the value reported
for fluorescence AgNCs [1]. However, the diameters of many
bigger ones are larger than 2 nm.We think that the bigger may
be the aggregation of AgNCs.

Optimization of experimental conditions

In the AgNCs-based homogeneous assay for miR-21, the fac-
tors that have the important effect on miR-21 detection have
been investigated (see ESI Fig.S3-S7). The optimized dosages
of HP, AgNCs, and DSN are 75 pmol, 40 pmol, and 20 U,
respectively. The optimized digestion temperature and time
for DSN are 52 °C and 120 min.

Fluorescence measurement of miR-21

Under the optimal experimental conditions, the fluorescence
signal intensities generated by 0.01~50 pmol of target miR-21
have been measured (Fig.3A). The fluorescence intensity
values are linearly dependent on the amount of miR-21 in
the ranges of 0.01~0.1 pmol, 0.1~1 pmol, and 1~50 pmol
(Fig.3 B, C, and D). The correlation equations are If =
1.21 × 104 + 2.63 × 104 AmiR-21(mol) [correlation

Fig.1 (A) Synthesis of dark
AgNCs; (B) schematic illustration
of the miRNA assay based on the
turn-on fluorescence of AgNCs
coupled with DSNSA

Fig.2 AUV-vis absorption spectra of DNA-templated AgNCs
(5 μmol/L), AgNO3 (45 μmol/L), DNA (5 μmol/L), and the mixture of
DNA (5 μmol/L) and AgNO3 (45 μmol/L). The DNA represents ssDNA

probe containing template DNA of AgNCs; B excitation and emission
spectra of DNA-templated AgNCs. “-” means no unit, and “a.u.” means
arbitrary unit
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coefficient: R = 0.9921], If = 1.37 × 104 + 5.98 × 104

AmiR-21(mol) [R = 0.9972], If = 1.89 × 104 + 7.38 × 102

AmiR-21(mol) [R = 0.9961], respectively. Thus, the assay
has a great dynamic range of more than three orders of
magnitude. The proposed method’s detection limit is esti-
mated to be 8.3 fmol (3σ, n = 11). It is comparable or better
than some other AgNCs-based fluorescence methods for
miRNA detection. As Table 1 shown, the detection limits
of AgNCs-based fluorescence strategies without amplifica-
tion for miRNA detection is about at the level of nmol/L. It
can be improved to pmol/L by adding an amplification
technique in the strategy.

The selectivity assay for miR-21 detection

MiR-221, miR-143, let-7a, miR-396, and miR-172 have been
selected as a model system to evaluate the selectivity of the
proposed miRNA assay. The results are shown in Fig.4.
Fluorescence intensities aroused by other miRNAs are all less

Table 1 Comparison of various AgNCs-based fluorescence strategy for
miRNA detection

Target miRNA Amplification Detection limit Reference

miRNA-160 None 20 nmol/L [41]

miRNA-16-5P SDAa 100 nmol/L [42]

miRNA-141 CHAb 297.1 pmol/L [43]

miRNA-122 SDA 30 pmol/L [44]

miRNA-21 CHA 38 pmol/L [45]

miRNA-141 None 1 nmol/L [46]

miRNA-21 None 10 nmol/L [46]

miRNA-21 DSNSA 8.3 fmol (83 pmol/L) Our method

a SDA represents the strand displacement amplification
b CHA represents the catalytic hairpin assembly reaction

Fig.3 A Fluorescence spectra produced by different amounts of miR-21
from 0.01 to 50 pmol. B~D Relationship between fluorescence intensity
and the amount of miR-21 from 0.01 to 0.1 pmol, 0.1 to 1 pmol, and 1 to
50 pmol, respectively. The blank is treated in the same way without miR-

21. The fluorescence spectra are measured with excitation wavelengths at
560 nm. The fluorescence intensities are measured at the emission wave-
length of 630 nm. Other conditions are performed according to experi-
mental procedures described in the “Experimental” section
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than 10% compared with that produced bymiR-21 at the same
dosage (30 pmol). Therefore, this method has good selectivity
for the detection of miR-21.

The selectivity assay for let-7a detection

To further investigate the selectivity of the proposed method
in the detection of homologous miRNAs, we take let-7a as the
target miRNA and redesign the other DNA probes, ssDNA
probe-a, and HP-a. Let-7b and 7c, two homologous sequences
most similar to 7a, having only two and one bases different
from let-7a, respectively, are selected as the interference. As
shown in Fig.S8A, the fluorescence signals aroused by let-7b
and 7c are lower than those produced by let-7a. However, they
are significantly higher than that triggered by the blank. The
fluorescence intensities caused by let-7b and 7c have reached
37% and 56% of that produced by let-7a at the exact dosage
(30 pmol) (Fig.S8B). It is a shame that our proposed method
has poor selectivity in the detection of homologous miRNA,
such as the let-7 family.

Detection of miR-21 in the Hela cell extract

The amount of miR-21 in a small RNA extract solution from
Hela cells has been detected with the proposed miRNA assay
by the spiked test. The concentration of the small RNA in
extract solution has been quantitatively measured by
Nanodrop 2000 to be 1.13 μg/μL. As shown in Fig.5, the
well-defined signal of miR-21 in the 1.13 μg of small RNA
sample has been detected. With the constructed calibration
curve (Fig.3D), the amount of miR-21 in the 1.13 μg of small
RNA sample is estimated to be 10.16 pmol. The result is
verified by adding the synthetic miR-21 (10 and 15 pmol,
respectively) to the 1.13 μg of small RNA sample; the spiked
recoveries are 110.1% and 108.9%, respectively (Table 2).
Therefore, the proposed method can be used to detect miR-
21 in the complex biological samples quantitatively.

Conclusions

In this paper, we have developed a label-free and sensitive
method for miRNA detection by the combination of fluores-
cence of DNA-templated AgNCs and DSNSA. Owing to the
excellent fluorescence properties of DNA-templated AgNCs
and the high amplification efficiency of DSNSA, we have

Fig. 4 Selectivity of the proposed assay toward miR-21. The dosage of
miRNAs is 30 pmol each. MiR-21 is not added in the determination of
interfering miRNAs. The blank is treated in the same way without any
miRNAs. Fb represents the fluorescence of blank. Fs represents the fluo-
rescence produced by 30 pmol of miR-21. The fluorescence intensities
are measured at the excitation wavelength of 560 nm and the emission
wavelength of 630 nm. Other experimental conditions are described in the
“Experimental” section

Table 2 Detection of miR-21 in
the Hela cell extract a Sample (μg) Add (pmol) Found (pmol) RSD (n=3) (%) Recovery (%)

1.13 0 10.16 4.92 –

1.13 10 21.17 4.66 110.1

1.13 20 26.50 3.87 108.9

a All the samples were analyzed three times, and the results are the average values

Fig. 5 Detection of miR-21 in the Hela cell extract. The emission spectra
are measured with an excitation wavelength of 560 nm. Other experimen-
tal conditions are described in the “Experimental” section
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realized the sensitive detection for miR-21 (D.L.~8.3 fmol).
And, the synthesis of fluorescence DNA-templated AgNCs is
simpler and easier than other fluorescence nanomaterials (see
the Table S1). It saves time and cost. The low detection limit,
tremendous dynamic range, and excellent selectivity for miR-
21 detection provide great potential for practical application in
biosensing and clinical assay. However, its poor selectivity in
the detection of homologous miRNAs, such as the let-7 fam-
ily, should not be ignored.
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