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Lysosome-targetable selenium-doped carbon nanodots for in situ
scavenging free radicals in living cells and mice
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Abstract
Lysosome-targetable selenium-doped carbon nanodots (Lyso-Se-CDs) that can efficiently scavenge lysosomal •OH in living
cells andmicewere designed in this research. Se-CDswith redox-responsive fluorescence (λex = 379 nm, λem = 471 nm, quantum
yield = 7.1%) were initially synthesized from selenocystine by a facile hydrothermal method, followed by the surface modifi-
cation with morpholine, a lysosome targeting moiety. The as-synthesized Lyso-Se-CDs exhibited excellent colloidal stability,
efficient scavenging abilities towards •OH, low biotoxicity, as well as good biocompatibility and lysosome targetability. Due to
these desirable properties, Lyso-Se-CDs had been successfully utilized for rescuing cells from elevated lysosomal •OH levels.
More importantly, Lyso-Se-CDs efficiently relieved phorbol 12-myristate 13-acetate (PMA) triggered ear inflammation in live
mice. These findings reveal that Lyso-Se-CDs are potent candidates for treating •OH-related inflammation.
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Introduction

Reactive oxygen species (ROS) comprising superoxide an-
ions (O2

•−), hydrogen peroxide (H2O2), and hydroxyl radicals
(•OH) are a series of highly reactive oxygen-containing spe-
cies [1–5]. Normally, the production and elimination of ROS
are in a delicate balance, and the generated ROS are beneficial
to many physiological processes [6]. However, due to some
exogenous and/or endogenous stimuli, overproduction and
accumulation of ROS may happen [7]. This can overwhelm
endogenous protective mechanisms and trigger ROS-
mediated injury to biomolecules including proteins, DNAs
and lipids, leading to a variety of severe diseases, such as

stroke, diabetes, inflammatory disorders, neurodegenerative
diseases, and cancer [8, 9].

Over the past few years, numerous nanomaterial-based an-
tioxidants including ceria nanoparticles (CeO2) [10, 11], man-
ganese oxide nanoparticles (Mn3O4, MnO2) [12],
po lydopamine nanopar t ic les [13] , copper-based
nanoparticles[14], metal-organic frameworks [15], graphene
oxide [16], etc. [17] have been developed for their therapeutic
effects to relieve injury and treat ROS-related diseases. For
instance, Qu’s group synthesized selenium nanoparticle-
graphene oxide hybrid nanomaterials to protect cell compo-
nents against oxidative stress [16]. Wei and coworkers fabri-
cated Mn3O4 nanoparticles for in vivo eliminating cellular
•OH and O2

•− with extraordinary efficiency [12]. Wu et al.
fabricated ROS eliminating tissue adhesive nanocomposite
based on ceria nanocrystal-modified mesoporous silica nano-
particles for restricting ROS-mediated harmful effects and ac-
celerating wound healing [18]. These antioxidants are useful
for preventing oxidative damages from cellular ROS.
Considering the extremely high reactivity and short half-life
of ROS, it is important to prepare targetable antioxidants for in
situ scavenging ROS. Lysosomes as cellular acidic organelles
(pH 4.0–6.0) contain more than 50 degradative enzymes and
play crucial roles in cellular homeostasis and the regulation of
varieties of physiological processes [19]. In fact, lysosomes
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are prone to be affected by •OH, as it is the most abundant
ROS inside lysosomes, where its formation is favored by the
richness of labile iron ions and the internal acidic microenvi-
ronments [20]. To our knowledge, no antioxidants with
lysosome-targetable capability have been reported. Thus, to
maintain normal status and function of lysosome, it is of great
importance to design efficient methods for precisely clearing
overproduced •OH in the lysosome region.

Carbon nanodots (CDs), a novel type of fluorescent
carbonaceous nanomaterials, have received tremendous
attention in recent years for their water solubility, high
resistance to photobleaching, low biotoxicity, good bio-
compatibility, and wide applications in biological fields
[21–24]. In this work, we demonstrate the design and
construction of lysosome-targetable Se-doped carbon
nanodots (Lyso-Se-CDs) that significantly scavenge ly-
sosomal •OH in living cells and mice (Fig. 1). Se-CDs
covered with redox-responsive unit (–C–Se) were initial-
ly synthesized from selenocystine by a facile hydrother-
mal method, followed by the surface modification with
morpholine, a lysosome targeting moiety. The as-
synthesized Lyso-Se-CDs exhibited excellent colloidal
stability, robust scavenging abilities towards •OH, low
biotoxicity, as well as good biocompatibility and lyso-
some targetability. Due to these desirable properties,
Lyso-Se-CDs had been successfully utilized for rescuing
cells from elevated lysosomal •OH levels. More impres-
sively, Lyso-Se-CDs efficiently relieved PMA triggered
ear inflammation in live mice.

Experimental section

Preparation of Se-CDs

Se-CDs were prepared from selenocystine through a one-pot,
facile hydrothermal carbonization method. In brief, 0.1 g
selenocystine was dispersed in 40 mL of redistilled water with
a pH value of ca. 10 (adjusted by 1 M NaOH solution) under
rapid stirring. The alkaline solution was used for facilitating
the dissolution of selenocystine. Then, the aqueous dispersion
was heated at a controlled temperature of 200 °C for 4 h in a
50-mL Teflon-lined autoclave. The resulting solution with a
brown color was sequentially purified by filtration with a
0.22 μm filter membrane, centrifugation at 12,000 g for 15
min, and dialysis through a dialysis membrane (cutoff: 1000
Da). After freeze-drying of the as-purified solution, Se-CD
powder can be obtained. CDs without Se atom doping were
prepared in a same way.

Preparation of Lyso-Se-CDs

Morpholine was immobilized on the Se-CD surface through
covalently EDC/NHS activated process. Typically, 5.0 mL of
morpholine solution (2.5 mM) was placed into a flask, follow-
ed by the injection of 100 mg EDC and 100 mg NHS, and
activated at room temperature for 4 h. Afterwards, 2.0 mL of
Se-CD solution (1.0 mg mL−1) was added, reacted for 12 h to
give morpholine-modified Se-CDs, namely, Lyso-Se-CDs.

Fig. 1 Schematic illustration of the fabrication of Lyso-Se-CDs and its application in scavenging lysosomal ROS
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Cytotoxicity evaluations

HeLa cells were fostered at a density of ~1×104 cells per well
in 96-well plates and grown in DMEM containing 10% fetal
bovine serum, 80 U mL−1 penicillin, and 80 μg mL−1 strep-
tomycin in a humid incubator with 5% CO2/95% air. After 12
h, the culture media were deserted, and fresh media with serial
amounts of Lyso-Se-CDs (0–100 μg mL−1) was introduced,
cultured for 48 h. As to each amount, five replicate experi-
ments were performed in parallel. Thereafter, MTT solution
(1.0 mg mL–1, 20 μL) was injected into each well, waiting for
4 h to allow the generation of formazan crystals.
Subsequently, DMSO with a volume of 150 μL was intro-
duced into the wells. Absorbance (A) of the resulting hybrid
was determined. The cellular viability values were evaluated
by the following equation: cellular viability (%) = Atest/Acontrol

× 100%, where Acontrol represents the absorbance recorded
from the control group, and Atest represents the absorbance
obtained in the existence of Lyso-Se-CDs.

Fluorescent imaging

Before conducting confocal imaging experiments, HeLa cells
were detached, replanted onto confocal dishes (diameter: 35
mm), and adhered for ca. 12 h. Then, the medium in the dish
was changed by new one containing Lyso-Se-CDs (20 μg
mL−1) and cultured for 4 h. Subsequently, the Lyso-Se-CDs
labeled HeLa cells were further labeled with LysoTracker
Deep Red (100 nM) for 0.5 h. After finishing the above ex-
periments, the labeled cells were rinsed three times with PBS.
Under the excitation of 405 nm, the fluorescence image of
Lyso-Se-CDs was acquired within 430–510 nm wavelength
region, whereas for LysoTracker Deep Red, a 638-nm semi-
conductor laser was used, and the fluorescence signal was
obtained in the wavelength range of 640–720 nm.

All the animal experiments were conducted with the
approvement of the Animals Ethics Committee of East
China Normal University. Kunming mice with a body weight
about 15 g were randomly divided into four groups (three
mice in each group). The mice in group one, acting as the
control group, were subcutaneously injected with 2′,7′-
dichlorofluorescein diacetate (DCFH-DA, 1 mM, 50 μL) on
the right ear. While for the other three groups, PMA acetone
solution (100 μg mL−1, 50 μL) was topically applied on the
right ear to establish an ear inflammation model. After 6 h, the
mice were anesthetized using chloral hydrate solution and
subcutaneously administered with DCFH-DA (1 mM, 50
μL) or Lyso-Se-CDs (20 μg mL−1, 100 μL; 40 μg mL−1,
100 μL) and DCFH-DA (1 mM, 50 μL). After another 0.5
h, fluorescent images of the whole body were acquired on an
in vivo imaging system (PerkinElmer) with appropriate wave-
length (λex = 488 nm; λem = 520 nm).

Results and discussion

Preparation and characterization of Se-CDs

Inspired by the pioneering work reported by Xu and co-
workers [25], Se-CDs were initially prepared in our research
through a facile hydrothermal method. Briefly, selenocystine
was dissolved in an alkaline solution, treated at 200 °C for 4 h,
and water soluble Se-CDs can thus be formed. Morphological
characterizations of the synthesized Se-CDs were conducted.
TEM image in Fig. 2A demonstrates that the Se-CDs are
randomly and uniformly distributed, having a finite size dis-
tribution in 2.4–3.1 nm range with a mean value of 2.7 nm, as
judged from ca. 100 individual particles (Fig. 2B). This size is
much smaller in comparison with the Se-CDs reported by Xu
[25] and Huang [26]. Moreover, no assembled larger nano-
particles were observed from our Se-CDs, which suggests that
the developed protocol had a good control on size. FromAFM
image in Fig. 2C, we can find that the Se-CDs were mono-
dispersed, showing a height of 2.0 nm (Fig. 2D). This result
matched well with TEM characterization.

Then, XPS experiments were performed to analyze the
surface states of the Se-CDs. As depicted in Fig. S1A, four
predominant peaks were found at 529.6 eV (O1s), 400.9 eV
(N1s), 284.5 eV (C1s), along with 55.2 eV (Se3d), testifying the
Se-CDs were made up of oxygen, nitrogen, carbon, and sele-
nium, with the atomic ratio of 10.48%, 21.23%, 63.07%, and
5.22%, respect ively [27–29] . Specif ical ly , peak
deconvolution of the C1s spectrum generates three peaks at
287.9, 286.1, and 284.7 eV, which are corresponded to
C=O, C–O/C–N/C–Se, and C–C groups, respectively (Fig.
S1B) [30]. The high-resolution XPS spectrum of N1s can be
deconvoluted to two peaks at 401.2 and 399.6 eV, attributed
to amino N and C–N–C, respectively (Fig. S1C) [31]. The
high-resolution XPS spectrum of Se3d (55.2 eV) demonstrates
the existence of –C–Se group (Fig. S1D) [32]. In addition, the
FTIR spectrum was also determined to investigate the func-
tional groups existed on the surface of Se-CDs (Fig. S2, curve
a). The intense absorption band appeared at 3347 cm−1 is
attributed to the characteristic stretching vibrations of O–H
and N–H [33]. And the absorption peaks at 1570 and 1693
cm−1 is respectively assigned to the C=O stretching vibration
of the carbonyl group and N–H [34]. The FTIR data indicated
the abundance of –COOH, –OH, and NH2 groups on Se-CDs
surface, which is beneficial to its dispersion in aqueous media
and the following surface functionalization.

The fluorescent properties of the Se-CDs were subsequent-
ly measured. As depicted, under the excitation with a maxi-
mum wavelength at 379 nm (Fig. S3A, curve a), an intense
emission peak at 471 nm is observed (Fig. S3A, curve b). The
emission peak undergoes a hypsochromic shift compared to
that of the Se-CDs reported by Xu [25], with a peak position at
490 nm. The differences between the emission position
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possibly result from the variation in their sizes [35, 36]. The
quantum yield of the Se-CDs was determined to be 7.1%.
Similar to most of previously reported CDs, the Se-CDs pre-
sented here exhibited excitation-energy-dependent fluores-
cence (Fig. S3B) [37, 38].

As the surface of Se-CDs was functionalized with –C–Se, a
unit that can be easily oxidized by oxidant, and the surface states
of CDs are correlated with their fluorescence feature, we expect-
ed that the Se-CDs would give off redox-responsive fluores-
cence. To verify our thoughts, H2O2 was added into Se-CD
solution, and a dramatical enhancement of its fluorescence was
witnessed (Fig. S4, curve b). Concurrently, XPS spectroscopy
was utilized to study the states of Se atom in Se-CDs in the
presence of H2O2. The oxidation state of Se had been changed
and oxidized to selenic acid as expected (Fig. S5A). When glu-
tathione was included in the mixed solution of Se-CDs and
H2O2, selenic acid could be reduced to –C–Se again (Fig.
S5B), associated with the decrease of the fluorescence intensity
(Fig. S4, curve c). In parallel, control experiments were also
conducted, inwhichCDswithout Se atomdopingwere prepared,
using cystine as the precursor. In this context, no response of the
fluorescence of CDs (λem = 463 nm) to H2O2 was found (Fig.
S6). Overall, these results demonstrated that the existence of Se
atom and its oxidation state had a quite large impact on the
fluorescence emission of Se-CDs.

Synthesis and characterization of Lyso-Se-CDs

For achieving Se-CDs that primarily retained in lysosome,
morpholine, an acidotropic group that helps the probe

specifically reside in acidic lysosome via the protonation of
the amine unit in acidic milieu [39, 40], was decorated on the
Se-CD surface. The decoration of morpholine was implement-
ed through the amidation between –COOH group of 3-
morpholinopropanoic acid and –NH2 group of Se-CDs. The
covalent conjugation process, activated by EDC/NHS, was
characterized by FTIR spectroscopy. 3-morpholinopropanoic
acid (Fig. S2, curve b) shows the typical absorption bands of
carboxyl group at 3347 cm−1 (VO−H) and 1693 cm−1 (VC=O).
The newly generated absorption band at 1612 cm−1 in Lyso-
Se-CDs spectrum suggests the formation of amide group (Fig.
S2, curve c) and the successful anchor of morpholine on the
Se-CD surface. Besides, the dynamic light scattering results
showed that Lyso-Se-CDs had a larger hydrodynamic size
compared to that of Se-CDs, which again proved the attach-
ment of morpholine on the Se-CD surface (Fig. S7).

It is worthy to state that the conjugation of morpholine on
the surface of Se-CDs showed no discernible effect on its
shape, size (Fig. S8), and fluorescence (Fig. S9). Following,
the stability of Lyso-Se-CDs in PBS was analyzed over a
period of 7 days. During this period, both the hydrodynamic
diameter and fluorescence intensity kept almost constant (Fig.
S10), indicative of the high colloidal stability of Lyso-Se-
CDs.

ROS scavenging activity of Lyso-Se-CDs

The presence of redox-responsive unit –C–Se on the
Lyso-Se-CDs surface suggested its potential usage for
eliminating •OH, the most reactive ROS. For analyzing

Fig. 2 (A) TEM image of the
obtained Se-CDs. (B) Size
distribution of the Se-CDs. (C)
Typical AFM image of the Se-
CDs. (D) Height distribution of
the Se-CDs along the pink line in
Fig. 1C
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its scavenging activity towards •OH, EPR experiments, a
direct method to detect ROS, were conducted, choosing
5,5-dimethyl-1-pyrroline N-oxide (DMPO) as the spin
trap agent. In the following experiments, Fe2+/H2O2, the
classical Fenton reaction system, was served as the source

to afford •OH. As seen in Fig. 3A (curve a), DMPO mol-
ecule showed no EPR signal. Once •OH was injected to
the DMPO solution, a characteristic EPR signal of
DMPO-OH adduct appeared, with a 1:2:2:1 quarter pat-
tern (Fig. 3A, curve b) [41]. Gladly, as anticipated, the

Fig. 3 (A) EPR spectra of DMPO under different experimental
conditions. Curve a: DMPO alone; curve b: DMPO + •OH (10 μM);
curve c: DMPO + •OH (10 μM) + Lyso-Se-CDs (10 μg mL−1); curve
d: DMPO + •OH (10 μM) + Lyso-Se-CDs (20 μg mL−1) ; curve e:
DMPO + •OH (10 μM) + Lyso-Se-CDs (30 μg mL−1); curve f: DMPO
+ •OH (10 μM) + Lyso-Se-CDs (40 μg mL−1). The concentration of
DMPO was 50 mM. (B) Fluorescence spectra of hydroethidine under

various treatments. Curve a: hydroethidine alone; curve b: hydroethidine
+ O2

•− (10 μM); curve c: hydroethidine + O2
•− (10 μM) + Lyso-Se-CDs

(10 μg mL−1); curve d: hydroethidine + O2
•− (10 μM) + Lyso-Se-CDs

(20 μg mL−1); curve e: hydroethidine + O2
•− (10 μM) + Lyso-Se-CDs

(30 μg mL−1); curve f: hydroethidine + O2
•− (10 μM) + Lyso-Se-CDs

(40 μg mL−1). The concentration of hydroethidine was 2 μM

Fig. 4 (A) Viabilities of HeLa
cells incubated for 48 h with
series amounts of Lyso-Se-CDs.
(B) Subcellular localization
investigations in HeLa cells that
were counterstained with Lyso-
Se-CDs and LysoTracker Deep
Red: a: blue fluorescence from
Lyso-Se-CDs (λem = 430–510
nm); b: red fluorescence from
LysoTracker Deep Red (λem =
640–720 nm); c: the merged
image of a with b; d: bright-field
image; e: the merged image of c
with d; f: the emission correlation
plot of the blue channel with red
channel. (C) Protective power of
Lyso-Se-CDs to HeLa cells
against oxidative injury induced
by •OH (100 μΜ). Data shown
are average values, and standard
deviations (error bars) are
obtained from five independent
experiments
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introduction of Lyso-Se-CDs weakened the EPR intensity
in a dose-dependent manner (Fig. 3A, curve c–f; Fig.
S11A). The intensity of EPR signal decreased to 40.7%,
with the existence of Lyso-Se-CDs at concentration of
40 μg mL−1, reflecting the strong •OH scavenging power
of Lyso-Se-CDs. Fluorescence assays further manifested a
sensitive response of Lyso-Se-CDs to •OH (Fig. S12).
Moreover, Lyso-Se-CDs also showed an excellent scav-
enging capacity towards O2

•− (Fig. 3B; Fig. S11B).
Notably, the scavenging behavior of Lyso-Se-CDs is very
similar to that of Se-CDs (Fig. S13), disclosing that con-
jugation of morpholine on the Se-CD surface had no rec-
ognizable influence on its antioxidant capacity.

Intracellular •OH scavenging activity of Lyso-Se-CDs

After in vitro affirming the scavenging ability of Lyso-Se-
CDs against •OH, then, its feasibility to scavenging intra-
cellular •OH was tested. As such, the biotoxicity of Lyso-
Se-CDs was checked by MTT assay, in which HeLa cells
were treated for 48 h with varied concentrations of Lyso-
Se-CDs. As illustrated in Fig. 4A, Lyso-Se-CDs still

exerted feeble side-effects on cellular viabilities even at
a concentration up to 100 μg mL−1, with a value over
90%, denoting low biotoxicity of the Lyso-Se-CDs.
Additionally, flow cytometry experiments were also per-
formed (Fig. S14). And the data showed that Lyso-Se-
CDs had a good biocompatibility.

Due to Lyso-Se-CDs were engineered with morpholine, its
intracellular localization to lysosome was then explored by
confocal microscopy experiments. To do so, HeLa cells
pretreated with Lyso-Se-CDs were counterstained with
LysoTracker Deep Red, a commercial lysosome marker.
Figure 4B shows the corresponding fluorescence images of
HeLa cells counterstained with Lyso-Se-CDs and
LysoTracker Deep Red. The subcellular location of the blue
fluorescence signal from Lyso-Se-CDs (Fig. 4Ba) and the
deep red emission from LysoTracker Deep Red (Fig. 4Bb)
were compared. We can easily find that a large degree of
overlap exists between the two images, as visualized from
the bright pink signals in Fig. 4Bc, the merged image.
Moreover, the intensity correlation plot analysis shows
Pearson’s coefficient with a high value of 0.91 (Fig. 4Bf).
These observations, together, solidly demonstrate that Lyso-

Fig. 5 (A) In vivo fluorescence
imaging of mice treated with
DCFH-DA (1 mM, 50 μL) alone
in the right ear region. (B) In vivo
fluorescence imaging of mice se-
quentially treated with PMA
(100 μg mL−1, 50 μL) and
DCFH-DA (1 mM, 50 μL). (C)
In vivo fluorescence imaging of
mice treated with PMA (100 μg
mL−1, 50 μL), Lyso-Se-CDs
(20 μg mL−1, 100 μL), and
DCFH-DA (1 mM, 50 μL)
in order. (D) In vivo fluorescence
imaging of mice treated with
PMA (100 μg mL−1, 50 μL),
Lyso-Se-CDs (40 μg mL−1, 100
μL), and DCFH-DA (1 mM, 50
μL) in order. (E) Relative
fluorescence intensity in panelA–
D. All the fluorescence intensities
were compared to panel B, which
was normalized to 1.0. (F–I)
Corresponding HE stained
images in panel A–D
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Se-CDs, with morpholine grafted on surface, specifically re-
side in lysosome.

In biosystems, oxidative stress happens when the produc-
tion of ROS surpasses the antioxidant capability of cellular
antioxidants, resulting in severe damage to lipids, proteins,
and nucleic acids. Since Lyso-Se-CDs exhibited remarkable
•OH-scavenging ability, low biotoxicity, as well as good bio-
compatibility and lysosome targetability, we investigated if
Lyso-Se-CDs could suppress oxidative damage from •OH
within the lysosome matrix. Here, the Fe2+/H2O2 system
was selected as an injury model to evaluate the protection
capability of Lyso-Se-CDs from oxidative stress. The results
are presented in Fig. 4C. It was evident that Lyso-Se-CDs, the
first antioxidant with lysosome targeting capacity (Table S1),
could dose-dependently inhibit •OH-induced decline of cell
viabilities.

In vivo anti-inflammation

We further studied the in vivo anti-inflammation behavior
of Lyso-Se-CDs. In the experiments, an ear inflammation
model was established via topical application of PMA, an
apoptotic drug that initiates cell and/or tissue inflamma-
tion [42]. As shown in the control mouse (treated with
DCFH-DA alone), no obvious fluorescence was observed
from the right ear (Fig. 5A), suggesting a low level of
ROS. By contrast, an intense fluorescence was observed
from the ear treated with DCFH-DA and PMA, revealing
the elevated level of ROS in this process (Fig. 5B). After
subcutaneous treatment with Lyso-Se-CDs, the fluores-
cence in the inflamed ear drastically decreased (Fig. 5C,
D, and E). Hematoxylin and eosin (HE) stained images of
ears were also captured. As displayed in Fig. 5G, lympho-
cyte infiltration was obviously observed from the slice
obtained from PMA-treated mouse, in sharp contrast to
the control group (the healthy mouse, Fig. 5F). When
further treated with Lyso-Se-CDs, the symptom was atten-
uated (Fig. 5H, I). All these results suggested that the
Lyso-Se-CDs with low biotoxicity and good biocompati-
bility possessed efficient ROS scavenging ability against
ear inflammation.

Conclusions

In conclusion, in this work, we reported the design and con-
struction of Lyso-Se-CDs that can significantly diminish ly-
sosomal •OH in living cells and mice. Further studies revealed
that the Lyso-Se-CDs exhibited excellent colloidal stability,
robust scavenging abilities towards •OH, low biotoxicity, as
well as good biocompatibility and lysosome targetability. Due
to these desirable properties, Lyso-Se-CDs had been applied
to protect cells from elevated lysosomal •OH levels. More

impressively, Lyso-Se-CDs efficiently relieved PMA trig-
gered ear inflammation in live mice. These findings reveal
Lyso-Se-CDs are potent candidates for treating •OH-related
inflammation and their potential applications in the fields of
biology and medicine.
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