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Abstract
This review summarizes the progress that has been made in the use of nanostructured SPR-based chemical sensors and biosen-
sors. Following an introduction into the field, a first large section covers principles of nanomaterial-based SPR sensing, mainly on
methods using noble metal nanoparticles (spheres, cubes, triangular plates, etc.). The next section covers methods for
functionalization of plasmonic nanostructures, with subsections on functionalization using (a) amino acids and proteins; (b)
oligonucleotides, (c) organic polymers, and (d) organic compounds. Several tables are presented that give an overview on the
wealth of methods and materials published. A concluding section summarizes the current status, addresses current challenges,
and gives an outlook on potential future trends. This review is not intended to be a comprehensive compilation of the literature in
the field but rather is a systematic overview of the state of the art in surface chemistry of plasmonic nanostructures. The ability of
various ligands and receptors for functionalization of nanoparticles as well as their sensing capability is discussed.
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Introduction

Environmental monitoring for rapid and accurate determina-
tion of pollutant contamination in water, soil and air is one of
the most pressing issues in our age. Every year, million tons of
hazardous chemicals are entering the environment; hence
finding a simple, rapid, and accurate determination technique
is pivotal. The mentioned hazardous compounds include
heavy metals, organic and inorganic pollutants, and chemical
toxins [1–3]. Currently, conventional determination methods
for such analytes are atomic absorption spectroscopy (AAS),
atomic emission spectroscopy (AES), inductively coupled
plasma/mass spectroscopy (ICP-MS), and ultraviolet-visible
(UV-Vis) spectroscopy. Despite the high sensitivity and selec-
tivity, these methods often need high operating costs, long
sample preparation time, and well-trained operators [4, 5].

Therefore, there is a multidisciplinary effort for developing
chemical sensors with specific abilities such as in situ
multiplexed analyte determination, portability, sensitivity,
and selectivity. Chemical sensors have the ability to transform
the obtained chemical information upon binding of molecular
guests to analytical information through different mechanisms
such as electrochemistry, fluorescence, absorption, and scat-
tering [6–9]. Chemical sensors based on nanostructured ma-
terials have received a close attention, and among them, col-
orimetric sensors based on plasmonic nanostructures have
gained a great interest [10–21]. Localized surface plasmon
resonance (LSPR)-based sensors for rapid and accurate deter-
mination of different analytes have been sufficiently covered
in the previous literatures, and it is not the scope of this review.
Here in this review, we are going to focus on the surface
chemistry of plasmonic nanostructures for sensing applica-
tions, which was not adequately addressed in previous studies.
First, a brief introduction on the theory and background of
SPR phenomenon is presented which is followed by a com-
prehensive review on different surface functionalizing agents.
To the best of our knowledge, this aspect was not comprehen-
sively studied by previous literatures in the field, and this
extensive review can be used as a guideline for the
researchers.
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Surface plasmon resonance

Conversion of photons into collective oscillation of noble
metals’ conduction band electrons is known as localized sur-
face plasmon resonance. This resonance coupling has opened
new applications for plasmonic nanostructures due to their
extraordinary absorption and scattering profile at these specif-
ic frequencies. The resonance frequency is highly depended
on size, shape, composition, and environment medium of
nanostructure [22–24]. The localized plasmonic fields in the
immediate vicinity of nanostructures are highly sensitive to
even minor changes in their near-fields, and this is the basis
for their versatile applications as plasmonic sensors.

Plasmonic nanostructures have the ability to scatter or ab-
sorb light with several orders of magnitude larger than their
physical sizes. In this regard, plasmonic nanostructures in dif-
ferent shapes and sizes were exploited largely due to their
distinct optical properties even in the same composition and

size [25, 26] (see Fig.1). Silver and gold nanostructures have
been studied more in this field mainly due to their d-d electron
transitions, which take place in visible range. The superior
characteristics of silver compared with gold can be inferred
fromMie’s solution ofMaxwell’s equation for a simple spher-
ical particle (Eq. 1):

Cext ¼ 24Nπ2R3ε3=2m

λln 10ð Þ
εi

εr þ 2εmð Þ2 þ ε2i

" #
ð1Þ

where Cext is the extinction (absorption + elastic scattering)
cross section, R is the radius of particle, and N is the electron
density. Refractive index of medium, imaginary, and real
terms of particle’s dielectric function were also written as
εm, εi, and εr, respectively. According to this equation, the
maximum extinction cross-section can be obtained if both
εr= 2εm and εi ≈ 0 conditions are met. We have previously
shown that imaginary part of silver’s dielectric function is

Fig. 1 Extinction (black),
absorption (violet) and scattering
(green) profiles of silver nano-
structures with different shapes
(a-f). Panel (f) shows the extinc-
tion profile of nano-bars with dif-
ferent aspect ratio of 2, 3, and 4
for black, violet, and green, re-
spectively. Reproduced with per-
mission from reference [25]
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close to zero; also its imaginary part is more negative com-
pared to gold [4]. In addition, the media in which the nano-
particles (NPs) are dispersed play a key role in their optical
properties [27]. The optical extinction of the same nanoparti-
cle in different media is not identical which can be attributed
to the εm term in Eq. 1. These changes may occur in the
intensity of SPR peak or spectral shift, but the main charac-
teristic of the spectra (number of peaks and intensity ratio
among different peaks) stays the same. However, from the
sensing application point of view, the medium is not a param-
eter of choice, so the medium is not the main point of this
review but these papers are suggested in this topic [28–30].

In our previous paper, we thoroughly reviewed the different
mechanisms of plasmonic sensing, e. g., aggregation-based,
oxidation-based andmorphological-based detectionmechanisms
[4]. In this review, we have focused on functionalization of plas-
monic nanostructures for sensing applications. Different catego-
ries of functional agents as well as their applications for plasmon-
ic sensing were addressed and discussed in the following sec-
tions. The functionalization strategies of plasmonic nanostruc-
tures are different, but they mainly use thiol (-SH) and amine (-
NH2) groups for bonding to NP surface. Carboxylic (-COOH)
and hydroxyl (-OH) groups are also used for this mean. The
bonding of these groups on NPs surface is mainly described
using hard and soft acid and base (HSAB) theory. Upon the
interaction of functional agents with NP surface, the optical prop-
erties of NPswill changewhich can be observed as spectral shifts
with possible decrease in the SPR peak intensity. In the following
section, different functionalization strategies and the most recent
works related to each category are discussed. The advantages and
disadvantages of each strategy are also reviewed at the end of
each section.

Functionalizing plasmonic nanostructures
for sensing applications

Functionalizing ligands on the surface of plasmonic nano-
structures can be classified on the basis of different criteria
such as the ligand composition, target analyte, and its reaction
with the nanoparticle. In this review, we have emphasized on
the nature of the functional ligands and categorized them in
four different groups namely as oligonucleotides, proteins and
amino acids, organic polymers, and organic compounds
(Fig. 2). The main advantage of such approach for classifica-
tion is the direct comparison of different groups’ ability for
sensing applications. It has been demonstrated that plasmonic
nanostructures (mainly gold and silver due to their LSPR in
visible region) have strong binding affinity to many chemical
and b iochemica l compounds wh ich makes the
functionalization process robust. In the following section, dif-
ferent common functional groups exploited for sensing pur-
poses will be reviewed and discussed [31].

Functionalization using amino acids and proteins

Proteins are three-dimensional (3D) macromolecules consisting
amino acids as building blocks. The 3D structure of protein highly
depends on the physicochemical condition of the medium such as
pH, salt concentration, and temperature [32, 33]. The size of pro-
teins is in the range of 1–100 nm; hence they are classified as
nanoparticles and are considered as ideal candidates for
functionalization of nanostructures [34, 35]. Proteins have four
different level structures, namely as primary, secondary, tertiary,
and quaternary, which the former is the most important from the
NPs interaction point of view. The primary structure of proteins
which containing a set of 20 amino acids has different functional
groups such as amino–NH2 (lysine), carboxylic acid–COOH
(aspartic, glutamic), hydroxyl–OH (serine, tyrosine), and –SH
(cysteine) [36–38]. The functionalization of NPs with amino acids
or proteins is usually endeavored using amine, carboxylic acid,
hydroxyl, and thiol moieties available in their structures.

For instance, Jeevika et al. [39] have synthesized a colorimetric
probe for determination ofmercury ions by using gelatin function-
alized silver nanoparticles (AgNPs) with a limit of detection of
25 nM. Upon the addition of Hg2+ to the gelatin functionalized
AgNP colloids, a complete color change from yellow to colorless
was observed due to redox reaction between silver and mercury
and led to the aggregation and formation of silver and mercury
(Ag/Hg) amalgam. Zhao and colleagues [40] have introduced a
colorimetric sensor based on gold nanoclusters functionalizedwith
glutathione for the determination of Cu2+ and Fe3+. The detection
limits of this sensor are 0.125 and 1.25 nM for Cu2+ and Fe3+,
respectively. In another study, a facile and selective optical sensor
based on l-cysteine capped silver nanoparticles was developed for
accurate determination of Hg2+ ions in aqueous solutions [26].
The synthesized AgNPs showed a high sensitivity in the range
of 1 × 10−8M.The selective response of l-cysteine-cappedAgNPs
towards Hg2+ ions is shown in Fig. 3(a), where other competing
metal ions are not able to interact as much as mercury. The disap-
pearance of the S-H vibrational band in the Fourier-transform
infrared spectroscopy (FTIR) of AgNPs was attributed to the an-
choring of l-cysteine to the AgNP surface via a thiolate linkage.
Buduru et al. [43] have developed a simple, rapid, and sensitive
colorimetric method with the determination limit of 0.90 μM for
the determination of Hg2+ ion in water samples using glutamine
(Gln)- and histidine (His)-functionalized silver nanoparticles (Gln-
His-Ag NPs) as a probe. The stretching and vibrating bands of
carboxylic and amino groups of Gln andHis were shifted to lower
and longer wave numbers, proving the interaction of Gln and His
with the surfaces of AgNPs. Tyrosine-functionalized gold nano-
particles (AuNPs) were used to develop a colorimetric probe for
the determination of Cr3+ and Pb2+ [28]. The LOD of Cr3+ and
Pb2+ were found to be approximately 1 and 2 μM visually, re-
spectively. Figure 3(b) illustrates the colorimetric sensing principle
for the determination of Cr3+ and Pb2+ based on tyrosine-capped
AuNPs. In the absence of Cr3+ or Pb2+, AuNPs are well dispersed
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in solution and the color of the solution remains red. Nevertheless,
when Cr3+ or Pb2+ is added, their colors change from red to blue
gray resulted from the aggregation of AuNPs induced by the
binding between ions and tyrosine, accompanied by surface plas-
mon resonance (SPR) absorption peaks change in intensity and
wavelength.

Ermini and co-workers [44] have synthesized peptide-
functionalized gold nanoparticles as a biosensor for the determi-
nation of carcinoembryonic antigen (CEA) in blood plasma (Fig.
3(c)). It is shown that, for the same amount of target molecule, by
tuning the surface properties of the peptide-functionalized NPs, it
is possible to significantly enhance the sensor response for the

Fig. 2 Schematic representation
of functional groups on plasmonic
nanostructures for sensing
application

Fig. 3 (A) Schematic representation for the selective response of L-
cysteine capped AgNPs towards mercury ions. Reproduced with permis-
sion from reference [41]. (B) Schematic illustration of Cr3+ and Pb2+

detection based on optical properties of AuNPs. Reproduced with per-
mission from reference [42]. (C) Schematic of the sandwich assays using

streptavidin functionalized NPs (S-NPs) and secondary antibody func-
tionalized NPs (Ab2-NPs). NPs for the determination of CEA in (a) phos-
phate buffer and (b) blood plasma. Reproduced with permission from
reference [28]
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target analyte. By using this SPR strategy, it is possible to distin-
guish the specific and non-specific interactions of analyte for
in vivo applications. Satheeshkumar et al. [45] have proposed a
label-free colorimetric assay for the determination of copper ions
based on Tyrosine-functionalized silver nanoparticles with a linear
range up to 10 μM. In this study, tyrosine has been used as both
reducing and functionalizing agents. A photoactive species of ty-
rosine (Tyr) is used to reduce silver nanoparticle through a photo-
chemical reaction,while the oxidized Tyr (TyrOx)was exploited to
functionalize the surface of the AgNPs at the same time.
According to the FTIR measurements, the disappearance of the
vibration band for phenolic C-O bending after functionalization
may indicate the conversion of phenolic hydroxyl group in Tyr
after photoreduction. In another study, L. D’souza and colleagues
[46] have constructed a colorimetric sensor for determination of
glutathione via ascorbic acid capped silver nanoparticles (AA-
AgNPs) as the probe. The characteristic SPR peak of AA–
AgNPs at 397 nm is redshifted to 468 nm only by the addition
of a small amount of glutathione (GSH), resulting in a color
change from yellow to orange-brown, which confirms the strong
aggregation of AA–AgNPs by GSH due to the presence of multi-
donate anchoring groups (e.g., –SH, –NH2 and –COO−). The
developed sensor had the ability to determine GSH in real sam-
ples. The interaction ofAAmoleculeswithAgNPswas proved by
disappearance of –OH group stretching at 3212–3626 cm−1.
Tryptophan-functionalized gold nanoparticles were used for pos-
sible applications in detecting renal function deterioration bymea-
suring Mg2+ concentrations in urine and artificial serum samples
[32]. This assay has a rapid detection response of less than 1 min
and a LOD of 0.2 μM. The visual detection was accompanied by
the color change from purple to dark upon the addition of Mg2+.
Plasmonic nanostructures functionalizedwith antibodies aremost-
ly endeavored due to their high sensitivity for detecting analytes in
complex solutions. Therefore, this functionalization strategy was
used for detecting several chemical and biochemical species such
atrazine, C-reactive protein, protein biomarkers, tetracycline, hu-
man immunoglobulin G (hIgG), and diphtheria toxoid [47–55]. A
comprehensive list of the recent works is summarized in Table 1.

The main advantage of functionalization using proteins and
amino acids is the diversity of conjugation chemistry that can be
implemented for a sensing mechanism. Several moieties are
available in the structure of amino acids, peptides, and proteins,
and other moieties can be also grafted by straightforward conju-
gation reactions. Highly sensitive sensors with the detection
limits down to fM or pM could be designed using antibodies
due to their specific interaction with the desired analyte.

Functionalization using oligonucleotides

Oligonucleotides are poly-nucleic acid chains made up from
nitrogen-containing bases, five-carbon sugars, and phosphate
groups. Themonomers of oligos are adenosine (A), guanosine
(G), cytidine (C), thymine (T), and uridine (U). The

incorporation of specific ligands (such as thiol or amine mod-
ifications) at the 5′- or 3′-terminal of oligonucleotides enables
the interaction of oligos with plasmonic nanoparticles. The
easy synthesis process and the programmable assembly of
oligonucleotides make them an ideal functionalization agent
for NPs.

Zhu and co-workers [57] have proposed a facile Cr3+ and
adenosine determination using the aptamer and 11-
mercaptoundecanoic acid assembled gold nanoparticles. The
detection limit of mentioned target is calculated to be 1.7 ×
10−11 M and 1.8 × 10−8 M, respectively. The thiolated DNA
and 11-mercaptoundecanoic acid (MUA) was simultaneously
assembled to the surface of gold nanoparticles in one step by
gold-sulfur interaction. The principle of detection was that
Cr3+ bind preferentially with –COOH group in the structure
of MUA through the chelation interaction. As a result, the
interparticle distance of AuNPs was greatly decreased in the
presence of Cr3+, causing a red shift of the SPR peak and a
visual color change from red to blue. Busayapongchai and Siri
[58] developed a sensitive determination method for estradiol
(E2) based on plasmonic properties of gold nanoparticles.
This developed assay exhibited a wide dynamic range from
10−15 to 10−8 M for E2 determination. The mechanism of
detection is based on the ligand binding domain of estrogen
receptora (LBD-ERa) and gold nanoparticles using pre-
designed DNA aptamers. Jia et al. [59] have proposed a col-
orimetric sensing assay based on exonuclease I-triggered ag-
gregation of DNA-functionalized gold nanoparticles for dis-
criminations of different proteins. This sensor was able to
discriminate 15 proteins with a detection limit of 10 nM in
buffer solution and real serum samples. The oligonucleotides
were immobilized on AuNP surfaces through the Au–S bond.
Chu and colleagues [60] have introduced a facile method for
the determination of mercury based on AuNPs and mercury-
specific-oligonucleotide–conjugated resonators (MSOIRs)
with a detection limit of 100 pM. The functionalization pro-
cess of AuNPs is based on the binding of activated thiol
groups at the end of DNAs and AuNPs surface (Fig. 4(a)).
In another study, an optical biosensor was developed for the
simultaneous detection of a variety of Salmonella spp. in en-
vironmental and food samples via oligonucleotide-
functionalized gold nanoparticles [46]. This colorimetric sen-
sor has a detection limit of < 10 CFU/mL for both pure culture
and complex matrice setups. Highly specific oligonucleotides
were designed and conjugated onto the surface of AuNPs via
thiol linkage, HS-(CH2)6, which was initially introduced
chemically to either 5′- or 3′- end of the oligonucleotide
probes. Figure 4(b) shows the sensing strategy for positive
and negative response for sensitive determination of
Salmonella spp. using AuNPs.

Zou and colleagues [62] have constructed a novel colori-
metric sensing assay for biomolecule detection which inte-
grates the signal amplification of hybridization chain reaction
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(HCR) with the assembly of gold nanoparticles through tri-
plex formation with the detection limit of 5 pM, 10 pM, 5 nM,
and 20 pM for DNAs, microRNAs, ATPs, and PDGF-BBs,
respectively. DNA hairpin probes can form rigid triplex struc-
tures with triplex-forming oligonucleotide (TFO)-functional-
ized AuNPs in the absence of targets, which will aggregate in
the presence of biomolecule targets. The reviewed literatures
are summarized in Table 2.

When the sensitivity of the sensor is the ultimate goal,
oligonucleotide functionalization is the best choice. Due to
the specific interactions with the desired analyte, high selec-
tivity could be obtained with the LOD usually lower than nM
concentrations. Even though the oligonucleotides for specific
analytes are well known, a time- and cost-consuming process
should take over if the specific oligonucleotide is unknown for
the desired analyte. On the other hand, the assembly of oligo-
nucleotide on the NP surface is not a tough job and can be
realized using amine or thiol modification in the oligos.

Functionalization using polymers

Polymer-functionalized nanostructures are known for their
ability to create the desired surface functionalities. Both

synthetic and organic polymer-functionalized NPs are widely
used for biosensing because of their non-toxic and non-
immunogenic properties [63–65]. Maruthupandy and col-
leagues [66] proposed a simple method for the rapid colori-
metric and visual detection of glucose molecules in water
medium with a linear range from 5 to 100 μM using chitosan
capped-AgNPs (CS/AgNPs). Silver nanoparticles were
interacted with the O2 from hydroxyl group in chitosan as well
confirmed with FTIR spectroscopy. The interaction of glucose
molecules with CS/AgNPs decreased the interparticle distance
significantly. The spectral relation as well as visual change
upon the addition of glucose is shown in Fig. 5.

Also, a rapid and simple colorimetric method based on the
surface plasmon resonance of polyvinylpyrrolidone (PVP)-
stabilized AgNPs was developed for the detection of the
Timolol (a cardiovascular drug) by Amirjani et al. [67] with
the LOD of 1.2 × 10−6 M. Based on the proposed mechanism,
the chemisorption of the Timolol drug on the AgNPs via Ag-S
binding induces the aggregation of AgNPs.

In another study, a localized surface plasmon resonance
sensor based on gold nanorods functionalized with polyethyl-
ene glycol was developed for the determination of activated
leukocyte cell adhesion molecule (ALCAM) cancer

Table 1 Summary of previous
efforts for functionalization of
plasmonic nanostructures using
proteins and amino acids for
sensing purposes

Analyte Functional ligand/moiety Limit of
detection
(LOD)

References

Hg2+ L-Cysteine/NM* 10−8 M [41]

Hg2+ Glutamine and histidine/carboxylic and amino
groups

0.90 μM [43]

Cr3+, Pb2+ Tyrosine/NM 1, 2 μM [42]

Copper ion Tyrosine/phenolic and hydroxyl groups 150 nM [45]

Glutathione Ascorbic acid/multi-donate anchoring groups (SH,
-NH2, -COO

−)
2.4×10−7 M [46]

Mg2+ Tryptophan/NM 0.2 μM [56]

Atrazine N-methacryloyl L-aspartic acid (MAAsp)/NM 0.7134 ng/mL [54]

Hg2+ Gelatin/amalgam (Hg-Ag) 25 nM [39]

Cu2+, Fe3+ Glutathione/NM 0.125,
1.25 nM

[40]

Carcinoembryonic
antigen (CEA)

Peptide/NM NM [44]

Bacterial pathogens Cysteine modified synthetic antimicrobial peptides
(sAMPs)/peptide bonding (S-Au)

102 CFU/mL [52]

hlgG Human immunoglobulin G antibody
(anti-hlgG)/NM

11 ng mL−1 [47]

IFX and ATI TNFα 2.5 μg/mL [48]

Tetracycline (TC) Mercaptoundecanoic acid (MUA) and antibody
pair (anti (TC))/NM

10 aM [50]

Alpha-1 antitrypsin
(AAT) and Tau 381

Mixed antibody (anti-AAT and anti-Tau)/NM μM and fM
scale

[51]

C-reactive protein
(CRP)

Aptamer antibody/3′-thiol-modified 6th-62-40 10 pM [53]

Diphtheria toxin (DT) Monoclonal anti-diphtheria IgG/NM 10 ng/mL [55]

*NM= not mentioned
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Fig. 4 (A) Schematic illustration
of mercury ion detection using
resonance frequency shift of a
MSOIR on AuNPs surface.
Reproduced with permission
from reference [44]. (B) (a)
Sensing strategy for colorimetric
detection of Salmonella spp.
using optical properties of aggre-
gated versus non-aggregated
AuNPs. The TEM images in (b)
and (c) show the absence and
presence of analyte in the solu-
tion, respectively. Reproduced
with permission from reference
[61]

Table 2 Summary of previous
efforts for functionalization of
plasmonic nanostructures using
oligonucleotides for sensing
purposes

Analyte Functional ligand/moiety Limit of
detection (LOD)

Reference

Cr3+, Adenosine Aptamer and 11-mercaptoundecanoic acid /
-COOH

1.7×10−11 M
and 1.8×
10−8 M

[57]

Estradiol (E2) Estrogen receptora (LBD-Era)/specific
interaction

2.62×10−14 M [58]

15 different proteins DNA sequence/NM* 10 nM [59]

Mercury Mercury-specific-oligonucleotide-conjugated
resonators (MSOIRs)/NM

100 pM [60]

Variety of Salmonella
spp.

Specific oligonucleotides/NM <10 CFU/mL [61]

DNA, microRNAs,
ATPs, PDGF-BBs

Specific oligonucleotides/NM 5 pM, 10 pM,
5 nM, 20 pM

[62]

*NM= not mentioned
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biomarker [53]. Both high- and low-molecular weight
thiolated PEG molecules were used to provide effective steric
hindrance as well as ample reactive groups for conjugation
with the biomolecular probes. This strategy leads to increased
sensitivity of the developed sensor and allowed the detection
of the ALCAM antigen concentration down to 15 pM. A
sensitive and selective Hg2+ optical sensor has been developed
based on the redox interaction of Hg2+ with starch-coated
silver nanoparticles in the presence of 0.005 molL−1 HNO3

by Vasileva and coworkers [68] with the detection limit of 0.9
μgL−1. The formation of Ag-Hg amalgam due to the sorption
and reduction of positively charged Hg2+ on the surface of
negatively charged AgNPs was known as the responsible
mechanism of this sensor (Fig. 6).

Buccolieri et al. [69] have developed a colorimetric sensor
for ammonia sensing in aqueous solutions based on bio-
synthesized AgNPs using sucralose and glucose. The men-
tioned sensor could detect ammonia in the range of 10−2 to
103 ppm in aqueous solutions. In another study, Ban and col-
leagues [70] have developed a spectroscopy based method for
sensing Hg2+ and cellular-free oxygen radical via starch-
functionalized silver nanoparticles. Starch was used as the
reducing agent as well as capping agent, and NaOH played
the role of a catalyst for converting AgNO3 to AgO2 and Ag,
respectively. It was observed that starch-functionalized
AgNPs were highly sensitive to Hg2+ ions as reflected from

the blue shift in the absorption spectra. In the presence of
Hg2+, the interaction between silver and mercury forms amal-
gam. Li et al. [71] have presented a paper-based colorimetric
sensor using –NH2 and –SH decorated AuNPs for rapid de-
termination of Fe3+ ions. The leaching of gold nanoparticles in
the presence of thiourea or hydrogen peroxide can speed up by
using catalytic Fe3+ ions, and this method is capable to detect
ferric ions as low as 0.85 μM. In another study,
poly(allylamine hydrochloride) (PAH) and poly(sodium 4-
styrenesulfonate) (PSS) were used to functionalize gold nano-
particles for colorimetric determination of Hg2+ and Cd2+ in
water samples [58]. Two bi-layers of polyelectrolytes were
deposited on the AuNP-functionalized sensor probes for giv-
ing a better RI sensitivity (down to 0.5 ppb) compared with
single bi-layer. In another study, a rapid and straightforward
method was developed for colorimetric determination of am-
monia using smartphones based on PVP-stabilized AgNPs
[59]. In order to evaluate the effect of ammonia on the UV–
vis spectrum of the synthesized silver nanoparticles, different
levels of ammonia (in the range of 10–1000 mg L−1) were
added to the colloidal solution of AgNPs containing a constant
level of the nanoparticles. The mechanism of the detection is
based on the formation of a complex (Ag(NH3)

2+) which is
accompanied by the decrease in the number of individual
AgNPs and their related characteristics surface plasmon band.
The main point of this study was the use of a smartphone for

Fig. 5 (a) and (b) show the relationship between absorbance at 429 nm and the concentration of glucose in the solution in the range of 5–100 μM. (c)
shows the visual color change in the presence of different glucose concentrations. Reproduced with permission from reference [66]
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colorimetric measurements instead of a UV-Vis spectropho-
tometer. The smartphone-based detection has the capability to
detect ammonia with the LOD as low as 200 ppm.
Acrylamide, cellulose, sodium alginate, and sodium cholate
were also used in previous literatures for functionalization of
nanoparticles [72–76]. Table 3 presents a complete list of
polymers for functionalization with responsible moiety in
their structure.

The main advantage of polymers as functional agents is
their ability to host different moieties with a simple polymer-
ization reaction. The bonding to NPs can be realized using
amine or thiol modification as well as the desired moiety for
analytical process, which can be grafted in the structure of
polymers. However, most of the works in this field are based
on non-specific interaction of polymers with NPs and the
analytes, which will not yield extremely low detection limits.

Functionalization using organic compounds

Functionalization of plasmonic nanoparticles using organic com-
pounds is the mostly endeavored mechanism for designing col-
orimetric sensors. The main reason is the diversity of chemical
compounds and the ability to design the required surface chem-
istry for selective determination of specific analyte. The main
strategy for linking to metal NPs is via S-H and NH3 linkage
and several chemical moieties (e.g., hydroxyl, carboxyl, carbon-
yl, etc.) can be available as an anchor to the analytes.

For instance, a simple colorimetric citrate-capped silver
nanoparticle-based sensor have been proposed by Zheng
et al. [80] for the determination of thiophanate-methyl (TM)
in the range of 2–100 μM with a detection limit of 0.12 μM.
Their approach is based on the color change of cit-AgNPs
from yellow to cherry red with the addition of TM to Cit-

AgNPs that caused a redshift on the SPR band from 394 to
525 nm due to the hydrogen-bonding and substitution. The
absorbed citrate ions on the surface of AgNPs are capable of
forming the hydrogen bonding with thiophanate-methyl
through –COOH group of citrate and –NH, –C=S, –C=O, –
CH3 groups of thiophanate-methyl. In another study, a color-
imetric sensor based on sulfoanthranilic acid dithiocarbamate
(SAA-DTC)-functionalized AgNPs was developed by Mehta
and colleagues [81] for the detection of Mn2+ and Cd2+, with
the detection limit of 1.7 and 5.7 μM, respectively.
Disappearing of stretching and bending modes of S-H group
indicates the successful attachment of SAA-DTC on the sur-
face of AgNP via thiolate linkage. Sensing mechanism of the
above-mentioned sensor is based on the aggregation of SAA-
DTC AgNPs in the presence of Mn2+ and Cd2+. In another
study, a sensitive and low-cost colorimetric probe was devel-
oped by introducing a linkage between 1-amino-2-naphthol-
4-sulfonate (ANS) and triangular silver nanoplates by electro-
static interaction of the sulfo groups, for Cd2+ sensing in nar-
row linear range of 30–70 μM with a limit of detection of
30 nM [67]. ANS can bind to Cd2+ ions through NH2, SO3,
and OH groups, which leads to the aggregation of triangular
AgNPs. Song and colleagues [82] have developed a low-cost,
rapid, simple, and sensitive assay using sulfanilic acid-
functionalized silver nanoparticles (SAA-AgNPs) for mela-
mine detection in pretreated milk samples, with a LOD of
10.6 nM. In the presence of melamine, the SAA-AgNPs ag-
gregated rapidly through hydrogen bonding between –NH2

groups on the outer surface of the SAA and the melamine
molecule. Surface modification of AgNPs was done by
Neem Gum (NG), containing complex polysaccharides, pro-
teins, and other organic compounds, as the reducing and sta-
bilizing agent [69]. FTIR analysis has demonstrated the

Fig. 6 The amalgamation process by interaction of Hg2+ ions with negatively charged silver nanoparticles. Reproduced with permission from reference
[68]
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binding of hydroxyl, carbonyl, carboxyl, and amine groups of
amino acid and NG proteins to the surface of AgNPs. In an-
other study, 2-Mercaptoethanesulfonate (MES) was used to
develop a selective and sensitive sensor for alkaline and alka-
line earth metal cation determination and monitoring in bio-
logical samples [70]. Their SERS-based sensor exhibits limits
of detection of 10 nM for Ca2+ and 1 μM for Co2+, Fe2+, and
Mn2+ with a mechanism based on attractive interaction be-
tween negative charges of MES attached to the surface of
AgNPs and cations present in the solution. Patel and col-
leagues [83] have developed a simple, rapid, and sensitive
colorimetric method for the determination of carbendazim
using 4-aminobenzenethiol-functionalized silver nanoparti-
cles (ABT-AgNPs) as a colorimetric sensor. Under optimum
conditions, the absorbance ratio at A510/A397 is linearly related
to the concentration of carbendazim in the range of 10–
100 μM, with a detection limit of 1.04 μM. This colorimetric
method has been successfully utilized to detect carbendazim
in environmental water and food samples. Since ABT-AgNP
surface exhibits positive charges (pKa of ABT is 5.70) where-
as carbendazim bears negative charges (pKa is 4.48), the con-
jugation of carbendazim with ABT-AgNPs results to aggre-
gation of NPs via strong ion-pair interactions. The π–π inter-
actions between the neighboring carbendazim-conjugated
ABT-AgNPs are responsible for the aggregation that result a

color change from yellow to orange and a red-shift in SPR
band of ABT-AgNPs from 397 to 510 nm. The formation of a
new bond between ABT and AgNPs was approved by disap-
pearance of –SH group located at 2543–2550 and 935–
945 cm−1.

In another research by Devadiga and colleagues [84], aque-
ous extract of an agrowaste: Terminalia catappa leaves was
used to reduce and functionalize AgNPs with possible appli-
cation for Hg2+ sensing. Authors believed that the multi-
functional groups (e.g., hydroxyl, carboxyl, and hetero-
aromatic rings) present in the extract are responsible for inter-
action with mercury ion and enhanced stability of the nano-
particles. There are also other reports on using biosynthesized
nanoparticles as optical sensors for Hg2+, Cr6+, Zn2+, and
hydrogen peroxide determination [85–87]. Silver triangular
nanoplates conjugated with gallic acid were designed as a
probe for colorimetric detection of reduced GSH with a limit
of detection of 0.12 nM [76]. The functionalization of
nanoplates was easily done through the phenolic hydroxyl
groups (–OH) of gallic acid. The authors believed that the
interaction of deprotonated carboxylate (COO−) of gallic acid
with protonated amine (NH3

+) is responsible for aggregation
of nanostructures. Muthivhi et al. [88] have developed a green
method for sensing Hg2+ in aqueous media via gelatin-noble
metal polymer nanocomposites with a detection limit of

Table 3 Summary of previous efforts for functionalization of plasmonic nanostructures using polymers for sensing purposes

Analyte Functional ligand/moiety Limit of detection (LOD) Reference

Glucose Chitosan/NM* 5 μM [66]

Timolol Polyvinylpyrrolidone (PVP)/-SH 1.2×10−6 M [67]

Activated leukocyte cell adhesion molecule
(ALCAM) cancer biomarker

Polyethylene glycol/NM 15 pM [77]

Hg2+ Starch/NM 0.9 μgL−1 (in range of
0–12.5 μgL−1)

2.7 μgL−1 (in range of
25–500 μgL−1)

[68]

Ammonia Surcralose and Glucose/NM 10−2–10−3 ppm [69]

Hg2+ & cellular free oxygen radical Starch/NM NM [70]

Fe3+ -NH2, -SH 0.85 μM [71]

Hg2+, Cd2+ Poly(allylamine hydrochloride) (PAH) and Poly(sodium
4-styrenesulfonate) (PSS)/NM

0.5 ppb [78]

Ammonia Polyvinylpyrrolidone (PVP)/NM 200 ppm [79]

Ag+ Hyperbranched polyethylenimine (HPEI)/-SH 8.76×10−8 M (naked eye)
8.76×10−9 M

(UV-Vis)

[73]

Acrylamide Acrylamide/C=C 0.2 nM [72]

H2O2 Polysaccharide (cellulose nanowhiskers)/NM 0.014 μM (in range of
0.1–30 μM)

112 μM (in range of
60–600 μM)

[74]

Hg2+ Sodium alginate/NM 5.29 nM [75]

Hg2+, Pb2+ Sodium Cholate/COO− and -OH 12 nM, 60 nM [76]

*NM= not mentioned
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10−3 nM. The interaction of gelatin with AgNPs was done via
coordination with nitrogen from the amide group.

Si lver nanopart ic les capped with 3-mercapto-
1propanesulfonic acid (AgNPs-3MPS) were used to develop a
colorimetric sensor for Ni2+ or Co2+ ions in water based on the
change of the intensity and shape of SPR peak [78]. The reported
sensor has a good sensitivity for the detection of Ni2+ or Co2+

ions in aqueous solutions up to 500 ppb. The interaction of MPS
withAgNPswas done via thiol-linkage. Pinyorospathum and co-
workers [89] have presented a sensitive colorimetric sensor for
the determination of phosphate ions (Pi) performed on paper-
based analytical devices (PADs) based on the anti-aggregation
of 2-mercaptoethanesulfonate (MS)-modified silver nanoplates.
This sensor has a detection limit of 0.33 mg L−1 and a limit of
quantification equal to 1.01 mg L−1 for determination of phos-
phate ions in the range of 1–30 mg L−1. The presence of -C-H, -
COO-, or -COOH stretching modes in FTIR spectra proved the
assembly of 2-mercaptoethanesulfonate on AgNPs surface. In
addition, the absence of thiol band (-S-H) at 2550 cm−1 can be
attributed to the formation of Ag-S bonds. Chen and colleagues
[90] have introduced an adrenaline sensor based on 4-amino-3-
hydrazino-5-mercapto-1,2,4-triazol (AHMT)-functionalized
gold nanoparticles with a wide linear range of 7 nM–0.1 mM
and the detection limit of 1 nM. Sensing mechanism is based on
aggregation of AuNPs which was specially induced by the bind-
ing of AHMT to adrenaline as a result of hydrogen bonding
between the two molecules, leading to a color change from
wine-red to purple-blue. Adrenaline molecule has one amine
group and three hydroxyl groups. Each adrenaline molecule
has four sites to form hydrogen bonds of NH-O and NH-N.
Thus, the aggregation of AHMT-AuNPs was induced by hydro-
gen bonding between the AHMT and adrenaline. Organically
functionalized gold nanoparticles were developed as a prototype
gas sensor for formaldehyde detection with possible applications
in non-invasive diagnosis through exhaled breath analysis [81].
In this study, 2-mercaptobenzoxazole (C7H5NOS) was used to
functionalize theAuNPs.A colorimetricmethod for the detection
of Fe3+ in water and biological samples is introduced via oxamic
acid (OA) and p-aminobenzoic acid (PABA) functionalized gold
nanoparticles (OA-PABA-Au NPs) as a probe [82]. This sensor
exhibits a detection limit of 5.83 μM. According to the FTIR
measurements, OA and PABA molecules were successfully as-
sembled on the surfaces of AuNPs via Au–N linkage. The addi-
tion of Fe3+ ion leads to a decrease in the SPR band intensity of
OA-PABA-AuNPs at 523 nm and to generate a newSPRpeak at
685 nm, confirming that the aggregation of OA-PABA-AuNPs
induced by Fe3+ ion, which results a color change from red to
blue. Khodaveisi and colleagues [91] have proposed a colorimet-
ric sensor for the determination of naproxen (NAP) based on the
aggregation of the thiolated β-cyclodextrin (Tβ-CD)-functional-
ized gold nanoparticles (Tβ-CD-AuNPs) in the presence of NAP
and Zn2+ with a detection limit of 0.6 μg L−1 in the range of 4–
180 μg L−1. It is known that NAP can act as a unidentate ligand

through its carboxylate group and form complexes with several
transition metal ions while the other end of NAP is hydrophobic
and has high affinity to interact with molecules such as CD.
Furthermore, due to the hard and soft acid-base interaction, the
thiolated molecules have the ability to interact with the surface of
AuNPs and displace the shell of citrate groups. The β-CD was
thiolated and immobilized on the surface of synthesized AuNPs.
Then, Zn2+ which forms a colorless complex with NAP was
selected as transition metal ions and along with NAP was added
to the Tβ-CD-AuNP solution. This resulted in the formation of
(Tβ-CD:NAP)2Zn complex through aggregation of AuNPs, and
because of the near-field coupling in the resonant wavelength
peak of the interacting particles, the original LSPR peak of Au-
NPs decreases, and a new red-shifted band at 650 nm appears.
Qin et al. [92] have employed AHMT-AuNP for sensitive deter-
mination of kanamycin (KA) in the range of 0.005–0.1 μM and
0.1–20 μM with a limit of detection of 0.004 μM. AHMT con-
tains one mercapto group, which can strongly coordinate to the
surface of AuNPs. In addition, AHMT has two exocyclic amino
groups and a three nitrogen hybrid ring. On the other hand, as an
aminoglycoside antibiotic, KA has four amino groups (-NH2)
and seven hydroxyl groups (-OH) which may combine with
the AHMT through hydrogen-bonding interaction. The aggrega-
tion of AHMT-AuNPs in the presence of KA was studied by
monitoring the shift of SPR band.

Khodaveisi and co-workers [93] have reported a colorimet-
ric sensor based on the aggregation of the Tβ-CD functional-
ized gold nanoparticles for the determination of nabumetone
(NAB) in the presence of PVP with a LOD of 0.2 μgL−1. In
this study, PVP has the key role to increase the affinity of β-
CD for NAB. Formation of the ternary complex of NAB:(β-
CD)2-PVP resulted in the aggregation of NPs.

Chen and colleagues [94] have synthesized Rhodanine-
stabilized gold nanoparticles in order to construct a colorimetric
sensor for selective determination of Hg2+ in the range of 0.02–
0.5 μM. The detection limit of this sensor was measured to be
6.0 nM. The assembly of Rhodanine on AuNPs was done via
thiol sub-unit molecules through gold-thiol (Au-S) affinity inter-
actions. Upon the addition of Hg2+ to AuNPs@R, a new absorp-
tion band at 650 nm appeared and dispersed AuNPs@R are
induced to aggregate via the formation of theR-Hg2+-R structure.
A sensitive biosensor based on functionalized nanoporous gold
(NPG) has been constructed for the determination of human
serum albumin (HSA) [95]. In order to study the Raman signal
produced bymodifiedNPG substrates, four different compounds
(i.e., cysteamine, 3-mercaptopropionic acid, 4-aminothiophenol,
4-mercaptobenzoic acid), all provided with a sulfidrilic group to
be bound to the gold surface, were tested after their immobiliza-
tion on nanostructured gold surface of given porosity. The struc-
tural differences among the selected molecules concern the func-
tional group (i.e., amino or carboxyl) used to link covalently to
the antibody and the aliphatic or aromatic nature of the structure
themselves. All these molecules are bifunctional with a thiol
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group able to form the Au-S bond to NPG and an amino or
carboxylic terminal group that gives an amide bond with the
antibody. Aromatic moieties have been preferred to aliphatic
ones due to a more oriented interaction of the molecule with
the NPG surface, while the choice between the two aromatic
moieties (i.e., 4ATP and 4MBA) has been affected by the strat-
egy used to generate the amide bond with the antibody.

Kailasa and colleagues [96] have proposed a facile method
for developing a colorimetric sensor based on the pencycuron-
induced aggregation of 6-aza-2-thiothymine (ATT)-function-
alized gold nanoparticles for the determination of pencycuron
fungicide in rice, potato, cabbage, and water samples with the
detection limit of 0.42 μM in the range of 2.5–100 μM. ATT
can easily displace citrate molecules on the surfaces of AuNPs

Table 4 Summary of previous efforts for functionalization of plasmonic nanostructures using organic compounds for sensing purposes

Analyte Functional ligand/moiety Limit of detection
(LOD)

Reference

Hg2+ Citrate/amalgam (Hg-Ag) 4 nM [5]

Thiophanate-methyl (TM) Citrate/hydrogen bonding 0.12 μM [80]

Mn2+, Cd2+ Sulfonathranilic acid dithio carbamate (SAA-DTC)/NM 1.7, 5.7 μM [81]

Cd2+ 1-amino-2-naphthol-4-sulfonate (ANS)/NH2, SO3, OH 30 nM [97]

Melamine Sulfonic acid (SAA)/-NH2 10.6 nM [82]

Ca2+, Co2+, Fe2+, Mn2+ 2-Mercaptoethanesulfonate (MES)/NM* 10 nM, 1 μM,
1 μM, 1 μM

[98]

Carbendazim 4- aminobenzenethiol/NM 1.04 μM [83]

Hg2+ Extract of Terminalia catappa leaves/NM NM [84]

Hydrogen peroxide Kiwifruit extract/NM 5.0×10−7 M [85]

Cr6+, Ammonia Durenta erecta (D. erecta)/metal-oxygen bonding Up to 0.1 ppm [86]

Hg2+ Matricaria recutita (Babunah) plant extract / NM 100 ppm [87]

Reduced glutathione (GSH) Gallic Acid/NM 0.12 nM [99]

Hg2+ Gelatin/NM 10−3 nM [88]

Ni2+, Co2+ 3-mercapto-1 propanesulfonic acid (3MPS)/NM 500 ppb [100]

Phosphate ion 2-mercaptoethanesulfonate (MS)/NM NM [89]

Adrenaline 4-amino-3-hydrazino-5-mercapto-1,2,4-triazol (AHMT)/NM 1 nM [90]

formaldehyde 2-mercaptobenzoxazole (C7H5NOS)/NM NM [101]

Fe3+ Paminobenzoic acid (PABA), Oxamic acid (OA) / NM 5.83 μM [102]

Naproxen (NAP) Thiolated β-cyclodextrin (Tβ-CD) and Zn2+/carboxylate group 0.6 μgL−1 [91]

Kanamycin (KA) 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT)/amine and hydroxyl groups
and

hydrogen bonding

[92]

Nabumetone (NAB) Thiolated β-cyclodextrin (Tβ-CD) / NM 0.2 μgL−1 [93]

Hg2+ Rhodanine/NM 6.0 nM [94]

Human serum albumin
(HSA)

Cysteamine, 3-mercaptopropionic acid, 4-aminothiophenol, 4-mercaptobenzoic
acid/amine or carboxyl (amide bond with antibody)

NM [95]

Pencycuron fungicide 6-aza-2-thiothymine (ATT)/NM 0.42 μM [96]

Dopamine (DA) S-doped carbon dots (S-CD)/carboxylic group of CDs and amine groups of DA 0.23 μM [103]

HER2-positive breast cancer
cell (SKBR3)

Liposome/anti-HER2 5 single cells [104]

Cu2+ 1,3-alternate calix[4]arene/NM 2.5×10−6 M [105]

Hg2+ Mercaptobenzoheterocyclic compounds (MBO, MBI, MBT)/Ag-Hg interaction 9.2 pM
(MBO)
46 pM
(MBI)
92 pM
(MBT)

[106]

As3+ Polyethylene glycol (PEG) / - OH 1 ppb [107]

Hg, Hg+ Calixarene / Ag-Hg interaction 0.5 nM
(UV-Vis)
10 nM
(Amperometry)

[108]

*NM= not mentioned
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and tune the visual readout ability of AuNPs towards a spe-
cific analyte. ATT contains a mercapto group that can easily
form a covalent bond (via Au-S bond) with the surface of
AuNP. In another study, a selective colorimetric sensor has
been proposed based on LSPR of S-doped carbon dots-
functionalized gold nanoparticles for detection of dopamine
(DA) with a detection limit of 0.23 μM [89]. In this study,
phenylamine-4-sulfonic acid with abundant thiol functional
groups interacted with Au NPs through soft-soft acid-base
interaction. It was observed that addition of DA molecules
followed by Fe3+ causes aggregation of DA-S-CDs@Au
NPs resulting in a decrease in the LSPR band of modified
AuNPs around 520 nm and the appearance of a new band at
670 nm. This observation is due to the assembly of DA mol-
ecules on the surface of S-CDs@Au NPs through the bonding
between its primary amine with the carboxylic group of CDs
and aggregation of DA-S-CDs@Au NPs by coordination of
Fe3+ with DA molecules. In another study, Amirjani et al. [5]
have proposed a rapid and sensitive colorimetric detection
method for the determination of Hg2+ based on citrate-
functionalized silver nanotriangles with a limit of detection
of 4 nmol L−1 which was below the safety level of Hg2+ ions
(10 nmol L−1) in drinking water. The ability of Hg2+ ion to
interact with Ag and form the Hg-Ag alloy (amalgam) over
the surface of nanotriangles resulted in an obvious color
change from blue to violet. A comprehensive list of different
organic compounds as functional ligand can be found in
Table 4 [104–108].

Organic compounds include a large library of chemicals
with the ability to link to plasmonic nanoparticles thorough
S-H and NH3 linkage. One can simply choose the desired
compound based on the required moiety for a specific analyte.
Even though low detection limits can be obtained by this
functionalization strategy, because the ligand is not specifical-
ly designed for the analyte the selectivity of the sensor is
debatable.

Conclusion and future prospects

During the last decade, many plasmonic sensors were de-
signed and developed for a wide range of analytes from neu-
rotransmitters to explosive chemicals [109–116]. The basis for
their versatile applications is the sensitivity of localized plas-
monic fields in the immediate vicinity of nanostructures. In
this paper, recent advances in functionalization of plasmonic
nanostructures for optical sensing were reviewed. With the
emphasis on the nature of the functional ligands, they were
categorized in four different groups namely as oligonucleo-
tides, organic polymers, proteins and amino acids and organic
compounds. Different scenarios for attachment of functional
agents to NPs as well as different approaches for analyte che-
lation were reviewed and discussed in each category. Proper

functionalization of nanostructured probe is essential for se-
lective determination of desired analyte. Engineered oligonu-
cleotides as functional groups can be designed for selective
determination of specific analytes with detection limit as low
as pM. The efficiency and performance of plasmonic sensors
are totally comparable or even superior to conventional detec-
tion methods. The ability of colorimetric detection in solution
phase using plasmonic nanostructures makes the process rapid
and straightforward. Nowadays, there is growing interest in
immobilization of nanostructures on substrates (glass, paper,
indium tin oxide (ITO), Polyethylene terephthalate (PET),
etc.) for realization of lab-on-a-chip concept [117–119].

By immobilizing the nanostructured probe, sensors can be
used for several detection cycles. In addition, there is a huge
demand for using portable and easy accessible signal readers
for such sensors such as smart phones instead of conventional
spectrophotometers. The future prospect of plasmonic sensors
is mainly dominated by immobilized NPs arrays on substrates,
which are able to detect analytes on-site by the aid of a porta-
ble image analyzer unit (such as smartphones). These sensor
arrays also make the multi-analyte determination possible by
using different ligands for every specific analytes. In this de-
cade, plasmonic sensors can become the gold standard for
determination of chemical and biochemical species.
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