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Abstract
A fluorescence (FL) probe for determination of γ-glutamyl transpeptidase (GGT) activity and evaluation of inhibitors was
developed based on the inner filter effect (IFE) of nitrogen-doped carbon dots (N-CDs). Bright green emissive N-CDs were
synthesized by one-step hydrothermal technique with catechol and ethylenediamine. The excitation and emission wavelengths
for N-CDs were 408 and 510 nm, respectively. γ-L-Glutamyl-4-nitroanilide (γ-G4NA) was employed as the substrate of GGT.
The absorption spectrum of GGT catalytic product (4-nitroaniline, 4-NA) overlapped greatly with the excitation spectrum of N-
CDs. 4-NA acted as the absorber in IFE to quench the FL of N-CDs. Thus, the FL quenching of N-CDs was closely related to
GGT activity. The established FL method offered good linear relationship within 2.0–10.0 U L−1 (R2, 0.982) and 10.0–
110.0 U L−1 (R2, 0.998) with a low detection limit of 0.6 U L−1. The method was successfully applied to investigate GGT
activity in human serum samples with acceptable recoveries (99.1–105.0%). The approach was also employed for screening
GGT inhibitors from different polar extracts of Schisandra chinensis. Results indicated that this strategy presents superior
characteristics for GGT sensing. This method has great potential as a candidate for diagnosis of GGT-related diseases and
high-throughput drug discovery.
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Introduction

γ-Glutamyl transpeptidase (GGT; EC 2.3.2.2) can catalyze γ-
glutamyl group from glutathione (GSH) or other γ-glutamyl
derivatives to amino acids and dipeptides [1]. The elevated

level of GGT associates with some diseases, including patho-
logic states of oxidative stress, acute hepatocellular damage,
diabetes, and cancers [1–3]. Therefore, in order to diagnose
GGT-related diseases, a sensitive and accurate strategy to de-
termine GGT activity in vitro and in vivo is urgently needed.
To date, many methods have been applied to assay GGT ac-
tivity including high-performance liquid chromatography
(HPLC) [4], colorimetric assays [5, 6], electrochemistry [7],
surface-enhanced Raman spectroscopy (SERS) [8], and fluo-
rescence (FL) sensing [9–11]. Notably, FL methods can re-
duce the effect of background noise and improve sensitivity,
and lots of organic FL probes have been designed to monitor
GGTactivity [11]. However, professional knowledge for mul-
tistep synthesis and potential toxicity of organic sensors may
affect their development [12].

Carbon dots (CDs) had gained considerable attention in
biosensing and bioimaging due to their convenient prepara-
tion, chemical stability, low toxicity, and high biocompatibil-
ity [13, 14]. CDs have been well fabricated and utilized to
sense pH [15], ions [16], organic pollutants [17], and biolog-
ical molecules [18, 19]. Among them, CD-based FL assays of
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enzyme activities were still a challenging task due to the fab-
rication of suitable fluorophore–quencher pair to ensure effec-
tive detection. Tang et al. assayed alkaline phosphatase (ALP)
activity based on β-cyclodextrin–modified CDs through host–
guest recognition of ALP catalytic product and its photoin-
duced electron transfer (PET) with CDs [20]. Chang et al.
designed a fluorescent turn-on biosensor based on fluores-
cence resonance energy transfer (FRET) from GSH function-
alized Mn-doped ZnS quantum dots to graphene oxide to de-
termine glutathione S-transferase [21]. FL probes based on
inner filter effect (IFE) between enzyme catalytic products
and CDs were fabricated for determination of α-glucosidase
[22, 23], β-glucuronidase [24, 25], xanthine oxidase [26], al-
kaline phosphatase [27], and cholinesterase [28] activities.
IFE occurs if the absorption spectra of absorbers overlap with
the excitation or emission spectra of fluorophores [22].
Compared with other sensing mechanisms, IFE does not re-
quire complex operation processes or CD functionalization.
IFE has shown enhanced sensitivity of FL probes than pure
absorption methods by transforming absorbance signals to FL
signals [25]. However, to our best knowledge, there is no
report about IFE-based FL probes to sense GGT activity.
GGT inhibitors, from natural products due to their multitarget
therapy, curative effect, and less side effect, may be explored
as anticancer candidates. Therefore, it is still necessary to de-
velop a sensitive and rapid platform for GGTactivity detection
and its inhibitor evaluation.

Here, an effective and sensitive FL probe for GGT assay
and its inhibitor evaluation was fabricated using nitrogen-
doped carbon dots (N-CDs) based on IFE. N-CDs with bright
green emission at 510 nm under 408-nm excitation were syn-
thesized by hydrothermal treatment of catechol and
ethylenediamine. γ-L-Glutamyl-4-nitroanilide (γ-G4NA) was
chosen as the GGT-specific substrate. Through GGTcatalysis,
4-nitroanilide (4-NA) was released and functioned as the ab-
sorber in IFE to turn off the FL of N-CDs, due to the good
overlap between absorption of 4-NA (381 nm) and excitation
spectrum of N-CDs (Scheme 1). The FL sensor can not only
be applied to assay GGT activity but also screen the GGT
inhibitors from natural products. This strategy possessed
many merits including excellent selectivity, high sensitivity,
and low toxicity which showed great potential for clinic diag-
nosis and drug discovery.

Materials and methods

Reagents and instruments

γ-Glutamyl transpeptidase (GGT; EC 2.3.2.2) from bovine
kidney was purchased from Yuanye Bio-Technology Co.,
Ltd. (Shanghai, China, http://www.shyuanye.com). γ-L-
Glutamyl-4-nitroanilide (γ-G4NA) was bought from Alfa

Aesar (Shanghai , China , ht tps : / /www.alfa .com).
Glycylglycine (Gly-Gly), 4-nitroanilide (4-NA), and catechol
were supplied by Energy Chemical Co., Ltd. (Shanghai,
China, https://www.energy-chemical.com). Ethylenediamine,
FeCl3, KCl, CaCl2, NaCl, Cu(NO3)2, Zn(NO3)2, and MgSO4

were provided by Sinopharm Chemical Reagent Co., Ltd.
(Beijing, China, http://en.reagent.com.cn). L-Histidine (L-
His), L-phenylalanine (L-Phe), L-leucine (L-Leu), L-serine (L-
Ser), L-cysteine (L-Cys), L-glycine (L-Gly), L-isoleucine (L-
Lle), L-proline (L-Pro), L-threonine (L-Thr), L-valine (L-Val),
glutathione (GSH), and schizandrin A were obtained from
Aladdin Reagent Co., Ltd. (Shanghai, China, https://aladdin-
e.com). Ultrapure water was obtained through 18.25 MΩ cm
by Molecular water purification system (http://www.chem17.
com/st172141/). Phosphate-buffered saline (PBS) powder
(pH 7.2–7.4) was brought from Solarbio (Beijing, China,
http://www.Solarbio.com). The PBS solution (10 mM) was
prepared by water dilution, which contained NaCl (137 mM)
, Na2HPO4 (8 mM), and NaH2PO4 (2 mM). All reagents were
of analytical grade and used without further purification.

Morphologies and sizes were characterized by a HT7700
transmission electron microscope (TEM, Hitachi, Japan,
https://www.hitachi.com) with an accelerating voltage of
200 kV. X-Ray photoelectron spectroscopy (XPS) was obtain-
ed with Escalab Xi+ (Thermo Fisher Scientific, USA, https://
www.thermofisher.com/cn/zh/home.html). X-Ray diffraction
(XRD) was performed on Empyrean (PANalytical,
Netherlands, https://www.malvernpanalytical.com/en/).
Ultraviolet-visible (UV-vis) absorption spectra were conduct-
ed on a UV-2600 UV-vis spectrophotometer (Shimadzu,
Japan, https://www.shimadzu.com). Fourier-transform infra-
red spectra (FT-IR) were measured by Spectrum Two
(PerkinElmer Ltd., USA, https://www.perkinelmer.com.cn).
FL decay time curves were collected on a FluoTime 100
spectrofluorometer (PicoQuant, Germany, https://www.
picoquant.com). FL spectra were recorded with a LS-55 spec-
trofluorometer (PerkinElmer Ltd., USA, https://www.
perkinelmer.com.cn) with a voltage of 740 V under 408-nm
excitation, wavelength range of 430–650 nm, and slit widths
of 10 nm and 15 nm for excitation and emission, respectively.

Preparation of N-CDs

Detailed procedures for preparation of N-CDs are shown in
Electronic Supporting Material (ESM).

IFE-based FL detection of GGT activity

FL assay for GGT activity was performed as follows. Briefly,
a series of GGT solutions from 0 to 150 U L−1 containing γ-
G4NA (0.75 mM) and Gly-Gly (16.7 mM) were prepared in
PBS (10 mM, pH 7.4). After shaking and incubation at 37 °C
for 35 min, mixtures (20 μL) were added with N-CD solution
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(200 μL, 0.14mgmL−1). Then, the solution was incubated for
another 1.0 min at room temperature, and FL intensity was
measured at 510 nm with excitation wavelength at 408 nm.
The negative control experiment was processed with increas-
ing concentrations of deactivated GGT. The deactivated GGT
was obtained by being heated at 100 °C for 30 min. Possible
interferents were also investigated including other enzymes,
amino acids, and metal ions. Activities of glucose oxidase
(GOx), α-glucosidase, ALP, and coenzyme A (CoA) were
set at 5000 U L−1. Concentrations of amino acids (L-His, L-
Phe, L-Leu, L-Ser, L-Cys, L-Gly, L-Lle, L-Pro, L-Thr, L-Val),
GSH, and metal ions (Fe3+, Cu2+, Mg2+, Zn2+, Na+, K+, Ca2+)
were all at 500 μM.

GGT inhibitor investigation

Schisandra chinensis was bought from a local drugstore
(Changsha, China), which was identified by Prof. Mijun
Peng, Guangdong Institute of Analysis, Guangzhou, China.
Voucher specimen (SC201905) was stored at College of
Chemistry and Chemical Engineering, Central South
University, Changsha, Hunan, China.

S. chinensis was dried, crushed, and sieved (500 mesh).
Powdered samples (100.0 g) were divided into five parts
(20 g per part). The five parts were immersed with water,
methanol, ethanol, n-butanol, and ethyl acetate, separately.
After supersonic extraction for 120 min at 70 °C, the super-
natant was filtered and dried under reduced pressure to
achieve water extract (391.0 mg), methanol extract
(30.4 mg), ethanol extract (30.1 mg), n-butanol extract
(72.5 mg), and ethyl acetate extract (22.7 mg). Different con-
centrations of extracts containing GGT (50 U L−1), γ-G4NA
(0.75 mM), and Gly-Gly (16.7 mM) were incubated for
35 min at 37 °C. After that, reaction solution (20 μL) was

introduced into N-CD solution (200 μL, 0.14 mg mL−1) for
FL assay to evaluate inhibition efficiency.

GGT activity assay in human serum samples

Human serum samples were collected from adult volunteers at
School Hospital of Central South University and stored frozen
before use. The assays of GGT in human serum samples were
processed as follows. In brief, serum samples (100 μL) were
mixed with γ-G4NA (1 mM, 300 μL) and Gly-Gly (400 mM,
16.7 μL). After shaking and incubation at 37 °C for 35 min,
mixtures (20 μL) were taken out and incubated with N-CD
solution (200 μL, 0.14 mg mL−1) for another 1.0 min at room
temperature. Then, the FL intensity was measured at 510 nm
with excitation wavelength at 408 nm. In recovery tests, for
human serum sample 1 three levels of GGT at 2.0, 50.0, and
90.0 U L−1 were added, whereas for human serum sample 2,
three levels of GGT at 5.0, 40.0, and 70.0 U L−1 were added.

Results and discussions

Choice of materials

N-CDs with prominent optical properties and functional
groups present advantages including photostability, water sol-
ubility, and good biocompatibility, which then present out-
standing advantages in biosensing. When the excitation spec-
trum of N-CDs overlaps the absorption spectrum of GGT
hydrolysate 4-NA, IFE happens between N-CDs and 4-NA.
Then, the GGT activity can be determined. The maximum
absorption wavelength of 4-NA is about 381 nm. Notably,
catechol and ethylenediamine, two common chemicals as car-
bon and nitrogen sources, can be hydrothermally treated to

408 nm 510 nm 408 nm 510 nm Schisandra chinensis

Inner filter effect
Water extract

Methanol extract
Ethanol extract

n-Butanol extract
Ethyl acetate extract

Inhibitors

Nitrogen-doped Carbon Dots (N-CDs)

-L-Glutamyl-4-nitroanilide ( -G4NA)

-Glutamyl transpeptidase (GGT) 4-Nitroaniline (4-NA)

Scheme 1 Schematic
representation of fluorometric
determination of the activity of γ-
glutamyl transpeptidase (GGT)
and its inhibitors by using inner
filter effect (IFE) of nitrogen-
doped carbon dots (N-CDs)
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prepare N-CDs with maximum excitation wavelength at about
400 nm [25]. Then, catechol and ethylenediamine were select-
ed to prepare N-CDs. As depicted in Fig. S1 (ESM), the
highest FL intensity is acquired when the molar ratio of cate-
chol and ethylenediamine is 1:1.8, reaction time is 10 h, and
hydrothermal reaction temperature is 180 °C.

Characterization of N-CDs

TEM image confirms that N-CDs with good monodispersion
and narrow size distribution (1.0–2.2 nm) have been success-
fully synthesized (Fig. 1a). Element components and surface
function groups of N-CDs have been analyzed by XPS and
FT-IR. As seen in Fig. 1b, full-range XPS of N-CDs emerges
with three major peaks at 284.8 (C1s), 399.1 (N1s), and
531.7 eV (O1s). In C1s spectrum (Fig. S2A, ESM), peaks at
around 284.2, 285.1, 286.3, and 288.8 eV are attributed to
C=C, C–C, O=C–O, and C=O groups, respectively [22].
Peaks at 399.0 and 400.8 eV correspond to (C)3-N and N–H
groups in N1s spectrum (Fig. S2B, ESM), respectively, and
indicate the existence of nitrogen [25]. In Fig. 1c, FT-IR spec-
trum has been performed to identify functional groups of N-
CDs, and broad absorption bond at 3300 cm−1 belongs toO–H
and N–H stretching vibrations. The peak at 1630 cm−1 is as-
cribed to C=C stretching of polycyclic aromatic hydrocar-
bons. C=N, C–N, and C–N= stretching bands appear at
1494, 1386, and 1335 cm−1, respectively. Absorption bonds
emerge at 1230 and 1085 cm−1 corresponding to C–O
stretching vibration and C–O–C stretching, respectively [22,
26]. UV-vis spectrum of N-CDs exhibits two bands at 270
(π→ π* transition of aromatic C=C bonds) and 410 nm
(n→ π* transition of carbonyl or amine groups) (Fig. 1d)
[25]. Excitation and emission wavelengths of N-CDs are
408 and 510 nm, respectively (Fig. 1d). In addition, XRD
pattern of N-CDs shows one peak at around 2θ = 21° (Fig.
S2C, ESM), which corresponds to the (002) lattice plane,
and is consistent with the result in previous reports of N-
CDs [25]. In Fig. S2D (ESM), FL spectra of N-CDs display
strong emission at around 510 nm by different wavelengths
from 348 to 438 nm. Emission spectra are nearly independent
of excitation spectra, which indicates that the sizes of N-CDs
are relatively uniform [24]. Quantum yield (QY) of N-CDs is
30.5% by using quinine sulfate as the reference (QYmeasure-
ment method was presented in ESM).

FL sensing mechanism of GGT activity based on IFE

IFE is due to the absorbers absorbing the excitation or emission
energy of fluorophores in the detection system, and then leads to
the quenching of FL intensity. In this study, γ-G4NA is
employed as substrate of GGT. When GGT is introduced into
mixtures of γ-G4NA and Gly-Gly, the γ-glutamyl group will be
transferred from γ-G4NA to Gly-Gly and hydrolysate product of

4-NA is released [29]. 4-NA acts as an absorber and N-CDs
serve as fluorophores in IFE. As shown in Fig. 2a, maximum
absorption of γ-G4NA is at 318 nm, and the influence on FL
intensity of N-CDs can be neglected (Fig. 2b). The absorption
peak at 381 nm of 4-NA overlaps greatly with the excitation
spectrum of N-CDs at 408 nm, reducing the FL intensity of N-
CDs at 510 nm. By the IFE-based process, the absorbance sig-
nals are transformed to FL signals to improve the selectivity,
sensitivity, and rapid assay for GGT activity. In addition, FL
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Fig. 1 a TEM image of N-CDs (inset, particle size distribution of N-
CDs); b XPS survey spectrum of N-CDs; c FT-IR spectrum of N-CDs;
dUV-vis absorption spectrum of N-CDs, and the excitation and emission
spectra of N-CDs
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lifetime can provide quenching evidence for IFE-based.
Figure 2c shows that the FL lifetimes of N-CDs are 3.97 and
3.96 ns in the absence or presence of reaction solution of γ-
G4NA and GGT, respectively, and are almost unchanged.
Hence, FL quenching is not due to FRETor dynamic quenching
[26, 30]. To investigate the quenching behavior of 4-NA on FL
of N-CDs, the Stern–Volmer equation can be employed (ESM).
As shown in Fig. S3 (ESM), F0/F shows a good linear relation-
ship (F0/F = 0.016 cq + 1.03) with 4-NA concentration. In this
case, the value of Kq is calculated to be 4.03 × 10

12 M−1S−1. The
quenching mechanism is static quenching because Kq is larger
than 1.00 × 1010 M−1S−1 [16]. Subsequently, the contribution of
IFE was estimated according to the absorption characteristics of
N-CDs and 4-NA (ESM). As described in Fig. S4 (ESM), IFE is
the major quenching mechanism with the increase of 4-NA
concentration.

Furthermore, UV-vis absorption spectra of γ-G4NA being
a hydrolysate with GGT have been analyzed. As shown in
Fig. 2d, UV-vis absorbances at 318 nm and 381 nm were
gradually decreasing and increasing, respectively, with GGT
activity ranging from 0 to 150.0 U L−1. The colors of the
reaction solutions change obviously from colorless to pale
yellow due to the formation of 4-NA (Fig. 2e). Colorimetric
assay, which is based on the color change of 4-NA driven by
GGT, is still being employed for commercial GGT assay kits
[10]. However, it usually shows lower sensitivity and is less
discriminatory than FL methods [31]. By employing IFE-
based FL sensor, a sensitive approach for monitoring GGT
hydrolysate reaction had been developed.

FL assay for GGT activity

To establish a highly specific sensor for GGT, the main
influence conditions on GGT activity have been investi-
gated, such as concentrations of N-CDs, pH of reaction
solution, temperature, enzyme reaction time, and incuba-
tion time. Various N-CD concentrations (0.06, 0.10, 0.14,
0.18, and 0.22 mg mL−1) have been mixed with reaction
solution of γ-G4NA (0.75 mM), Gly-Gly (16.7 mM), and
GGT (50.0 U L−1). Results show that when concentration
of N-CDs is 0.14 mg mL−1, FL intensity and quenching
efficiency are the highest (Fig. 3a). The influence of PBS
buffer with various pH (6.5–8.0) has been evaluated. As

300 400 500 600
0.0

0.5

1.0

-G4NA
4-NA

ecnabrosb
A

).u.a(

Wavelength (nm)

0

200

400

600Em
Ex

F
L

 I
nt

en
si

ty
 (

a.
u.

)a

450 500 550 600 650
0

200

400

600 N-CDs + -G4NA + GGT
 N-CDs + -G4NA N-CDs

).u.a(
ytisn etn I

L
F

Wavelength (nm)

b

10 20 30 40
0

5000

10000

stnuo
C

Time (ns)

N-CDs
 N-CDs+ -G4NA+GGT

c

250 300 350 400 450

0.0

0.2

0.4

0.6

0.8

150 U L-1

   0 U L-1

).u.a(
ecnabrosb

A

Wavelength (nm)

GGT activity (U L-1)d

e

Fig. 2 a UV-vis absorption spectra of γ-G4NA, 4-NA, and FL excitation
and emission spectra of N-CDs; b The change of FL spectra of N-CDs in
the presence of mere N-CDs, N-CDs + γ-G4NA (0.75 mM), and N-CDs
+ γ-G4NA (0.75 mM) + GGT (110 U L−1); c the FL decay curves of N-
CDs in the absence and presence of reaction solution of γ-G4NA
(0.75 mM) + GGT (110 U L−1); d UV-vis absorption spectra of enzyme
reaction solutions on various activities of GGT (0–150.0 U L−1); e pho-
tograph of enzyme reaction solutions with different levels of GGT activ-
ity. F0 and F were the FL intensity of N-CDs in the absence and presence
of GGT reaction solution, respectively

R

Microchim Acta (2020) 187: 182 Page 5 of 9 182



seen in Fig. 3b, pH at 7.4 gives the highest FL quenching
efficiency, which is suitable for biological applications.
Several reaction temperatures (27–47 °C) have also been
investigated, and temperature at 37 °C yields the maxi-
mum FL quenching efficiency (Fig. 3c). As shown in Fig.
3d, studies on GGT reaction time with substrates show a
fast hydrolysis process and FL quenching efficiency
reaches an approximate plateau within 35 min. So,
35 min is selected as the optimal enzyme reaction time.
Incubation time between reaction solution and N-CDs has
also been assayed in Fig. 3e. As reaction time prolongs,
FL quenching efficiency tends to level off after 1.0 min,
so 1.0 min was used as the incubation time.

Under optimal conditions, FL response of N-CDs to
GGT at different activities has been measured. As shown
in Fig. 4a, FL intensity of N-CDs decreases with increas-
ing GGT activity, and there is a good linear relationship
between FL quenching efficiency ((F0−F)/F0) (y) and
GGT activity (x) in the range 2.0–10.0 (y = 0.007x −
0.001, R2 0.982) and 10.0–110.0 U L−1 (y = 0.004x +
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0.054, R2 0.998) (Fig. 4b), respectively. The detection
limit (3σ/S, σ is the standard deviation of blank samples,
n = 12, and S is the slope of linear equation) is estimated
to be 0.6 U L−1. The linear range and LOD were enough
to directly monitor the GGT levels in human serum, since
the normal GGT activity is 5.0–55.0 U L−1 and 15.0–
85.0 U L−1 for adult females and males, respectively
[10, 31]. Furthermore, the FL-based method has compa-
rable or contains a wider linear detection range than re-
ported methods (Table 1). As shown in Fig. S5 (ESM) and
Fig. 4b, the FL intensity and quenching efficiency are
kept stable with increasing concentration of deactivated
GGT.

We also investigate the selectivity of N-CDs toward some
biological substances including amino acids (L-His, L-Phe, L-
Leu, L-Ser, L-Cys, L-Gly, L-Lle, L-Pro, L-Thr, L-Val), biothiol
(e.g., GSH), metal ions (e.g., Fe3+, Cu2+,Mg2+, Zn2+, Na+, K+,
Ca2+), and enzymes (e.g., GOx,α-Glu, ALP, CoA). As shown
in Fig. 5, negligible interference on N-CDs FL quenching
efficiency is observed. In Fig. S6 (ESM), FL intensities of
N-CDs are nearly invariable when concentration of NaCl
reaches up to 800 mM. It guarantees the favorable capability
of N-CDs in selectivity of ions for biological analysis. N-CDs
exhibit excellent selectivity for GGT, which may due to the
specific cleavage of γ-glutamyl group in γ-G4NA by GGT
[32].

Evaluation of GGT inhibitors

Natural products are abundant, have relatively less side effects
in clinical usage, and may be important sources with greater
inhibition of GGT activity. S. chinensis is an effective medic-
inal plant in anti-hepatitis B virus activity and alleviating liver
damage [33], and is a hepatitis therapeutic [34]. Lignans in
S. chinensis can decrease GGT levels significantly [33].
Herein, schizandrin A (positive control), water extract, meth-
anol extract, ethanol extract, n-butanol extract, and ethyl ace-
tate extract of S. chinensis have been employed to evaluate
GGT inhibitory activities. With introduction of GGT inhibi-
tors, the activity of GGT hydrolysis of γ-G4NA to 4-NA can
be restricted, and then the IFE is reduced. Then, FL quenching
of N-CDs can be recovered depending on the concentration of

inhibitors. The inhibiting efficiency is expressed by inhibition
ratio (I (%)), and the equation is:

I %ð Þ ¼ FI−F0ð Þ= FB−F0ð Þ � 100

where FI is the FL intensity in the presence of GGT inhibitors,
F0 stands for the FL intensity in the presence of GGTwithout
inhibitors as blank reference, and FB is the initial FL intensity
of N-CDs, γ-G4NA, and Gly-Gly without GGT as control
reference. Sample concentration providing 50% inhibition
(IC50) is calculated from the graph plotting inhibition percent-
age. Figure S7 (ESM) presents that FL intensity of N-CDs is
enhanced with increasing concentration of schizandrin A, in-
dicating the inhibition of the activity of GGT. IC50 value of

Table 1 Comparisons of reported
strategies for GGT activity assay Methods Linear range (U L−1) LOD (U L−1) References

Colorimetric method 0.18–4 –a [6]

Surface-enhanced Raman spectroscopy 0.2–200 0.09 [8]

Two-photon fluorescent probe 1–35 0.057 [9]

Ratiometric fluorescent probe 0–50 0.76 [10]

N-CD–based fluorescence method 2.0–10.0

10.0–110.0

0.6 This work

a Not detected
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Fig. 5 a FL responses of N-CDs to some amino acids and GSH; b FL
responses of N-CDs toward several metal ions, ALP, α-Glu, CoA, GOx,
and GGT. The concentrations of amino acids, metal ions, and GSH were
500 mM, the activity of ALP, α-Glu, CoA, and GOx were 5000 U L−1,
and the activity of GGTwas 50.0 U L−1. F0 and Fwere the FL intensity of
N-CDs in the absence and presence of the interfering substances, respec-
tively. Error bar represents the standard deviation (n = 3)
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schizandrin A is calculated to be 0.155 mgmL−1. For different
extracts, the IC50 values of water extract, methanol extract,
ethanol extract, n-butanol extract, and ethyl acetate extract of
S. chinensis are 6.2, 7.9, 13.1, 2.3, and 17.4 mg mL−1, respec-
tively (Fig. 6, and Fig. S8, ESM). Obviously, n-butanol extract
with polar components is rich of GGT inhibitors, which de-
serves further preparative isolation and structural elucidation.
The results demonstrate that the method can be employed to
screen GGT inhibitors from natural products for new drug
discovery.

Human serum sample detection

As we know, the activity of human serum GGT is a biomarker
in diagnosing diseases, for instance, hepatitis, alcoholic liver
injury, and liver cancer. Here, we attempt to assay GGT activ-
ity in human serum to verify the practicality and reliability of
the strategy based on N-CDs. As shown in Table 2, GGT
activities in healthy serum samples are 9.7 and 24.3 U L−1,
respectively, which are in the range of normal GGTactivity. In
addition, by the traditional colorimetric method, GGT activi-
ties in healthy serum samples are determined to be 8.3 and
25.4 U L−1. The fluorometric and colorimetric agreed very

well. After spiking different activities of standard GGT, recov-
eries are 99.1–105.0% and relative standard deviations (RSD)
are 0.8–3.2%. It indicated that this FL probe has great poten-
tial for detection of GGT levels in human serum in clinical
studies.

Conclusions

In summary, we have, for the first time, developed a FL probe
for GGT activity monitoring and evaluation of its inhibitors
based on IFE of N-CDs. γ-G4NA is chosen as a specific
substrate of GGT due to the hydrolysis product; 4-NA is the
absorber in IFE, while in N-CDs, it is the IFE fluorophore.
This method also has been applied to GGT assay of human
serum samples. In addition, it can be applied as a new tool for
screening GGT inhibitors from natural products for new drug
discovery. In the future, this strategy can be expanded to detect
other important enzymes in bioanalysis. However, this meth-
od also has limitations (e.g., long synthesis time). Thus, we
aim to simplify the preparation process of CDs to determine
GGT more conveniently in the future.
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