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Abstract
A miniaturized and integrated bioassay was developed based on molybdenum disulfide (MoS2) field-effect transistor (FET)
functionalized with bovine serum albumin-folic acid (BSA-FA) for monitoring FOLR1. We performed the electrical test of
FOLR1 within the range 100 fg/mL to 10 ng/mL, and the limit of detection was 0.057 pg/mL. The ultrahigh sensitivity of the
bioassay was realized by ligand-protein interaction between FA and FOLR1, with a ligand-protein binding ratio of 3:1. The
formation of FA-FOLR1 was confirmed with ELISA. The binding affinity dissociation constant KD was 12 ± 6 pg/mL. This
device can work well for FOLR1 detection in human serum, which presents its promising application in point-of-care diagnosis.
This study supports the future applications of such ligand-protein-based bioassays in the clinical practices.
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Introduction

With the advances of bioassay technology, early diagnosis of
cancer has been rapidly developed, contributing to the decline
of cancer mortality. In vitro diagnostics (IVD) has realized
accurate, sensitive, and specific detection of biomarkers in
blood and tissues, which has become indispensable in clinical
practices [1–4]. The levels of cancer-related biomarkers in

blood and tissue are important indicators for determining can-
cer development [5]. Folate receptor 1 (FOLR1) is a
glycosylphosphatidylinositol-anchored epithelial cell surface
glycoprotein [6–9]. A recent study reported that the serum
FOLR1 level is significantly elevated in patients with ovarian
cancer, compared to that of both healthy controls and patients
with benign gynecological conditions [10]. In addition, levels
of FOLR1 showed better accuracy for determining ovarian
cancer than other biomarkers including CA125 [11, 12].
Hence, FOLR1 may be a new promising biomarker of liquid
biopsy for cancer diagnosis.

Currently, most of FOLR1 bioassays have been realized
based on enzyme-linked immunosorbent assay (ELISA)
[13–15]. The involvement of antibodies leads to high cost
[16], due to the complex purification process and low yield.
[17] Another problem is the inherent instability of antibody
[18]. The antibody is susceptible to external environment such
as high temperature and low pH, which results in protein de-
naturation and limits the consistency of detection result [19].
Taken together, it is necessary to develop new strategy for
biomarker capture. Recently, Zhang et al. reported a ligand-
protein recognition manner, with hyaluronic acid ligand as the
probe to capture CD44 [20]. Liu et al. designed ligand-protein
sensor for the detection of transferrin receptor [21]. Compared
with the antibody, the ligand-based specific recognition pre-
sented attractive advantages, such as superior capture
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efficiency, high stability, facile storage, and low cost for mass
production [22–24]. Notably, many researchers have testified
that FOLR1 could specifically bound to folic acid (FA) and its
derivatives with a high affinity [8, 25]. As a result, ligand-
protein interaction like FA-FOLR1 provides an opportunity
to develop new analytical platform to detect FOLR1.

Over the past decade, label-free field-effect transistor
(FET) bioassays have exhibited many prominent advantages
as a promising point-of-care (POC) technique, including low
cost, high sensitivity, high speed, small volume, intrinsic sig-
nal amplification, and circuit integration [26–29]. Many FET-
based bioassays have been widely used in tumor biomarkers,
such as PSA [30, 31] and MMP-9 [19]. FET-based bioassays
can accumulate hole or electron effectively on the channel
mate r ia l s , which can be modi f ied wi th sur face
functionalization. Therefore, it is able to achieve rapid re-
sponse to different analytes with high selectivity and sensitiv-
ity [32–34].

In general, the configuration of FET bioassay is similar to
that of metal-oxide-semiconductor FET. One interface of the
channel is covered by insulating membrane. However, some
reports suggested that the sensitivity and selectivity of FET
bioassay would be hindered by the insulating membrane [30,
35, 36]. Because the thickness of insulting membrane en-
larged the distance between analyte and semiconductor. In
addition, insulator plays the role of capacitor and determines
the sensing current. The sensitivity of the device can be dra-
matically affected with the defect and dielectric constant of it
[37, 38]. Recently, many membraneless FET bioassays with
high sensitivity have been reported [39, 40]. For example, Liu
et al. applied bare MoS2 as the FET sensing channel to mon-
itor DNA fragments, achieving an ultrahigh sensitivity with a
limit of detection (LOD) below 100 aM [27].

Beside insulator, the dimension of the channel also plays a
vital role in FET bioassay. The channel based on two-
dimensional (2D) materials such as graphene and transition
metal dichalcogenides have the high surface-to-volume ratio,
which could supply more analyte binding sites and improve
the sensitivity of the bioassay [41]. However, although
graphene provides high mobility and sensing layer with atom-
ic thickness, the sensitivity and response of graphene-based
bioassay would be seriously restricted due to the absence of
band gap and small on/off current ratio [42, 43]. Additionally,
when utilizing 2Dmaterials in bioassay, we must consider the
toxicity of the materials. For example, some research results
indicated that the 2D materials such as WSe2 [44], VTe2 [45],
and NbTe2 [46] showed poor biocompatibility. Alternatively,
MoS2 is one of the most extensively studied 2D semiconduct-
ing materials. The development in MoS2-based bioassays as-
cribed to the inherent advantages of MoS2, such as exception-
al biocompatibility [47], easy modification [48], ultrafast sat-
urable absorption [49], high on/off ratios, and high surface-to-
volume ratio [50]. In particular, mechanically exfoliatedMoS2

sheets with minimal defects can achieve relatively high mo-
bility, on/off current ratio, and current level in FETs [51].
Until now, many ultrasensitive membraneless FET bioassays
prepared with mechanically exfoliated MoS2 have been re-
ported for the detection of PSA [52] and IgG [53]. However,
few studies have been performed on the integration of
membraneless MoS2 FET with ligand-protein interaction for
the detection of FOLR1.

In this work, a membranelessMoS2 FET bioassay based on
the ligand-protein interaction has been firstly prepared for
FOLR1 detection. In this bioassay, BSA-FA is serving as
the probe, that is, FA ligand as the capture component and
BSA as the conjugate molecule to improve the biocompatibil-
ity and water solubility. The specific binding between BSA-
FA and FOLR1 could mediate electrical signal and give ultra-
high sensitivity of the bioassay. A good linearity for threshold
voltage (Vth) vs FOLR1 concentrations can be observed, with
an extracted LOD of 0.057 pg/mL. In addition, a nonaqueous
environment measurement has been applied in this study,
which not only simplified the preparation process but also
avoided the ionic screening effects.

Experimental section

Materials and reagents

Molybdenum disulfide (MoS2) was purchased from Resemi
( S u z h o u , C h i n a ) . 1 - P y r e n e b u t a n o i c a c i d N -
hydroxysuccinimidyl ester (PASE, 95%) was obtained from
Sigma-Aldrich (China). Bovine serum albumin (BSA, 98%)
was purchased from J&K (China). Bovine serum albumin-
folic acid (BSA-FA) was purchased from Cusabio (Wuhan,
China, www.cusabio.cn). Recombinant human FOLR1
protein (95%) and human FOLR1 antibody were obtained
from R&D (USA).

The fabrication of MoS2 device

Few-layer MoS2 flakes were produced by mechanical exfoli-
ation and then transferred onto p++Si substrate with 300 nm
oxides via Scotch tape. That is, we first adhered adhesive tape
to the surface of the bulk materials and peeled it off. Then,
press the tape firmly yet gently onto the silicon wafer piece,
peeling it off, and the silicon wafer washed with isopropanol
to clean the organic residue. The wafer can now be viewed
under the optical microscope. The thickness of MoS2 mate-
rials can be roughly estimated by the color of it, which will
vary depending on the microscope. Finally, the few-layer
MoS2 flakes were produced. TEM copper grid was then used
to make patterns of electrodes on the assurance MoS2 flakes.
Subsequently, the source and drain electrodes (In/Au
5/50 nm) were formed via vacuum coating machine.
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Thermal evaporation was carried out at the rate of 0.2 Å/s in
the study. Removing the TEM copper grid template and the
source and drain electrodes connected by the material were
constructed into field-effect transistor device. The detailed
preparation process is shown in Scheme S1 in the Electronic
Supplementary Materials. The device was annealed at 200 °C
for 2 h in mixed gases (Ar/H2, 100/10 sccm) to improve the
contacts between MoS2 and electrodes, as well as removing
residual organic contaminants during fabrication.

Immobilization of BSA-FA

To anchor BSA-FA on the channel of the MoS2 FET, the
device was firstly immersed into 5 mMol 1-pyrenebutanoic
acid succinimidyl ester (PASE) in DMF and incubated for 2 h.
The PASE-coated device was washed sequentially in DMF,
ethanol, and deionized (DI) water. Then, 10 μL of 100 μg/mL
BSA-FA in 1× PBS (pH 7.2–7.4) was dropped on the chip and
incubated overnight at 4 °C in a refrigerator for conducting the
chemistry reaction between BSA-FA and PASE. The FET
bioassay was rinsed with 1× PBS, DI water in order to remove
the unbound BSA-FA. After that, the device was blocked with
BSA solution (50 μg/mL, 10 μL) for 1 h to occupy nonspe-
cific binding sites, followed by washing with 1× PBS, DI
water, and drying with N2. Ultimately, the device was stored
at 4 °C in a refrigerator for further use.

Detection of FOLR1 in PBS

The electrical response of the FET was measured with a semi-
conductor parameter analyzer (Keithley, 2643B) and a probe
station (CascadeMicrotech, MPS 150) at room temperature in
air. In the measurements, 10 μL of FOLR1 in 1× PBS
(pH 7.2–7.4) with a gradually increased concentration ranged
from 100 fg/mL to 10 ng/mL was added on the device surface
and incubated for 20 min at room temperature. Then, the chip
was rinsed with 1× PBS, DI water and dried with N2. The
MoS2 FET bioassay measurement was carried out after vari-
ous concentrations of FOLR1 treatment. The transfer curves
of the FET bioassay were measured with a silicon substrate as
the back gate and a fixed source-drain voltage Vds = 0.5 V.
The bioassay based on antibody-antigen mode for detecting
FOLR1 was carried out in the same condition. The only dif-
ference is that BSA-FA is replaced by anti-FOLR1.

Detection of FOLR1 in human serum sample

Serum samples were volunteered byQiyong Cai, the author of
this article. He is 29 years old and in good health. The obtain-
ed serum samples were stored at − 80 °C until use. Human
serum samples were treated by centrifugation at 2000×g for
10 min. The serum was diluted 10-fold. The recovery exper-
iment was performed toward 10-fold diluted serum spiked

with the different concentrations (50 pg/mL, 100 pg/mL,
200 pg/mL) of FOLR1. And then, six different concentrations
of FOLR1 in 10-fold diluted serum from 100 fg/mL to 10 ng/
mL were dissolved. All electrical measurement of MoS2 FET
bioassay for detection of various FOLR1 in human serum
remains the same as that described in PBS.

Selectivity and stability investigation

To determine the specificity of the bioassay for FOLR1, some
common pro te ins were inves t iga ted , inc lud ing
carcinoembryonic antigen (CEA), squamous cell carcinoma
antigen (SCCA), and P53, and the concentration is 10 ng/
mL. The measurement procedure remains the same as the
detection of FOLR1. The stability of the bioassay was con-
ducted bymonitoring the signal response to 10 pg/mL FOLR1
three times daily, and then the devices were stored at 4 °C in a
refrigerator.

BSA-FA-based ELISA for the detection of FOLR1

The 1 mg/mL BSA-FA was diluted to 10 μg/mL with
50 mMol carbonate buffer. 100 μL of BSA-FA solution
(10 μg/mL) was added in each well of 96 well polystyrene
plate and coated at 4 °C overnight. The coating solution was
removed and the plate was washed twice with 200 μL of 1×
PBS per well. Then, 200 μL of blocking buffer (0.5% BSA
solution) was added in each well to block the remaining
protein-binding sites for 2 h at room temperature. The plate
was washed twice with 1× PBS. Next, 100 μL of FOLR1
proteins (0 ng/mL, 1 ng/mL, 10 ng/mL, and 100 ng/mL)
was added and then captured with the pre-coated FA.
Because the recombination FOLR1 protein contained His
tag, mouse anti-His monoclonal antibody was served as the
detection antibody. Then, horseradish peroxidase–labeled
goat anti-mouse secondary antibody was added and reacted
with the detection antibody. Finally, the results were devel-
oped with tetramethylbenzidine (TMB) as colorimetric sub-
strate. Absorbance was measured in a plate reader (SPARK,
10M, TECAN).

Characterization

To confirm the functionalization of all molecules onto the
MoS2 surface, Raman spectroscopy was performed using
invia-reflex system with a 532 nm excitation laser. The sur-
face topography of MoS2 channel, functionalized with bio-
molecules in stepwise, was carried out using tapping-mode
atomic force microscope (AFM) (Bruker Dimension Icon).
To further investigate the immobilization of BSA-FA, X-ray
photoelectron spectroscopy (XPS) spectra of pristine and
BSA-FA-immobilized MoS2 were obtained by using AXIS
SUPRA system with Al X-ray source (Kα 1486.6 keV).
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Results and discussion

Fabrication of MoS2 FET bioassay

The fabrication procedure of the MoS2 FET bioassay is illus-
trated in Fig. 1. Prior to surface modification, back gate MoS2
FETwas prepared. In brief, mechanically exfoliated few-layer
MoS2 was transferred onto SiO2/Si substrate, where SiO2 with
the thickness of 300 nm functioned as the gate dielectric, and
the p-doped Si worked as the back gate. The Raman spectra
with the E1

2g and A1g modes were observed at 380 and
404 cm−1, respectively, which suggests that the exfoliated
material is indeed few-layer MoS2, as shown in Fig. S1.
Source/drain electrodes (In/Au 5/50 nm) were patterned on
MoS2 by thermal evaporation. Aiming to achieve superior
sensing performance and high field-effect mobility (μ = 10–
20 cm2V−1 s−1) [54], the large surface area of the channel with
a width of 12 μm and the thickness of MoS2 film ranged from
5 to 15 nm was chosen (Fig. S2). AFM image clearly showed
the exact thickness of MoS2 is 8 nm. Functionalization was
performed with layer-by-layer assembling. Firstly, PASE
molecules were attached onto MoS2 surface as the linker
[55]. Then, the amino group of BSA-FA was reacted with
carbonyl group of PASE via the N-hydroxy succinimide
(NHS) chemistry for immobilizing BSA-FA [40, 43]. Next,
BSA was applied as the blocking agent to prevent nonspecific
binding between FOLR1 and substrate material, as well as
blocking the excess carbonyl groups. Finally, the assay was
applied in detecting different concentrations of FOLR1, which
is specifically bound to BSA-FA. The variation of electrical
conductance was recorded synchronously.

Characterization of MoS2 FET bioassay

To validate the functionalization process, the MoS2 flake was
characterized by AFM in a stepwise manner. Compared to the
pristineMoS2 film surface topography, the root-mean-squared
(RMS) roughness of the immobilized BSA-FA increased from
0.217 to 1.54 nm, suggesting that BSA-FA is successfully
bonded to PASE (Fig. 2a, b). The RMS roughness of the
sample slightly increased to 1.58 nm after being blocked by
BSA, indicating that nonspecific binding sites are blocked
well (Fig. 2c). Lastly, the FOLR1 protein was introduced into
the MoS2 channel (Fig. 2d). The RMS roughness increased to
1.78 nm. Here, the value of RMS roughness of each step was
estimated from the full size of the image. Moreover, as shown
in Fig. 2d, in contrast to previous steps, the number of bright
spots is significantly increased, indicating an increased aver-
age height of the device surface. The topographic images of
stepwise modification are shown in Fig. S3. From AFM im-
ages, the average height increased by 1.2 nm after the device
was incubated in FOLR1 solution (Fig. S3d), which is lower
than that of FOLR1. Because the molecular weight of FOLR1
is roughly 25.4 kDa in this work. This may be due to the
diversity of binding directions of FOLR1 and BSA-FA and
measurement errors. These results clearly identified that the
FOLR1 proteins bond to BSA-FA immobilized on the FET
device.

The electrical characteristics in all steps were also mea-
sured to further testify the functionalization of the MoS2
FET. After the binding of charged biomolecules on bioas-
say channel, the signal transduction can be altered by elec-
trostatic gating and/or charge transfer, inducing the

Fig. 1 Schematic illustration of the preparation process of MoS2 FET bioassay for FOLR1 detection
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changes of sensing current. During the experiment, all bio-
molecules were in 1× PBS (pH 7.2~7.4). The isoelectric
point (pI) of BSA-FA, BSA, and FOLR1 is ~ 4.7, ~ 4.7,
and ~ 8.2, respectively, indicating that BSA-FA and BSA
are negatively charged, and FOLR1 is positively charged
in the PBS. Notably, both the theory of “pH-memory” and
many studies prove that the biomolecules retained ioniza-
tion state in a nonaqueous environment [31]. Therefore, as
depicted in Fig. 3a, the stepwise transfer characteristics of
MoS2 FET bioassay were observed under nonaqueous en-
vironment. The source-drain current (Ids) was measured as

a function of back gate voltage (Vgs) from − 60 to 60 V
with a set drain voltage (Vds) of 0.5 V.

As shown in Fig. 3b, step 1, the pristineMoS2 FET showed
typical n-type conductance, consistent with previously report-
ed results [19]. In addition, the linear output curve of the
device is presented in Fig. S4, demonstrating the presence of
Ohmic contact between In and MoS2. After dropping PASE
solution onto the device, a positive shift of threshold voltage
(Vth) from 8.18 to 10.3 V was obtained (Fig. 3b, step 2),
suggesting the p-type doping of PASE. Furthermore, Raman
spectroscopy was performed before and after PASE coupled

Fig. 3 Transfer curves (a) and Vth changes (b) of the MoS2 FET bioassay
functionalization process in a stepwise manner: (1) pristine, (2) pristine +
PASE, (3) pristine + PASE + BSA-FA, (4) pristine + PASE + BSA-FA +
BSA, (5) pristine + PASE + BSA-FA + BSA + FOLR1 (100 pg/mL).

Transfer characteristics of the bioassay were obtained with Vgs various
from − 60 to 60 V and Vds = 0.5 V (in order to show the current change
more clearly, the data with Vgs various from − 60 to − 20 V was omitted)

Fig. 2 Surface roughness of
AFM images of the same device
with pristine MoS2 (a) and
sequentially immobilizing with
BSA-FA (b), blocking with BSA
(c) and treating with FOLR1 (d)
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to MoS2. As shown in Fig. S5, the clear blue-shift of Raman
signatures was obtained as compared with pristine MoS2,
which confirms the p-type doping effect of PASE [56]. The
result is similar to the PASE-doped graphene in other studies
[57]. When negatively charged BSA-FA was reacted with
PASE, there is a considerable left-shifted Vth (Fig. 3b, step
3). This can be interpreted by improved surface negative
charge density of MoS2 and increased electron injection to
the MoS2 channel.

Notably, in our nonaqueous system, electrostatic gating
effect induced by the weakly charged BSA-FA can be ignored
[58]. Additionally, a previous study reported that electrons of
protein could be directly transferred into graphene or carbon
nanotube via the amine group [39]. For MoS2, we postulate
that the immobilization of BSA-FA could generate n-type
doping effect on MoS2, and, consequently, increase the on-
current. In other words, negatively charged biomolecules act
as electron donors causing left-shifted Vth, and increasing Ids.
This change is consistent with previously reported results [40,
57, 58]. To further prove the functionalization of BSA-FA, we
performed XPS measurement because the N-content of BSA-
FA can induce the changes of N 1s peaks. As shown in Fig.
S6, in contrast to the pristine MoS2, an additional peak area
and increased peak intensity was observed in N 1s core level,
which is assigned to the immobilization of BSA-FA on the
device. After the device was blocked in BSA (50 μg/mL)
solution, Vth showed a relatively small negative shift (Fig.
3b, step 4), implying that the amount of the immobilized
BSA is extremely lower than that of BSA-FA. Finally, the
positively charged FOLR1 (100 pg/mL) specifically com-
bined with BSA-FA, and the value of Vth is positively shifted
to 10.8V (Fig. 3b, step 5). It may be resulted from the opposite
charge between BSA-FA and FOLR1, in which FOLR1 de-
creased negative charge density on MoS2. As a result, the
electrons transfer in MoS2 is significantly hindered by
FOLR1, and consequently, the n-type doping effect of BSA-
FA is weakened. Thereby, FOLR1 functioned as p-type dop-
ant and decreased the on-current. To further identify the im-
mobilization of BSA-FA, BSA, and FOLR1, the Raman spec-
troscopywas performed (Fig. S7). After the stepwise BSA-FA
and BSA treatment, as shown in Fig. S7b, the frequency of the
E1

2g and A1g mode gradually decreases, indicating that BSA-
FA and BSA fixed on the device exhibits the n-type doping
effect [59]. When the device was incubated in FORL1 solu-
tion, the enhancement of Raman mode intensity proves the p-
type doping effect [60]. The above results certified that the
MoS2 FET bioassay was successfully fabricated in a stepwise
manner, in good agreement with AFM measurement result.

Feasibility study

Many researchers have reported that FOLR1 presented high
affinity with FA and its derivatives [8, 61]. We have tried to

verify whether the increased roughness and shifted Vth after
the FOLR1 combination are ascribed to the specific binding of
FOLR1 to BSA-FA. Conventional ELISA was performed
with various concentrations of FOLR1 ranged from 1 to
100 ng/mL. As shown in Fig. 4, optical density (OD) value
was increased with the improved concentration of FOLR1,
and the color of the solution was changed from colorless to
yellow correspondingly (Fig. 4, inset). These results prove
that BSA-FA can specifically bind to FOLR1, instead of sim-
ple charge interaction. They also demonstrated that the small
molecular FA can be alternative of antibody for the detection
of FOLR1.

Electrical response of various FOLR1 concentrations in
PBS

In order to obtain the optimal incubation time of the target
molecules, the specific binding curve was plotted. Fig. S8
presents the variation of Vth with binding time, at a fixed
FOLR1 concentration of 1 ng/mL. The dynamic equilibrium
of binding reaction was completed after 20 min. Thus, the
incubation time is set as 20 min for various concentrations
of FOLR1. In addition, the buffer is also a critical consider-
ation for the specific binding, and 1× PBS serving as the
optimal buffer. The result is related to Debye screening length,
namely the charged molecules on a certain length scale
(Debye length λD) would be screened by counterions. Many
studies reported that increased buffer ionic strengths yield a
reduced Debye length, according to the formula λD = 0.32
(I)−0.5, where I is the ionic strength of the buffer solution
[62]. Thus, the Debye length of 1× PBS (~ 0.7 nm) buffer
solution is shorter compared to that of 0.1× PBS (~ 2.3 nm)
and 0.01× PBS (~ 7.3 nm). The shorter Debye length may
allow the screening of more charges [63], thus promoting
the specific binding and improving the sensitivity of bioassay.

Fig. 4 Various concentrations of FOLR1 (1 ng/mL, 10 ng/mL, and
100 ng/mL) were monitored by BSA-FA-based ELISA
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The detection of different concentrations of FOLR1 was
performed by MoS2 FET bioassay in a nonaqueous environ-
ment. As shown in Fig. 5a, in the range between 100 fg/mL
and 10 ng/mL, the Ids-Vgs curves were obtained with Vgs var-
ious from − 60 to 60 V and Vds = 0.5 V. The bioassay blocked
with BSA and then immersed into PBS to establish a baseline
current. After incubating with positively charged FOLR1, the
Ids was decreased and the Vth was gradually shifted to the
positive gate voltage with increased concentrations
(Table S1), representing p-type doping effects on MoS2.
Moreover, as the concentration further increased to 10 ng/
mL, the electrical signal became stable, suggesting binding
sites become saturated. The same results were obtained inde-
pendently from three different FET bioassays (Fig. S9).

To effectively assess the quantification performance of this
bioassay, assay response is defined as ΔVth and calibrated as
ΔVth = Vth (C) – Vth (n = 0), indicating the variation of Vth

between the concentration of FOLR1 and the baseline. As
shown in Fig. 5b, the relationship between the calibrated re-
sponse ΔVth and FOLR1 concentration was summarized (the
data in Fig. 5a converted to 5b). When the concentration of
FOLR1 is above 1 ng/mL,ΔVth became stable, indicating that
all binding sites had theoretically reacted with it and the assay
signal reached saturated. Moreover, a great detection linearity
for FOLR1 with the concentration spanned from 100 fg/mL to
1 ng/mL was observed (Fig. 5b, Inset). The regression equa-
tion isΔVth = 1.17 × lgCFOLR1–1.26, and the correlation coef-
ficient is 0.9988. The standard deviation (RSD)was calculated
from measurements of three devices (n = 3), which is not sig-
nificantly deviated from the mean value (< 6%) at different
levels. Above result suggested high reproducibility for MoS2
bioassay. Furthermore, the LOD was estimated to be
0.057 pg/mL (S/N = 3), representing high sensitivity of FET
bioassay.

Compared with some presented detection methods
(Table S2), the developed MoS2-based FET bioassay exhibits
lower LOD, higher sensitivity, and faster response time. These

results supported the applications of FET bioassay for the
ultrasensitive and quantitative detection of FOLR1. In addi-
tion, the predominant detection performance is also attributed
to the strong binding affinity between FA and FOLR1.
Figure 5c shows CFOLR1/ΔVth plotted as a function of various
FOLR1 concentrations, which can be described by Hill-
Langmuir equation [33, 40, 57]:

CFOLR1

ΔV th
¼ CFOLR1

ΔV th;max
þ KD

ΔV th;max
ð1Þ

whereΔVth, max is the maximum change of the Vth, CFOLR1 is
the concentration of FOLR1, and KD is the binding affinity
dissociation constant for BSA-FA and FOLR1. The KD value
was estimated to be 12 ± 6 pg/mL, lower than that of currently
reported antibody-antigen bioassay [64], indicating the rela-
tively high affinity between the small molecular ligand FA
and FOLR1. To further prove FA ligand gives ultrahigh sen-
sitivity and quantification of the device, the FET bioassay in
antibody-antigen mode for detecting FOLR1 was performed.
Firstly, the reaction of dynamic equilibrium between anti-
FOLR1 and FOLR1 was carried out. The binding stability
was completed after 50 min (Fig. S10), which is longer than
that of ligand-antigen mode. Then, the transfer characteristics
of the device were obtained, as shown in Fig. S11a, and the
current decreases with increasing FOLR1 concentration. A
great detection linearity for FOLR1 with the concentration
ranged from 100 fg/mL to 1 ng/mL was observed, and the
KD value was also estimated to be 14 ± 7 pg/mL, as shown
in Fig. S11b and S11c. By contrast, the KD value is lower than
that of antibody-antigen FET bioassay, which may be due to
multiple binding sites between FA and FOLR1 [65]. This
result further validates the high sensitivity of the FET bioas-
say. Beside lower KD value, the ultrasensitive and fast detec-
tion for FOLR1 is also attributed to nonaqueous measurement
environment. Because Debye screening length made few ef-
fects on detection, and avoided the leakage (less than 0.1 nA)
induced by the ions in buffer solution.

Fig. 5 a Transfer curves of theMoS2 FET bioassay in response to various
FOLR1 concentrations in 1× PBS. b Calibrated responseΔVth versus the
FOLR1 concentration for the MoS2-based bioassay. The inset showed a

linear relationship betweenΔVth and various concentrations of FOLR1. c
A least-squares fit to Hill-Langmuir equation, yielding the KD of 12 pg/
mL
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For verifying that the obtained Vth shift can be indeed me-
diated by FOLR1, several control experiments were set and
conducted. As depicted in Fig. S12a, the electrical response of
bioassay without BSA-FA was recorded to demonstrate non-
specific reaction between BSA and FOLR1. The addition of
various concentrations of FOLR1 to the device presented neg-
ligible change of transfer curves, suggesting no noticeable
nonspecific binding between them. In addition, owing to the
nonaqueous measurement condition, bioassay was immersed
into 1× PBS before the immobilization of FOLR1, and then
dried with N2. As shown in Fig. S12b, the current signal only
slightly changed, revealing the buffer made no significant in-
terfering effects during the stepwise modification. The above
results supported the reliability of our detection system.

Selectivity and stability

The selectivity and stability of MoS2 FET bioassay in com-
plex media was investigated to further evaluate the practicality
of the method. In selectivity test, the sensing signal of poten-
t ia l in te r fe rence fac to rs was recorded , such as
carcinoembryonic antigen (CEA), squamous cell carcinoma
antigen (SCCA), and P53. Negligible Vth shifts (ΔVth) were
observed when the device was exposed to the above interfer-
ences. The concentration of CEA, SCCA, and P53 (10 ng/mL)
is ten times that of FOLR1 (1 ng/mL), while a significantΔVth

was observed after the introduction of only 1 ng/mL FOLR1.
The selectivity of the device is further tested with the mixed
solutions, including CEA (10 ng/mL) + FOLR1 (1 ng/mL),
SCC (10 ng/mL) + FOLR1 (1 ng/mL), and P53 (10 ng/mL) +
FOLR1 (1 ng/mL). For above solutions, acceptable difference
of ΔVth was observed (Fig. 6a), showing the excellent selec-
tivity of the MoS2 FET bioassay for FOLR1 detection. In
addition, the stability of the bioassay was examined (Fig.

6b). The BSA-FA functionalized device was preserved at
4 °C in refrigerator for different days and the ΔVth response
to 10 pg/mL FOLR1 was recorded. After the storage for
7 days, the ΔVth response still retained 90% of its initial re-
sponse (ΔVth, 0). It indicated acceptable storage stability of
this FET bioassay. However, bioassay platform with better
stabilization still poses challenges to mass production.

Electrical response of various FOLR1 concentrations in
serum

The potential applicability of the bioassay as POC device was
validated in human serum. The FOLR1 with different concen-
trations (50 pg/mL, 100 pg/mL, 200 pg/mL) were added into
10-fold diluted serum, and the recoveries of FOLR1 were
estimated to be 98%, 102%, and 95.5%, respectively
(Table S3). These results suggest that the developed bioassay
is reliable for detecting FOLR1. The electrical response of the
bioassay corresponding to the detection of different concen-
trations of FOLR1 in 10-fold diluted human serum is depicted
in Fig. S13a. Treatment process and measurement condition
are maintained in the PBS buffer. The sensing linearity of the
FET device between calibrated response ΔVth and FOLR1
concentration (from 100 fg/mL to 1 ng/mL) was observed
(Fig. S13b). The linear regression equation of bioassay was
ΔVth = 1.49 × lgCFOLR1–0.46 (inset in Fig. S13b), and the
LOD was extracted to 0.086 pg/mL (S/N = 3). The error bar
was calculated from three devices. The sensing response of
different FET devices to various FOLR1 concentrations is
similar, as displayed in Fig. S14. Importantly, the detection
performance in human serum is comparable to that of in PBS
buffer. The bioassay exhibited ultrahigh sensitivity and satis-
factory selectivity in the real human serum. This satisfactory
result provides the potential to cell capture for disease

Fig. 6 a Selectivity ofMoS2 FET bioassay for FOLR1 from a series of interference factors. b Stability test of theMoS2 FET bioassay after the storage for
7 days
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diagnosis in the future [66–68]. Therefore, the MoS2 FET
bioassay showed promising application prospects in future
clinical diagnosis.

Conclusion

We have successfully realized the detection of FOLR1 by an
MoS2 FET bioassay for the first time in a nonaqueous envi-
ronment. Based on the charge doping, the specific binding
between small molecular FA and FOLR1 with a high affinity
produced significant conductance variation on the
membraneless MoS2 channel. The shifted Vth was obtained
with various concentrations of FOLR1, in a linear relation-
ship. The high electivity and reliability were observed based
on the results of selectivity and control experiments. We have
also demonstrated the label-free MoS2 bioassay platform can
be applicable to the detection of FOLR1 in serum. In view of
the importance of the detection of biomarkers for determining
cancer development, the FET bioassay based on ligand-
protein interaction provides the possibility of IVD testing.
However, the poor stability of this method can be a challenge
for mass production. Thus, further improving the performance
of the device will be conducive to the real-life application of it.
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