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Abstract
With the merits of low cost, simple synthesis procedure, and high affinity for metal ions, deoxyribozyme (DNAzyme) have
played important roles in metal ions detection. However, the intracellular applications of DNAzyme are limited because of
enzymatic degradation and inefficient cellular uptake. To address these problems, GR-5 as model DNAzyme was
encapsulated into zeolitic imidazolate frameworks-8 (ZIF-8) nanoparticles by biomimetic mineralization. The positively charged
ZIF-8 with high DNAzyme loading capacity retained their ability to enter cells. Compared with free DNAzyme, the biomimetic
mineralization synthesis method has greatly improved the stability of pristine DNAzyme. The as-synthesized DNAzyme@ZIF-8
composite exhibited good stability resisting DNase I, and was used as a sensitive fluorescent nanoprobe for Pb2+ determination
and successfully achieved selective and sensitive determination for Pb2+ at λex/λem = 494/522 nm in real samples. The linear
range for the determination of Pb2+ is 50 to 500 nM. Moreover, the highly active DNAzyme delivered by ZIF-8 allows
noninvasive imaging of Pb2+ measurement in living cells. This strategy will extend the suitability of functional nucleic acids
for in vitro and in vivo bioanalysis and bioimaging.
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Introduction

In 1994, a RNA-cleaving DNA enzyme (DNAzyme) was firstly
reported for catalyzing the Pb2+-dependent cleavage of an RNA
phosphoester through in vitro selection methods [1]. In the pres-
ence of Pb2+, the enzyme strand can cleave the RNA linkage (rA)
in the substrate strand. Generally, the DNAzyme is formed by a

substrate strand and an enzyme strand. The substrate strand con-
tains a single rA that serves as a cleavage site while the enzyme
strand consists of one catalytic core and two binding arms [2]. Up
to now, various DNAzymes have been isolated to catalyze many
chemical reactions, including RNA cleavage [3–6], DNA cleav-
age [7, 8], DNA/RNA ligation [9–11], andDNAphosphorylation
reactions [12]. Due to the specifically dependent on cofactors and
multiple enzymatic turnover properties, DNAzyme have been
widely utilized for constructing various metal ions responsive
biosensors [13, 14]. For cofactors of Pb2+, DNAzymes possess
high binding affinities and selectivities. Compare to protein en-
zymes, DNAzymes possess better stability and cost less to pro-
duce [15, 16]. The above features make DNAzymes particularly
attractive for constructing Pb2+ biosensor platform.

Metal ions play important roles in kinds of biological process-
es. DNAzyme-based platforms showed great promise for metal
ions detection inside cells [17]. However, the inefficient cellular
uptake and enzymatic degradation limit the biological applica-
tions of DNAzyme [18]. Thus, developing an effective method
to achieve efficiently cellular uptake and enhance stability is nec-
essary for improving DNAzyme in cellular detecting application.
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Recently, biomimetic nanomaterials were developed to
simulate function of natural substances [19, 20]. Metal-
organic frameworks (MOFs), which are constructed with met-
al ions or clusters and organic ligands by coordination bonds
[21], have been proved to be a potential platform in biological
applications [22]. In particular, MOFs have also been gradu-
ally explored for the immobilization of biomolecules. Various
biomolecules, such as enzymes [23], drugs [24], and DNA
[25], have been successfully immobilized on MOFs. Since
the first report in 2006 [26], the number of studies regarding
the immobilization of enzymes on MOFs has increased rapid-
ly [27–29]. Zeolite imidazole frameworks-8 (ZIF-8), as a kind
of typical porousmaterials, which is consist of zinc ions and 2-
methylimidazole (2-MIM) by coordination bonds. ZIF-8 not
only exhibits features of large porosity and surface area as
MOFs but also possesses other advantages including excep-
tional thermal and chemical stability, low cost and easy syn-
thesis, which performed as an ideal material for enzyme im-
mobilization [30–32]. Liang et al. demonstrated the first ex-
ample of embedding horseradish peroxidase into ZIF-8, which
enhanced the enzyme stability of resisting extreme conditions
such as high temperature and organic solvents [23]. Ge et al.
also presented a method for immobilizing glucose oxidase
(GOx) and horseradish peroxidase (HRP) into ZIF-8 by co-
precipitation, which enhanced the thermal stability and resis-
tance to proteolysis of enzymes [33]. Guo et al. developed the
DNA@ZIF-8 hybrid membrane into direct methanol fuel
cells. The selectivity of the DNA@ZIF-8 membrane is thus
significantly higher than that of developed proton-exchange
membranes for fuel cells [34].

Up to now, most researches on MOF/enzyme composites
have been mainly focused on immobilization of enzymes and
proteins. Several pioneering studies reported that ZIF-8 can
achieve the tumor-targeting accumulation of DNA payloads
and can facilitate the subsequent cellular uptake of DNAwith-
out degradation [35, 36]. Immobilization of DNA in biologi-
cal applications is still in the preliminary stage. A detailed
understanding of how ZIF-8 encapsulates DNA will expand
the use of MOFs in biosensor and biotechnology. We antici-
pated that the ZIF-8-encapsulating DNAzyme nanoplatform
could be developed as a smart theranostic system with sub-
stantially enhanced stability for Pb2+ determination.

Herein, we report the synthesized, characterization and cat-
alytic activity of ZIF-8@DNAzyme composite by biomimetic
mineralization. Our ZIF-8 nanospheres have uniform 140 nm
size, which is optimal for cellular uptake and stable under
aqueous physiological conditions. DNAzyme loading is
achieved under mild conditions. GR-5 as model DNAzyme
encapsulated into ZIF-8 via biomimetic mineralization was
involved in the fluorescent assay. The stability of the crystal-
line composites was discussed via enzyme digestion reaction.

As shown in scheme 1, the DNAzyme of Pb-Sub strand
was attached with a fluorophore (FAM) at the 5′ end, and the

Pb-Enz strand was labeled with a quenching probe (BHQ) at
the 3′ end. The DNAzyme strand and the substrate strand first
formed a stable DNAzyme−substrate duplex probe. The fluo-
rescence resonance energy transfer (FRET) will occur be-
tween fluorophore FAM and BHQ. The presence of target
metal ions Pb2+, Pb2+ as assistors trigger DNAzyme cleavage
processes and then induce the release of the fluorophore-
labeled DNA fragment, achieving the restoration of the fluo-
rescence signal. Subsequently, the DNAzyme−substrate du-
plex probe was encapsulated of DNAzyme into ZIF-8 through
biomimetic mineralization. A unique nanoplatform was con-
structed and successfully achieved the determination of lead
ions in real samples.

Experimental section

Materials and reagents

The nucleic acids Pb-Enz (5’-ACAGACATCATCTC
TGAAGTAGCGCCGCCGT ATAGTGAG-BHQ-1-3′) and
Pb-Sub (5’-FAM-CTCACTAT/rA/GGAAGAGATGAT
GTCTGT-3′) were synthesized by Sangon Biological
Engineering Technology & Company Ltd. (Shanghai,
China) and purified by high-performance liquid chromatogra-
phy (HPLC).NaCl, MgCl2, CuCl2, Pb(NO3)2, Zn(NO3)2,
BaCl2, and MnCl2 were of analytical reagent grade and pur-
chased from the Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). 2-methylimidazole (C4H6N2, 99%) were
obtained from Aladdin Reagent Co., Ltd. (Shanghai, China).
Ultrapure water obtained from a Millipore water purification
system (resistivity > 18.0 ΩM cm−1, Laikie Instrument Co.,
Ltd., Shanghai, China) was used throughout. All other re-
agents were of analytical grade.

Instruments

FL measurements were performed using Hitachi F-4500 fluo-
rescence spectrometer with a scan rate at 1200 nm/min. The
excitation wavelength was set at 494 nm. The excitation and
emission slit were set at 5 nm/10 nm with a 700 V
photomultiplier tube (PMT) voltage. SEM images were con-
ducted by a Hitachi S-4800 scanning electron microscopy. X-
ray measurements were collected on a LabX XRD-7000 X-
ray diffractometer (XRD). Brunauer–Emmett–Teller (BET)
was used to determine the surface area and pore size distribu-
tion. Zeta potential measurements were carried out using a
Zetasizer Nano ZS90 (Malvern, ZEN3690).

Synthesis of DNAzyme/ZIF-8 composite

A 0.28 g of 2-methylimidazole was dissolved in 1 mL ultra-
pure water. Fifteen milligram of Zn(NO3)2·6H2O was
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dissolved in 0.1 mL ultrapure water. The solution of
Zn(NO3)2·6H2O was added into the solution of 2-
methylimidazole under stirring. After incubating for 2 h,
100 μL of DNAzyme (25 μM) was added into the aqueous
mixture of 2-methylimidazole and Zn(NO3)2·6H2O under stir-
ring. After reacting for 2 h, the product was collected by cen-
trifugation at 6500 r.p.m. for 10 min. Afterward, the obtained
precipitate was sonicated and centrifuged thrice in water
followed by ethanol. Part of the product was used for charac-
terizations by lyophilization.

Synthesis of DNAzyme@ZIF-8 composite

According to the previous method with some adjustment, the
DNAzyme@ZIF-8 composite was synthesized [23]. A 0.28 g
of 2-methylimidazole and 100 μL of DNAzyme (25 μM)
were dissolved in 1 mL ultrapure water. Fifteen milligrams
of Zn(NO3)2·6H2O was dissolved in 0.1 mL ultrapure water.
The solution of Zn(NO3)2·6H2O was added into the aqueous
mixture of 2-methylimidazole and DNAzyme under stirring.
After incubating for 2 h, the product was collected by centri-
fugation at 6500 r.p.m. for 10 min. Afterward, the obtained
precipitate was sonicated and centrifuged thrice each in water
followed by ethanol. Part of the product was used for charac-
terizations by lyophilization.

FL assay of Pb2+

In a typical experiment, 200 nM DNAzyme modified ZIF-8
was added to 50 mM N-2-hydroxyethylpiperazine-N-ethane-

sulphonicacid (HEPES) buffer (50 mM NaCl, 5 mM MgCl2,
pH 7.26), then a certain concentration of Pb2+ was added to
the above-mixed solution and incubated at 37 °C for 4 h.
Finally, at room temperature, the fluorescent spectrum of the
mixture was recorded by F-4500 fluorescence spectrometer at
λex/λem = 494/522 nm.

ICP assay of Pb2+

In a typical experiment, 200 nM DNAzyme modified ZIF-8
was added to 50 mM N-2-hydroxyethylpiperazine-N-ethane-
sulphonicacid (HEPES) buffer (50 mM NaCl, 5 mM MgCl2,
pH 7.26), then 200 nM Pb2+ was added to the above-mixed
solution and incubated at 37 °C for 4 h. The product was
collected by centrifugation at 6500 r.p.m. for 10 min to wash
away the unbound Pb2+. The washed collection was digested
for 1 h with 3 mL concentrated nitric acid and 1 mL concen-
trated sulfuric acid. Then, the digested solution was appropri-
ately diluted and determined by ICP.

Imaging analysis in cells

Two hundred ninety-three T cells and Huh-7 cells were re-
spectively dispersed in a 24-well microtiter plate with 1.0 ×
103 and 1.0 × 104 cells per well. Lead ion was first added to
the above two types of cells. After incubating for 4 h, the cells
were washed three times with 0.1 mM PBS buffer. Afterward,
the DNAzyme@ZIF-8 composite was added into the two Pb-
incubated cells and incubated for 4 h and 24 h. The

Scheme 1 a Schematic
illustration of the synthesis of
DNAzyme@ZIF-8 composite. b
Working principle of DNAzyme
for metal ions fluorescent
detection
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fluorescence images were obtained by using a confocal laser
scanning fluorescence microscope (CLSM).

Results and discussion

Characterization of DNAzyme@ZIF-8 composite

Encapsulation of DNAzyme into ZIF-8 was first confirmed by
confocal microscopy using FAM-DNAzyme@ZIF-8. The
DNAzyme in FAM-DNAzyme@ZIF-8 was also composed
of two chains. Only the FAM is labeled in the substrate chain,
while the quencher group is not labeled in the enzyme chain.
As shown in Fig. 1a, FAM-DNAzyme@ZIF-8 composites
that were only labeled with FAM were prepared and the fluo-
rescence signal of FAM-DNAzyme@ZIF-8 was observed
through confocal laser scanning fluorescence microscopy,
which demonstrated the encapsulation of DNAzyme. The tun-
able pore size and rigid molecular structure of ZIF-8 allow the
encapsulation of nucleic acids stability under harsh conditions
[37]. Moreover, nanoscale MOFs can be efficiently internal-
ized by cells for intracellular delivery [38]. Because of the
positive charged Zn2+ on the surface of ZIF-8, ZIF-8 as a
nanocarrier can efficiently deliver a nucleic acid probe to liv-
ing cells [39]. And the morphology and size of the ZIF-8 and
DNAzyme@ZIF-8 composite were inspected by SEM. The

ZIF-8 particles were nanocrystals with polyhedral shape and
the size was approximately 140 nm (Fig. S1).

Fig. S2 showed the SEM image of DNAzyme@ZIF-8, which
displayed similar size and shape to ZIF-8, indicating that the
encapsulation of DNAzyme did not affect the morphology of
ZIF-8. Then, powder XRD was further used to confirm the con-
struction of the synthesized ZIF-8 and DNAzyme@ZIF-8.
Compared with the simulated XRD pattern, no impurity peaks
could be found in the XRD pattern of synthesized ZIF-8, sug-
gesting synthesized ZIF-8 was well crystallized. And the XRD
pattern ofDNAzyme@ZIF-8 composite indicated that the encap-
sulation of the DNAzyme did not affect the crystal structure of
ZIF-8 (Fig. 1b). As revealed in Fig. 1c and d, both the N2 ad-
sorptionmeasurement of ZIF-8 and DNAzyme@ZIF-8 compos-
ite showed type I isotherms characteristics of mesopores.
Compared to ZIF-8, DNAzyme@ZIF-8 composite showed a
slight increase in hysteresis at higher p/p0 ratio indicating pres-
ence of few mesopores along with micropores. Then, the zeta
potential was measured. ZIF-8 nanoparticles showed positive
zeta potential, which might be attributed to abundant positively
charged Zn2+ on the surface of ZIF-8 [39]. Zeta potential of
DNAzyme/ZIF-8 composite more decreased than that of ZIF-8,
strongly demonstrating the adsorption of the DNAzyme on the
surface of ZIF-8 through electrostatic interaction (Fig. S3).While
DNAzyme@ZIF-8 composite showed similar zeta potential to
ZIF-8, it strongly demonstrated the encapsulation of DNAzyme
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into ZIF-8 successfully by biomimetic mineralization. The
DNAzyme loading capacity was quantitatively measured by ex-
amining the fluorescence intensity of the FAM-labeled
DNAzyme in the precursor solution and in the supernatant of
the acquired product. According to the pre-determined calibra-
tion curve, the loading capacity of DNAzyme@ZIF-8 was con-
firmed to be as high as 95.2 ± 2.2%, which was higher than the
loading capacity of DNAzyme/ZIF-8 (Fig. S4).

Optimization of method

An increase of the ratio between Zn2+ and 2-MI resulted
in the decrease of the size of ZIF-8 (Fig. S5) and the
loading capacity of DNAzyme (Fig. S6). Although the
loading capacity at the ratio of 1:35 is higher than that
at the ratio of 1:70, oversized ZIF-8 would hinder the
accessibility into cell. The results of SEM-EDS were
shown in Fig. S7. Compared to ZIF-8, Zn, C, and N
are dispersed over DNAzyme@ZIF-8 revealing ZIF-8
existence. O an P elements reveal the composite of
DNAzyme over the DNAzyme@ZIF-8. According to
the pre-determined calibration curve, the loading capac-
ity of DNAzyme was measured. With the range from 10
to 10 μM, ZIF-8 exhibited high DNAzyme loading ca-
pacity (Fig. S8). Next, 200 nM Pb2+ was incubated with
DNAzyme@ZIF-8 composite and ZIF-8, respectively.
After incubation, the concentrat ion of Pb2+ in
DNAzyme@ZIF-8 composite and ZIF-8 was determined
23.25 μg/L (111.77 nM) and 0.16 (0.76 nM) by ICP-
MS, indicating that Pb2+ loaded of DNAzyme. The ratio
between Pb-Enz and Pb-Sub was optimized to obtain
the best detection performance. With the decrease of
the radio between Pb-Enz and Pb-Sub (2:1, 3:2, 1:1),
an increase of (F-F0)/F0 was observed (Fig. S9).
However, further reducing Pb-Enz affected the perfor-
mance of nanoprobe due to the high background signal.
On basis of this result, Pb-DNAzyme with the 1:1 Pb-
Enz and Pb-Sub ratio and ZIF-8 with the 1:70 Zn2+ and
2-MI was selected for the following experiments.

Stability of nanoprobe

Here, the stability of the DNAzyme@ZIF-8 composite against
DNase I as the model digesting enzyme was examined. As
shown in Fig. 2a, in the absence of DNase I, the free
DNAzyme and DNAzyme@ZIF-8 maintained stable fluores-
cence intensity.While DNase I was added, the fluorescence of
DNAzyme@ZIF-8 was unchanged, which indicated that ZIF-
8 acted as a protective layer for DNAzyme, protecting
DNAzyme from DNase I degradation. On the contrary, the
fluorescence of the double-stranded formed by FAM-labeled
substrate strands and BHQ-1-labeled enzyme strands in-
creased quickly after adding DNase I, which demonstrated
that free DNAzyme was easily degraded by DNase I, the
FAM was no longer quenched by BHQ-1, resulting in the
recovery of fluorescence. In these biocomposites, the ZIF-8
shell was shown to protect DNAzyme from cell environments
that typically lead to their degradation, acting as a gate for
molecular transport. Partial fluorescence recovery was ob-
served in DNAzyme/ZIF-8, indicating that adsorption pos-
sessed a weaker protective effect on DNAzyme compared
with biomimetic mineralization. It may due to enzymes are
physically absorbed onto the ZIF-8 surface through weak in-
teractions, which often results in enzyme leakage [40]. As
revealed in Fig. 2b, after incubating with DNase I for
10 min, compared to the initial activity, free DNAzyme lost
nearly all its activity. DNAzyme/ZIF-8 exhibited certain re-
sistibility but also lost partial activity. However,
DNAzyme@ZIF-8 composite kept almost the same activity
after the same treatment, proving an excellent resistivity
against DNase I.

Detection for Pb2+

In a typical experiment, the time-dependent fluorescence
changes at 522 nm were measured after the addition of a
certain concentration of Pb2+. The calibration curve for the
assay was shown in Fig. 3a, as the Pb2+ ions concentration
ranged from 0 to 5 μM, the increase of the fluorescence

0

20

40

60

80

100

Free DNAzymeDNAzyme/ZIF-8

R
el

at
iv

e 
A

ct
iv

ity
(%

)

Initial
DNase I-pretreated

DNAzyme@ZIF-8

baFig. 2 a Fluorescence changes
with time of the free DNAzyme
(black), DNAzyme/ZIF-8
(green), and DNAzyme@ZIF-8
(red) after adding DNase I. b
Comparison of the initial activity
of the DNAzyme@ZIF-8,
DNAzyme/ZIF-8 and free
DNAzyme, and the activity after
addition of DNase I

Page 5 of 9     608Microchim Acta (2020) 187: 608



intensity was observed, indicating that more and more FAM-
labeled substrate strands were cleaved and released from the
ZIF-8 with the increasing Pb2+ concentration. In the absence
of Pb2+, no fluorescence enhancement was observed in the
controlled experiment. The original concentration of the
Pb2+ was chosen between 0 to 5.55 μM. After the sample
being diluted for 1.11 times, the detection range of the final
concentration of Pb2+ was between 0 to 5 μM. With the con-
centration of Pb2+ ranging from 50 to 500 nM, the proposed
method exhibited a linear relationship Y = 0.06X + 66.90 (Y
stands for FL intensity, X stands for Pb2+ concentration
(nM)) with a good linear response (R2 = 0.996) of fluores-
cence intensity (Fig. 3a). The detection limit of Pb2+ was es-
timated to be 39 nM based on the 3δ/slope rule, which was
lower than 72 nM, the safety limit of lead in drinking water
(72 nM) defined by the United States Environmental
Protection Agency (EPA). After compared with other reported
Pb2+ detection methods based on DNAzyme in water
(Table 1), it is found that the proposed fluorescent method
shows comparable analytical performances including wide
linear range and high sensitivity. Particularly, ZIF-8 as a
nanocarrier could protect DNAzyme from DNase degrada-
tion. In addition, DNAzyme@ZIF-8 composite with the pos-
itively charged Zn2+ on the surface makes easily to adsorb at
the negatively charged cell membrane to efficiently deliver
DNAzyme into living cells for imaging. Besides sensitivity,
selectivity was another important issue to assess the detection
performance of this newly proposed nanoprobe. The GR-5
has been reported with high selectivity to Pb2+ [41]. To con-
firm the selectivity of the system, the responses of the system
in potentially interfering metal ions were measured, including

Table 2 The determination of Pb2+ in tap water samples

Sample Add/nM Found/nM Recovery/% ICP-MS/nM

Tap water (1) 0 16.63 0

Tap water (2) 100 128.10 111.4 102.93

Tap water (3) 250 248.05 92.5 275.58

Tap water (4) 500 518.28 100.3 576.67

Table 1 Analytical features based on DNAzyme for Pb2+ detection in water

Technique Strategy Detection range (nM) LOD (nM) Ref.

FRET GO-DNAzyme–based biosensor for amplified fluorescence 1–100 0.3 [42]

FRET Pb2+-dependent DNAzyme–based evanescent wave-induced emission 20–800 1 [43]

UV-vis AuNP-based label-free colorimetric method using DNAzyme 0.5–5 0.2 [44]

FRET 17E DNAzyme and the cleavage substrate 17S labeled with FAM 0–100 0.53 [45]

FRET Dual-emission DNA templated silver nanoclusters 0.001–10 0.001 [46]

FRET DNAzyme@ZIF-8 50–500 39 This work
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Zn2+, Cu2+, Mg2+, Mn2+, Ba2+. As shown in Fig. 3b, the
concentration of Pb2+ and other metal ions was 1 μM and
100 μM, respectively. The fluorescence of other competitive
metal ions was comparable to the background fluorescence,
while a large enhancement of fluorescence was observed from
Pb2+. The result indicated that even at relatively high
concentration levels, the potentially interfering metal
ions generated only minimal responses, verifying that
this system had high selectivity. That was comparable
with the original DNAzyme-based method for Pb2+ de-
tection. These results indicated that the method had high
sensitivity and good selectivity for the quantitative anal-
ysis of Pb2+.

Pb2+ detection in real samples

To evaluate the application feasibility of the proposed
strategy for Pb2+ detection in real samples, the recovery
experiments are carried out by spiking Pb2+ into the
environmental samples of tap water. The results are
summarized in Table 2. Satisfactory recovery is found
from 92.5 to 111.4%. Meanwhile, the results obtained
by the prepared fluorescent strategy are consistent with
the results of ICP-MS, indicating that the prepared
method is suitable for Pb2+ detection in the real
samples.

Intracellular detection

To explore the Pb2+ imaging capability in living cells, the
DNAzyme@ZIF-8 composite was applied in 293 T cells
and Huh-7 cells. As shown in Fig. 4, weak fluorescence was
observed in the background fluorescence images, which was
recorded after the incubation of DNAzyme@ZIF-8 and cells
without Pb2+ for 4 h. After incubating with Pb2+, partial fluo-
rescence intensity increase was observed in 4 h, verifying the
feasibility of the method in Pb2+ detection in living cells.
Afterwards, significant fluorescence enhancement could be
seen after incubating for 24 h. The concentration of Pb2+

was also determined 1.62 μg/L (311.2 nM in 293 cells) and
0.73 μg/L (140.4 nM in Huh-7 cells) by ICP-MS after cell
digestion. Compared with other reported Pb2+ assay in cells
[47, 48], it is found that the proposed method shows excellent
analytical performances in situ cellular imaging. The results
showed that the synthesized DNAzyme@ZIF-8 composite
could easily penetrate 293 T cells and Huh-7 cells to detect
Pb2+, which further demonstrated the potential for metal ions
detection in the living cells.

Conclusion

In summary, we have presented an efficiently biomimetic
mineralization strategy to encapsulate GR-5 as model

Fig. 4 a LSCM images of 293 T cells. Bright-field image (a1–c1); fluo-
rescence image of the diverse incubation time (0, 4 h, 24 h) of
DNAzyme@ZIF-8 and Pb2+ in 293 T cells(a2–c2); merge image (a3–

c3). b) LSCM images of Huh-7 cells. Bright-field image (d1–f1); fluores-
cence image of the diverse incubation time (0, 4 h, 24 h) of
DNAzyme@ZIF-8 and Pb2+ in Huh-7 cells(d2–f2); merge image (d3–f3)
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DNAzyme into ZIF-8. The facile immobilization strategy
could not only guarantee the intrinsic functions of
DNAzyme but also effectively enhance the tolerance of
DNAzyme towards proteolysis and cellular uptake efficiency
of DNAzyme. Benefiting from the high DNAzyme loading
capacity, the as-synthesized DNAzyme@ZIF-8 composite
has realized the highly sensitive and selective fluorescent de-
tection for Pb2+ in water and bioimaging of Pb2+ in living
cells. We anticipate that this facile and versatile biominerali-
zation strategy would fulfill the efficient protection and deliv-
ery of functional biomacromolecules, and further facilitate
their application in such as industrial biocatalysis, biosensing,
and bioimaging. Although the prepared DNAzyme@ZIF-8
composite has demonstrated impressive feasibility in detect-
ing Pb2+ in water and cells, uncertain metal ions may interfere
with the selectivity of this system, which would obstacle to
expand the scope of its applications.
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