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Abstract
A novel fluorescent sensing platform based on nitrogen-doped graphene quantum dots (N-GQDs) is presented, which is able to
detect various metabolites (cholesterol, glucose, lactate, and xanthine) rapidly, sensitively, and selectively. Hg2+ can attach on the
surface of N-GQDs, leading to the quenching ofN-GQD fluorescence. In the presence of cysteine (Cys), Hg2+ is released fromN-
GQDs and associates with Cys. Then, the fluorescence of N-GQDs is recovered. Hydrogen peroxide, resulting from the
enzymatic oxidation of metabolites, can convert two molecules of Cys into one molecule of cystine, which cannot bind with
Hg2+. So, the fluorescence of N-GQDs quenched again. For cholesterol, glucose, lactate, and xanthine, the limits of detection are
0.035 μmol/L, 0.025 μmol/L, 0.07 μmol/L, and 0.04 μmol/L, respectively, and the linear ranges are 1–12 μmol/L, 0.06–
3 μmol/L, 0.2–70 μmol/L, and 0.12–17 μmol/L, respectively. The presented method was applied to quantify metabolites in
human blood samples with satisfactory results.
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Introduction

Many metabolic diseases can be monitored by different en-
dogenous metabolites [1]. So, it is of crucial importance to
monitor human metabolism for personalized therapy.
Therefore, simple and fast protocols for the quantitative de-
tection of metabolites in biological matrices have aroused
great interest and are very important for diagnosis and health
care [2, 3]. However, current technologies for metabolite as-
say such as colorimetry [4–6], electrochemistry [7–10],
photoelectrochemistry [11], and high-performance liquid
chromatography [12–14] often suffer from low selectivity,
large sample consumption, complicated pretreatment, bulk in-
struments, and long waiting time [15]. Each of these makes it
infeasible in a typical laboratory and clinic environments.

Therefore, there is a need to further develop high sensitivity
and selectivity methods for detecting metabolites.

Graphene quantum dots (GQDs) have the advantages of
low toxicity, good biocompatibility, high water solubility,
chemical inertness, stable photoluminescence, rich surface
groups, and easy functionalization [16, 17]. These outstanding
properties make them promising candidates for numerous ex-
citing applications, such as medical diagnosis, bioimaging
[18, 19], catalysis [20, 21], and photovoltaic devices [22,
23]. The optical and electrical properties of GQDs can be
effectively tuned by doping heteroatoms [24, 25]. Having a
comparable atomic size and five valence electrons for bonding
with carbon atoms, the N atom is popular for chemical doping
of carbon nanomaterials [24, 26].

In this work, we developed a novel N-GQD-based label-
free biosensor for rapid detection of metabolites (cholesterol,
glucose, lactate, and xanthine), which is convenient, sensitive,
and low cost. As illustrated in Scheme 1, the positively
charged Hg2+ may attach on the negatively charged N-GQD
surface by electrostatic interaction. This process leads to non-
radiative electron/hole recombination and effective electron
transfer, which results in the N-GQD fluorescence quenching
[27–30]. Based on the previous report, the quenching process
was dynamic quenching [31]. In the presence of Cys, Hg2+ is
released from the surface of N-GQDs and associated with Cys
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via Hg-S bond [28], forming a more stable Hg-Cys complex,
which enlarges the distance betweenHg2+ and N-GQDs, leads
to the break of electron transfer, and results in the recovery of
N-GQD fluorescence. Hydrogen peroxide, resulting from the
enzymatic oxidation of metabolites, such as cholesterol, glu-
cose, lactate, and xanthine, converts two molecules of Cys
into one molecule of cystine. This process leads to the con-
version of two active thiol groups (-SH) into one inactive
disulfide bridge (-SS-) [32], which cannot stably bind with
Hg2+. So, the fluorescence of N-GQDs quenched again.
Based on the mechanisms illustrated above, a sensitive fluo-
rescence sensing method for metabolite detection is
developed.

Experiment

Reagents and chemicals

All chemicals used were at least of analytical reagent
grade and used without further purification. The water
used in all experiments had a resistivity higher than
18 MΩ/cm. Hydrogen peroxide, NaOH, NaCl, KCl,
CaCl2, citric acid, glucose, lactate, and xanthine were
obtained from Beijing Dingguo Biotechnology Co.,
Ltd. Cholesterol, alanine, serine, threonine, aspartic acid,

and lysine were obtained from Sigma-Aldrich Chemical
Co.

Instruments

The fluorescence spectra were obtained by using a Shimadzu
RF-5301 PC fluorophotometer equipped with a xenon lamp
using right-angle geometry. UV-vis absorption spectra were
obtained by a Varian GBCCintra 10e UV-vis spectrometer. In
both experiments, a 1-cm path-length quartz cuvette was used.
FT-IR spectra were recorded by a Bruker IFS66V FT-IR spec-
trometer equipped with a DGTS detector. Transmission elec-
tron microscopy (TEM) was conducted using a Hitachi H-800
electron microscope at an acceleration voltage of 200 kV.
XRD patterns were obtained by a Rigaku D/Max 2550 X-
ray diffractometer.

Synthesis of N-GQDs

As previously reported [33], N-GQDs were prepared from
citric acid (carbon source) and ammonia (nitrogen sources).
2 g citric acid and 0.3 mL ammonia were heated at 210 °C for
6 h together in a Teflon-lined autoclave. 10 mL ultrapure
water was used to dissolve the resulting dark brown mixture.
Next, the pH of N-GQD dispersion was adjusted to 7.0 by
adding NaOH aqueous solution. To remove the large dots,
the supernatant was centrifuged at 12,000 rpm for 10 min.

Scheme 1 Schematic illustration
of the sensing system based on N-
GQDs

532    Page 2 of 8 Microchim Acta (2020) 187: 532



Subsequently, the obtained liquid was diluted to 200 mL with
ultrapure water. The concentration of as-prepared N-GQD
stock solution was 10 mg/mL. Finally, the as-prepared N-
GQDs were stored at 4 °C for further use. The quantum yield
of N-GQDs is 15.5% by using quinine sulfate as reference.

H2O2 detection

For H2O2 detection, different amounts of H2O2 were added in
a series of 1.5 mL solution containing 200 μL N-GQDs,
50 μL PBS (0.2 mol/L, pH = 7.5), 40 μmol/L Hg2+, and
100 μmol/L cysteine. Then, the solution was incubated at
45 °C for 20 min. The fluorescence spectra were recorded in
the 400–700-nm wavelength range at the excitation wave-
length of 370 nm.

Metabolite detection

For metabolite (cholesterol, glucose, lactate, and xanthine)
detection, different amounts of metabolites were added in a
series of 1.5 mL solution containing 200 μL N-GQDs, 50 μL
PBS (0.2 mol/L, pH = 7.5) and 40 μmol/L Hg2+, 100 μmol/L
cysteine, and oxidases (10 μmol/L cholesterol oxidase or
2.5 μmol/L glucose oxidase or 5 μmol/L lactate oxidase or
5 μmol/L xanthine oxidase). The fluorescence spectra were
recorded in the 400–700-nm wavelength range at the excita-
tion wavelength of 370 nm.

Real sample assay

The blood samples of healthy persons were supplied by the
Hospital of Changchun China, Japan Union Hospital.

Fig. 1 a TEM image of N-GQDs. Inset: size distribution diagram of N-GQDs. b Normalized UV-vis absorption spectra and fluorescence emission
spectra of N-GQDs. c Normalized fluorescence spectra of N-GQDs and undoped GQDs. d FT-IR spectra of N-GQDs
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Acetonitrile was added to the blood samples (the volume of
acetonitrile and blood was 1.5:1) and shaken for 2 min. Then,
the product was centrifuged at 10000 rpm for 10 min to re-
move protein. A series of different concentrations of metabo-
lites (cholesterol, glucose, lactate, and xanthine) were added to
the obtained serum samples [34]. Then, the samples were
subjected to 5-fold dilutions and detected by the method de-
scribed above. All experiments were performed in compliance
with the relevant laws and institutional guidelines, and the
writing of informed consent for all samples was obtained from
human subjects.

Results and discussion

Characterization and feasibility

The TEM image of N-GQDs is shown in Fig. 1a, which indi-
cates the nearly spherical shape of N-GQDs. The as-prepared
N-GQDs are mostly uniform in size and have a diameter of
2.25 nm. The XRD data (Fig. S1) showed that N-GQDs pos-
sessed a peak at 22° (002), corresponding to its graphite struc-
ture [35, 36]. The UV-vis absorption spectra of N-GQDs (Fig.
1b) show a strong absorbance at 352 nm, which probably result
from π-π* transition in aromatic structures [19]. Figure 1a
shows the fluorescence spectra of N-GQDs and pure GQDs.
It reveals that the fluorescent emission peaks of N-GQDs and
GQDs are at 445 nm and 464 nm, respectively. The fluorescent
spectra of N-GQDs have a 19-nm blue shift compared with
undoped GQDs, which is due to the strong electron affinity
of N atoms doped in the N-GQD [37]. In addition, the fluores-
cence intensity of N-GQDs increased by about 37% than that of

GQDs. The N-doping-induced modulation of the electronic
and chemical characteristics of the N-GQDs may contribute
to the highly efficient fluorescent emission [38]. The FT-IR
spectra were used to study the existence of surface functional
groups of N-GQDs. As shown in Fig. 1d, the FT-IR spectrum
of N-GQDs reveals the C-N stretching vibrations at 1159 cm−1

and the C-O bending vibrations at 1261 cm−1, N-H and C-H
bending vibrations at 1450 cm−1, C=C and C=O stretching
vibrations at 1720 cm−1, C=N and C-H stretching vibrations
at 2966 cm−1, and absorption bands of O-H and N-H stretching
vibrations at 3437 cm−1, which indicated the presence
of carboxyl and hydroxyl functional groups on the sur-
face of N-GQDs.

The feasibility study of the proposed method was
conducted. As shown in Fig. S2 (A), Besides Hg2+,
other metal ions such as Ag+ and Cu2+ can also quench
the fluorescence of N-GQDs, but the binding strength
between these ions and N-GQDs is much weaker than
Hg2+. As reported in the literature, it is probably be-
cause the Hg2+ ions have a stronger affinity towards
the carboxylic groups on the GQDs surface than other
metal ions [27, 39, 40]. Thus, their quenching ability is
not as strong as Hg2+. The relationship between I/I0 and
the concentration of Hg2+ in the range of 0–70 μmol/L
is shown in Fig. S2(B). I and I0 are fluorescence inten-
sities of the N-GQDs in the presence and absence of
Hg2+ relatively. Figure S3(A) shows that there is no
significant change in the fluorescence intensity of N-
GQDs after mixing with H2O2 or Cys. A significant
decrease in fluorescence intensity can be observed after
mixing with Hg2+. After adding cysteine to N-GQDs/
Hg2+ system, the fluorescence intensity recovered to
about 91% of the original N-GQDs. However, after
adding H2O2, the fluorescence intensity decreased again.
The inset of Fig. S3(A) shows the photo of a probe
system solution before and after H2O2 addition under
a UV lamp. According to Fig. S3(B, C), metabolites
or metabolite oxidases cannot influence the fluorescence
intensity of N-GQDs, N-GQDs/Hg2+, or N-GQDs/Hg2+

system, which indicates they are not able to bind to
Hg2+ or N-GQDs.

Optimization for detection conditions

In order to optimize the conditions for H2O2 detection, we
investigated the effects of incubation time, pH, and tempera-
ture on the fluorescence intensity of N-GQDs/Hg2+/cysteine/
H2O2 system. As shown in Fig. S4, the fluorescence intensity
of N-GQDs (A) decreased within 15 min; (B) decreased with
the increase of pH value until 7.5; and (C) decreased with the
increase of temperature between 25 and 45 °C. Thus, we
adopted 20 min as the reaction time, 45 °C as an optimized
temperature, and chose PBS buffer solution (pH = 7.5).

Fig. 2 The fluorescence spectra of N-GQDs/Hg2+/cysteine system with
different concentrations of H2O2 in the range of 0–170 nmol/L (0, 3, 5, 7,
10, 15, 20, 25, 30, 35, 40, 50, 70, 90, 110, 130, 150, 170 nmol/L) Inset:
the relationship between I/I0 and the concentration of H2O2 in the range of
3–170 nmol/L. I and I0 are fluorescence intensities of the N-GQDs/Hg

2+/
cysteine system in the presence and absence of H2O2 relatively. The error
bars were gained from three parallel test results
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As for the detection of metabolites (cholesterol, glu-
cose, lactate, and xanthine), the effect of oxidase con-
centrations, reaction temperatures, pH, and incubation
times on the detection of metabolites were studied
(Fig. S5), and the optimal detection conditions are listed
in Table S1.

Detection for H2O2

Under the optimal conditions, the fluorescence spectra of N-
GQDs/Hg2+/cysteine system with various concentrations of
H2O2 are shown in Fig. 2. It can be seen that the fluorescence
intensity of the system decreases rapidly with the increase of

Fig. 3 The fluorescence spectra of N-GQDs/Hg2+/cysteine system with
different concentrations of a cholesterol (0, 1, 1.5, 2, 2.5, 3, 5, 7, 10,
12 μmol/L); inset: the relationship between I/I0 and the concentration of
cholesterol in the range of 1–12 μmol/L; b glucose (0, 0.06, 0.01, 0.05,
0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7, 1, 1.3, 1.5, 2, 2.5, 3 μmol/L); inset: the
relationship between I/I0 and the concentration of glucose in the range of
0.06–3 μmol/L; c lactate (0, 0.2, 1, 3, 5, 10, 15, 20, 30, 40, 50, 60,

70 μmol/L); inset: the relationship between I/I0 and the concentration of
lactate in the range of 0.2–70 μmol/L; d xanthine (0, 0.12, 0.2, 0.3, 0.5, 1,
2, 3, 5, 7, 10, 13, 15, 17 μmol/L); inset: the relationship between I/I0 and
the concentration of xanthine in the range of 0.12–17 μmol/L. I and I0 are
fluorescence emission intensities of the detection system in the presence
and absence of metabolites relatively. The error bars were obtained from
three parallel test results

Table 1 The linear regression
equations, linear ranges, R2, and
LOD of metabolites

Analyte Regression equation Linear range (μmol/L) R2 LOD (μmol/L)

Cholesterol I/I0 = 0.969–0.0612[cholesterol] (μmol/L) 1–12 0.995 0.035

Glucose I/I0 = 0.989–0.249 [glucose] (μmol/L) 0.06–3 0.998 0.025

Lactate I/I0 = 0.988–0.009[lactate] (μmol/L) 0.2–70 0.996 0.07

Xanthine I/I0 = 0.970–0.039[xanthine] (μmol/L) 0.12–17 0.997 0.04
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H2O2 concentration. The relative fluorescence intensity I/I0 of
N-GQDs/Hg2+/cysteine/H2O2 system has a linear correlation
with H2O2 concentration in the range of 3–170 nmol/L (Fig. 2,
inset). The linear regression equation is

I=I0 ¼ 1:004−0:005 H2O2½ � nmol=Lð Þ

The coefficient of determination is R2 = 0.996. The
limit of detection (LOD) for H2O2 was 1.02 nmol/L.
The LOD was based on the equation LOD = 3σ/s, where
σ was the standard deviation of the blank signals of the
N-GQDs/Hg2+/cysteine system and s was the slope of
the calibration curve.

A comparison of linear ranges and LOD between this work
and that of other detection methods is listed in Table S2.

Compared with other work, our method offers a satisfactory
linear range and LOD.

Detection for metabolites

Under the optimal conditions, the fluorescence spectra of N-
GQDs/Hg2+/ cysteine system with various concentrations of
metabolites (cholesterol, glucose, lactate, and xanthine) are
shown in Fig. 3. It can be seen that the fluorescence intensities
of the detection system were all significantly decreased with
the increasing concentration of metabolites. For cholesterol,
glucose, lactate, and xanthine, the linear ranges are 1–
12 μmol/L, 0.06–3 μmol/L, 0.2–70 μmol/L, and 0.12–
17 μmol/L, respectively. And the limits of detection are
0.035 μmol/L, 0.025 μmol/L, 0.07 μmol/L, and
0.04 μmol/L, respectively. The linear regression equations,
linear ranges, R2, and LOD are shown in Table 1. The

Fig. 4 The interference of potentially interfering substances (Na+

(2000 μmol/L), K+ (2000 μmol/L), Ca2+ (2000 μmol/L), Ser
(1000 μg/L), Thr (1000 μg/L), Ala (1000 μg/L), Met (1000 μg/L),
VB1 (1000 μg/L), Tau (1000 μg/L), and Lys (1000 μg/L)) on the
determination for a cholesterol (0.5 μmol/L), b glucose (2.8 μmol/L), c

lactate (70 μmol/L), and d xanthine (15 μmol/L). As potential interfering
substances, the concentrations of cholesterol, glucose, lactate, and
xanthine are 5 μmol/L, 20 μmol/L, 300 μmol/L and 100 μmol/L,
respectively
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concentrations of cholesterol, glucose, lactate, and xanthine in
healthy human adult blood are supposed to be between 2.9
and 6.0 mmol/L; 3.9 and 7.8 mmol/L; 0 mmol/L; and 155 and
428 μmol/L, respectively [34]. So, the proposed method has
sufficient sensitivity for the determination of these metabolites
in real serum samples. A comparison of linear ranges and
LOD between this work with that of other detection methods
is listed in Tables S3–S6. Compared with other works, our
method offers relatively good linear ranges and LOD.

Interference study

As shown in Fig. 4, the selectivity of the present fluores-
cence method was testified by investigating the fluores-
cence response of the sensing system to other potential
interfering substances including Na+, K+, Ca2+, serine
(Ser), threonine (Thr), alanine (Ala), lysine (Lys), me-
thionine (Met), vitamin B1 (VB1), and taurine (Tau). As
potential interfering substances in the detection for other
metabolites, the effects of cholesterol, glucose, lactate,
and xanthine are also studied. The “Blank” column in-
dicates there is no analyte or interference, the “None”
column indicates there is only analyte but no interfer-
ence in the detection system, and others show the
coexisting of analyte with one of the interferences.
The results indicated that this detection method has sat-
isfactory selectivity against common metal ions and bio-
molecules. As shown in Fig. 4, with the other metabo-
lites present, the system exhibited an identical response
to the selected analytes, revealing this method can dis-
tinguish the selected analytes if many of them are pres-
ent concurrently owing to the specific catalyzation of
different oxidases to its substrate.

Real sample detection

To further demonstrate the practicality of the proposed detec-
tion method, we detected the concentration of cholesterol,
glucose, lactate, and xanthine in human blood by standard
addition method, and the results are listed in Table S7. It
shows that the recoveries of these four metabolites are in the
range of 98.2–101.8%. The relative standard deviations
(RSD) were no more than 2.1%. These results demonstrated
that the method developed in this work has potential applica-
tions in the practical measurement of metabolites.
Nevertheless, this fluorescence assay also has its limitations,
such as the potential toxicity of Hg2+ may hinder the utiliza-
tion in intracellular sensing, and working under the ultraviolet
excitation leads to prone interferences by biological sub-
strates. Thus, the construction of fluorescent probes with su-
perior biocompatibility and anti-interference ability is still
needed in the following work.

Conclusion

In this work, a facile fluorescence sensing platform has been
developed based on N-GQDs. It enables rapid, ultrasensitive,
and selective detection of metabolites in human blood sample.
This method has the potential in the diagnosis of metabolic
disorders and other associated diseases. Combined with
smart-phone-based or other portable fluorometers, the detec-
tion method developed in this work is also available for home-
based healthcare.
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