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Abstract
Carbon dots (CDs) emitting red fluorescence (610 nm) were synthesized by solvent thermal treatment of p-phenylenediamine in
toluene. Upon 440 nm excitation, quercetin (QCT) alone endowed slight effects on the red fluorescence of CDs. Once Zn2+ was
further introduced, the QCT-Zn2+ complex was quickly formed. This complex absorbs excitation light and emits bright green
fluorescence at 480 nm. The red fluorescence of CDs was greatly quenched owing to the inner-filter effect. The ratio of
fluorescence intensity at 480 nm and 610 nm (I480/I610) gradually increases with increasing concentration (c) of Zn2+. Al3+

exhibits the same phenomen like Zn2+. Fluoride ions form a more stable complex with Al3+ than QCT-Al3+ complex but have
a negligible effect on the QCT-Zn2+ complex. The possible interference of Al3+ on Zn2+ can thus be avoided by adding certain
amount of F−. The CD-QCT-F− system was constructed as a ratio-metric fluorescent nanoprobe toward Zn2+ with determination
range of 0.14–30 μM and limit of detection (LOD) of 0.14 μM. Due to the stronger affinity of adenosine triphosphate (ATP) to
Zn2+ than QCT, the I480/I610 value of CD-QCT-F−-Zn2+ system gradually decreases with increasing cATP. The ratiometric
fluorescent nanoprobe toward ATP was established with detection ranges of 0.55–10 and 10–35 μM and a LOD of 0.55 μM.
The above two probes enable the quantitative determination of Zn2+ and ATP in tap and lake water samples with satisfactory
recoveries.
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Introduction

Zn2+ plays critical roles in cell proliferation and differentia-
tion, gene expression, signal transduction, and neurotransmis-
sion [1–3]. However, excess of Zn2+ can result in serious
disorders such as diabetes, cerebral ischemia, epilepsy,

Alzheimer’s disease, cancer, and neural degeneration [4].
Adenosine triphosphate (ATP) plays important roles in many
cellular events such as the active transport, enzymatic process-
es, and muscle contraction [5]. The abnormal levels of ATP
were associated with diseases including angiocardiopathy,
Parkinsonism, Alzheimer’s, and cancer [6]. Thus, develop-
ment of sensitive and selective methods for determining
Zn2+ and ATP is of significant importance.

Among various determination methods for Zn2+ and ATP,
fluorescent nanoprobes have attracted much attention because
of their distinct merits such as high sensitivity, specific selec-
tivity, real-time monitoring, and operational simplicity. Many
fluorescent nanoprobes have builted by conventional fluores-
cent materials including organic dyes, semiconductor quan-
tum dots, rare elements, and metal nanoclusters. The carbon
dot (CD)-based fluorescent nanoprobes have attracted more
attention due to their low cost, good water solubility, high
photo stability, and favorable biocompatibility [7–10].
Despite some CD-based nanoprobes have been established
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for Zn2+ determination [4, 11–20], several key issues need to
be solve before their practical applications. First, some
nanoprobes were constructed by the CDs covalently linked
with organic molecules or other quantum dots or metal
nanoclusters. This increased the complexity, cost, and toxicity
of nanoprobes [4, 11–13]. Second, some nanoprobes exhibit-
ed poor selectivity towards Zn2+ owing to the strong interfer-
ences of other metal ions (such as Fe3+, Al3+, Cu2+, Ni2+, Pb2+,
and Hg2+) [14–19]. Third, most of the nanoprobes were based
on single-signal changes. They were susceptible to distur-
bance from stability of instrument, background noise, and
CD concentration. The CD-based fluorescent nanoprobes for
ATP also possess the above drawbacks [21–24]. The ratio-
metric fluorescent nanoprobe is based on the variations of
the ratio of fluorescence intensities at two well-resolved emis-
sion peaks. They effectively eliminate the external interfer-
ences and hence show the outstanding sensitivity and selec-
tivity. The key of the ratio-metric fluorescent nanoprobe is
always the design and preparation of dual-emission fluores-
cent system [25–27]. Considering the particularly complexity
of the dual-emission system, the CD-based ratio-metric fluo-
rescent nanoprobes toward Zn2+ or ATP were bare [20, 24].
This kind of fluorescent nanoprobe for simultaneously deter-
mining Zn2+ and ATP has not appeared yet.

The quercetin (QCT) is a flavones present in nature with
anticancer, antiviral, anti-mutagenic, and lipid per-oxidation
functions [28, 29]. It can form the QCT-Zn2+ complex with
Zn2+ (molar ratio = 1:2) by coordination interactions and emit
green fluorescence [18]. The QCT alone can be used as single-
signal fluorescent probe for Zn2+. This probe possesses poor
stability, limited selectivity, and general sensitivity. As shown
in Scheme 1, the red-emission CDswere synthesized and used
to construct the ratio-metric fluorescent nanoprobes toward
Zn2+ and ATP with the aid of QCT. The composition of this
probe is simple and eco-friendly. This probe improves the
stability, selectivity, and sensitivity of previous single-signal
probes. This probe realizes the simultaneously determination
of Zn2+ and ATP.

Experimental

Materials

QCT, p-phenylenediamine, ATP, adenosine diphosphate
(ADP), and mono-phosphate (AMP) were purchased from
Shanghai Aladdin Bio-Chem Technology Co, Ltd.
(Shanghai, China, http://aladdin-e.bioon.com.cn/). The
analytical reagents including NaCl, NaF, NaNO2, NaBr,
NaAc, KI, Na2CO3, Na3PO4, NaNO3, Na2HPO4, Na2SO4,
Na2S2O3, H2HgN2O7, BaCl2, AlCl3, FeCl3, CuCl2, ZnCl2,
CrCl2, CdCl2, MnCl2, Pb(NO3)2, AgNO3, NiCl2, CoCl2,
toluene, and ethanol were purchased from Chengdu Kelong
Chemical Regent Co, Ltd. (Chengdu, China, http://www.
chronchem.com/cn/). All chemicals were used as received
without further purification. Ultrapure water was always
used throughout the experimental process.

Apparatus

Transmission electron microscopy (TEM) images were
recorded on a TEM system (FEI Tecnai G20) operating
at 200 kV. The specimen was prepared by drop-casting
CD suspension (0.02 mg·mL−1) in ethanol onto a carbon-
coated copper grid, followed by drying at room tempera-
ture. The X-ray diffraction (XRD) pattern was obtained
on an X-ray diffract-meter (X Pert PRO MPD) with a
wavelength (λ) of 0.15418 nm. Fourier transform infrared
(FTIR) spectra were gained on a FTIR spectrophotometer
(WQF-520) by the KBr pellet method. The X-ray photo-
electron spectroscopy (XPS) was outperformed on an X-
ray photoelectron spectrometer (ESCALAB 250) with a
mono-achromatized Al Ka X-ray source (1486.71 eV).
UV-visible absorbance and the photoluminescence (PL)
spectra were recorded on a UV-visible spectrophotometer
(U-4100) and a spectrofluorometer (LS-55), respectively.

Scheme 1 Schematic illustration
of a the preparation of CDs and b
their subsequent application as
the ratio-metric fluorescent
probes towards Zn2+ and ATP
with the aid of QCT
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Synthesis of red-emission CDs

The red-emission CDs were synthesized according to the re-
ported method with a few modifications [30]. The specific
synthesis procedures were described in the Electronic
Supplementary Material.

Fluorescent determination of Zn2+ and ATP

For determining Zn2+, 1 mL of Zn2+ aqueous solutions with
different concentrations (0–150 μM) and quantitative F−

(300 μM) were mixed with 1 mL of CD suspensions
(0.06 mg·mL−1) and 1 mL of QCT solutions (300 μM) in
ethanol under gentle shaking. After 5 min, the fluorescence
spectra of above mixtures were taken.

For determiningATP, 1mL ofATP aqueous solutions with
different concentrations (0–150 μM) and quantitative F−

(300 μM) and Zn2+ (150 μM) were mixed with 1 mL of CD
suspensions (0.06 mg·mL−1) and 1 mL of QCT solutions
(300 μM) in ethanol under gentle shaking. After 5 min, the
fluorescence spectra of above mixtures were taken.

Results and discussion

Characterization of CDs

The TEM image in Fig. 1 a shows that the nearly spherical
CDs were successfully synthesized. These CDs have a narrow
particle size distribution of 5.2 ± 2.5 nm. The high-resolution
TEM image (Fig. 1b) reflects that the CDs are almost amor-
phous because no obvious lattice structures can be found. This
is consistent with the result of XRD pattern (Fig. S1a). There
is only a broad and short peak at 21.7° representing (002)
lattice plane of graphite in XRD pattern. This feature further
confirms the poor degree of crystalline of CDs.

The FTIR spectrum (Fig. S1b) can reveal the surface
groups of CDs. The absorption bands at 3313 and
3198 cm−1 can be attributed to the stretching vibrations of
O–H and N–H. The bands at 1615 and 1510 cm−1 can be
owing to the stretching vibrations of C=C, C=N, and C=O.
The bands at 1386, 1115, and 833 cm−1 can be owing to the
deformation vibrations of O–H, stretching vibrations of C–O
and C–N, and deformation vibrations of C–H, respectively.

To further probe the surface information of CDs, the XPS
data of CDs were gained and shown in Fig. S2. The full-scan
XPS spectrum in Fig. S2a shows that the CDs are mainly
composed of C, N, and O elements. The C1s XPS spectrum
(Fig. S2b) can be deconvoluted into three peaks belonging to
the C–C/C=C (284.6 eV), C–O/C–N (285.4 eV), and C=O
(287.3 eV) species. The N1s XPS band (Fig. S2c) displays
that three N species including pyridine N (398.4 eV), pyrrole
N (400.2 eV), and amino N (399.1 eV) can be found. The O1s

XPS band (Fig. S3d) shows the O elements are composed of
C=O (531.4 eV) and C–O–C/C–OH (533.0 eV) species. The
results of FTIR and XPS characterization corporately reflect
the synthesized CDs which are decorated by amino groups
and some oxygen-containing groups. Some N-heterocyclic
motifs including pyridine and pyrrole rings also exist in CDs.

Optical properties of CDs

The UV-visible absorption spectrum of CD suspension
(Fig. 2a) illustrates a strong absorption peak at 288 nm and a
negligible shoulder peak at 325 nm. These can be assigned to
the π-π* electronic transitions of aromatic C=C bonds and
n-π* transitions of C=N and C=O bonds [31]. An additional
prominent shoulder peak between 400 and 600 nm is attribut-
ed to the electronic transitions of surface groups and N-
heterocyclic motifs [32–34]. The CD suspension has obvious
photoluminescence (PL) phenomenon, and the maximum PL
excitation and emission wavelengths are at 500 and 610 nm.
Figure 2b displays the excitation-independent PL behavior of
CDs. The emission wavelength is invariable when the excita-
tion wavelength changes from 300 to 540 nm. This PL behav-
ior reflects that the CDs are uniform not only in particle size
but also in surface state. Using quinine sulfate as a reference,
the quantum yield of CDs is 18.2% under the excitation

Fig. 1 a The TEM, b high-resolution TEM images, and c the particle size
distribution of CDs by counting more than 50 particles
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wavelength of 440 nm for determining the Zn2+ and ATP (Fig.
S3). The CD suspension appears light brown in room light but
bright red under the irradiation of UV light (365 nm) (inset in
Fig. 2b). This phenomenon further confirms the red-emission
feature of CDs. The PL intensity of CD suspension is related
to its concentration (c). As shown in Fig. S4a-b, the CDs emit
the strongest fluorescence at c of 0.02 mg·mL−1. The PL in-
tensity will reduce because of the self-quenching effect when
the c is higher. The pH value also influences the PL intensity
of CDs by altering the surface state of CDs. Fig. S4c illustrates
that the PL intensity of CDs is strong and stable at a wide pH
range of 5.0–11.0. This is beneficial for the fluorescence sens-
ing in aqueous environment. The salt tolerance of CDs is high.
That is the PL intensity of CDs is almost constant with in-
creasing cNaCl up to 4 M (Fig. S4d). This is also favorable for
fluorescence sensing.

Principle of CD-QCT system as Zn2+ ratio-metric fluo-
rescent nanoprobe

As shown in Fig. 3a, QCT (100 μM) alone causes little effect
on the PL spectra of CD suspension, while the PL intensity of
CD-QCT system (at 610 nm) is greatly quenched when spe-
cific amount of Zn2+ (50 μM) is further introduced. A new PL
peak at 480 nm appears because of the forming QCT-Zn2+

complex [18]. Then the CD-QCT system can be constructed
as the Zn2+ ratio-metric fluorescent nanoprobe on account of
the PL intensity ratio (I480/I610) varying with cZn

2+. For QCT
and Zn2+, each of them can hardly absorb light with wave-
length longer than 300 nm. The QCT-Zn2+ complex possess

strong absorption at 430 nm. As shown in Fig. 3b, the PL
excitation spectrum (440 nm) of CDs is mostly overlapped
by the absorption spectrum of QCT-Zn2+ complex. Thus, the
principle of above Zn2+ nanoprobe is confirmed as the inner-
filter effect.

Performance of Zn2+ ratio-metric fluorescent
nanoprobe

The selectivity of CD (0.02 mg·mL−1)-QCT (100 μM) system
for various metal ions was evaluated and shown in Fig. 4a in
terms of the I480/I610 value. The I480/I610 values of Zn

2+ and
Al3+ systems are much larger than that of blank system and
systems containing other metal ions. This result reflects the
specific selectivity of CD-QCT system for Zn2+ and Al3+. The
existence of Al3+ will seriously interfere fluorescent sensing
of Zn2+ owing to the formation of QCT-Al3+ complex [35]. To
eliminate this possible interference, the F− ions were intro-
duced into the CD-QCT system as masking regent. As shown
in Fig. 4b, the CD (0.02 mg·mL−1)-QCT (100 μM)-F−

(100 μM) system exhibits excellent selectivity toward Zn2+

and hence can be established as the ratio-metric fluorescent
nanoprobe of Zn2+.

The PL spectra and corresponding I480/I610 values of CD-
QCT-F− systems with different cZn

2+ were obtained and
shown in the Fig. 5. The PL peak at 480 and 610 nm
(Fig. 5a) gradually enhances and weakens, respectively, with
increasing cZn

2+. Correspondingly, the I480/I610 value in
Fig. 5b increases little by little. Based on the data in Fig. 5b,
the fitted linear relationship between the I480/I610 value and

Fig. 2 a The UV-visible absorp-
tion, maximum PL excitation, and
emission spectra of the CD sus-
pension (0.02 mg·mL−1) in etha-
nol; b PL spectra of the CD sus-
pension (0.02 mg·mL−1) recorded
at various excitation wavelengths
from 320 to 540 nm; Inset of b:
photos of CD suspension under
room light and UV light (365 nm)

Fig. 3 a The PL spectra of CD
suspension (0.02 mg·mL−1), QCT
solution (100 μM), and solution
with 100 μM QCT and 50 μM
Zn2+ under 440 nm irradiation; b
UV-visible absorption spectrum
of solution with 100 μM QCT
and 50 μM Zn2+ and PL excita-
tion spectrum (440 nm) of CD
suspension (0.02 mg·mL−1)
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Fig. 5 a The PL spectrum and b
corresponding I480/I610 value of
CD (0.02 mg·mL−1)-QCT
(100 μM)-F− (100 μM) system as
a function of cZn

2+; Inset of b:
fitted linear relationship between
I480/I610 value and cZn

2+ (each
data point is calculated as the av-
eraged value of 3 repeated
experiment)

Fig. 4 The selectivity of a CD
(0.02 mg·mL−1)-QCT (100 μM)
system and b CD
(0.02 mg·mL−1)-QCT (100 μM)-
F− (100 μM) system toward dif-
ferent metal ions (15 μM) based
on the I480/I610 value

Fig. 6 a The PL spectrum and b
corresponding I480/I610 value of
CD (0.02 mg·mL−1) -QCT
(100 μM) -F− (100 μM) -Zn2+

(50 μM) system as a function of
cATP, c and d Fitted linear rela-
tionships between I480/I610 value
and cATP (each data point is cal-
culated as the averaged value of 3
repeated experiment)
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Table 1 An overview on recently
reported CD-based fluorescent
determination of Zn2+ and ATP

Material Substance Method Detection
range, LOD
(μM)

Interference Reference

Quinoline derivative-capped CDs Zn2+ Fluorescence 0.1–2.0 μM,
6.4 nM

Cu2+, Cd2+ [11]

CD-QCT Zn2+ Fluorescence 2–200 μM,
2 μM

Al3+ [18]

CDs Zn2+ Fluorescence Unattained,
>1 μM

Manymetal
ions

[14]

P-doped CDs Zn2+ Fluorescence 1–11 μM,
0.4 μM

Manymetal
ions

[15]

CD-Au cluster Zn2+ Ratio-metric
Fluoresce-
nce

1–70 μM,
0.1 μM

– [12]

Cylix[4]arena-modified CDs Zn2+ Fluorescence 1–20 μM,
7.34 nM

– [4]

CdTe dot-CD Zn2+ Ratio-metric
Fluoresce-
nce

0.5–40 μM,
0.33 μM

– [13]

Zn-doped CD-EDTA Zn2+ Fluorescence 2–15 μM,
0.51 μM

– [16]

CD-HClO Zn2+ Fluorescence 8.4–84 μM,
0.3 μM

Cu2+, Fe3+ [19]

Dual-emission CDs Zn2+ Ratio-metric
Fluoresce-
nce

2.5–50 μM,
1.2 μM

– [20]

Red-emission CD-QCT-F− Zn2+ Ratio-metric
Fluoresce-
nce

0.14–30 μM,
0.14 μM

– This
work

CD-metal ion ensembles ATP Fluorescence 0.5–6 μM,
0.11 μM

– [21]

CD-Fe3+ ATP Fluorescence 0.1–450 μM,
5 nM

– [22]

CD-Au nanorod ATP Ratio-metric
Fluoresce-
nce

0–50 μM,
3.6 μM

– [23]

CD-calcein-Eu3+ ATP Ratio-metric
Fluoresce-
nce

0.05–2 μM,
20 nM

– [24]

Red-emission CD-QCT-F−-Zn2+ ATP Ratio-metric
Fluoresce-
nce

0.55–35 μM,
0.55 μM

– This
work

Table 2 Recovery tests of Zn2+

and ATP in spiked tap and lake
water samples analyzed by the
above two ratio-metric fluores-
cent nanoprobes

Sample Substance Added (μM) Found (μM) Recovery (%) RSD (n = 3, %)

Tap water Zn2+ 0.0 0.23 - 3.2

6.0 6.05 97.1 4.6

12.0 11.9 97.3 2.9

ATP 8.0 8.14 102 2.7

24.0 23.4 97.7 3.1

Lake water Zn2+ 0.0 0.41 - 3.4

6.0 6.23 97.0 2.9

12.0 12.9 104 3.8

ATP 8.0 7.84 98.0 3.3

24.0 22.9 95.4 4.0
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cZn
2+ with high degree of fitting (R2 = 0.995) is obtained (Inset

of Fig. 5b). The detection range of this probe is confirmed as
0.14–30 μM. According to the 3σ IUPAC criteria, the limit of
detection (LOD) of this probe is calculated as 0.14 μM.

The selectivity of above Zn2+ nanoprobe was further eval-
uated. There are a lot of inorganic ions (such as K+, Ca2+,
Mg2+, Fe3+, F−, Cl−, SO4

2−) in tap water. Fig. S5 displays that
the CD-QCT-F− system can still be used as the ratio-metric
fluorescent nanoprobe of Zn2+ when the ultrapure water of test
systems was displaced by the tap water. The probe has similar
linear detection range of 0.15–30 μM and LOD of 0.15 μM.

Principle and performance of ATP ratio-metric fluo-
rescent nanoprobe

The UV-visible absorption spectra of various solutions shown
in Fig. S6a demonstrate the feature absorption peak of QCT-
Zn2+ complex at 430 nm disappear when the ATP is intro-
duced. The typical absorption peaks for QCT at 382 nm and
for ATP at 267 nm appear. These phenomena indicate that the
affinity of ATP to Zn2+ is much stronger than QCT. Addition
of ATP into the CD-QCT-F−-Zn2+ system can result in the
decomposition of QCT-Zn2+ complex. This makes the green
fluorescence at 480 nm attenuate under 440 nm irradiation.
The red fluorescence of CDs at 610 nm recovers. Then the
CD-QCT-F−-Zn2+ system can be builted as a ratio-metric fluo-
rescent nanoprobe of ATP based on the I480/I610 value varying
with cATP.

Fig. S6b displays the selectivity of CD-QCT-F−-Zn2+ sys-
tem toward different analytic substances. Not only common
inorganic anions but also analogues of ATP (such as AMP and
ADP) can hardly interfere the fluorescent sensing of ATP.
This confirms the specific selectivity of CD-QCT-F−-Zn2+

system toward ATP.
As shown in Fig. 6, the PL peak at 480 and 610 nm grad-

ually weakens and enhances, respectively, with increasing
cATP. Correspondingly, the I480/I610 value in Fig. 6b reduces
little by little. Two fitted linear relationships between I480/I610
value and cATP with high degree of fitting (R2 > 0.99) are
gained as 0.55–10 (Fig. 6c) and 10–35 μM (Fig. 6d). Then
the ratio-metric fluorescent nanoprobe of ATP is built with
LOD of 0.55 μM and determination ranges of 0–10 μM and
10–35 μM. This nanoprobe has comparable sensitivity and
favorable determination range but much better selectivity
comparedwith the previous CD-based fluorescent nanoprobes
of ATP [21–24].

Table 1 lists the performances of the recently reported and
the above CD-based fluorescent probes towards Zn2+ and
ATP. Some previous probes have complicated or toxic or
expensive compositions. The compositions of our probes are
simple, cheap, and eco-friendly. Most of the previous probes
are based on single-signal changes. These probes usually
show relatively poor sensitivity and selectivity. Our probes

are on account of the ratio-metric fluorescence variations with
favorable sensitivity and selectivity. Previous probes can de-
termine either Zn2+ or ATP. Our probes realize simultaneous-
ly determination of Zn2+ and ATP. Some drawbacks are also
existent in our probes. The CDs and QCT possess the poor
water-solubility and hence perplex the determination proce-
dures of Zn2+ and ATP. This method may not be used in vivo
because the Zn2+ and ATP are coexisting.

Recovery tests in tap and lake water samples

To evaluate the reliability of the above two nanoprobes, the
recovery tests of Zn2+ and ATP in spiked tap and lake water
samples were carried out. The lake water was directly obtain-
ed from the college of Southwest Petroleum University
(Chengdu, China). It was used after filtering through a mem-
brane (0.22 μm) and centrifuging at 12,000 r min−1 for
10 min. The recoveries of spiked samples shown in Table 2
all range between 95 and 104% with low relative standard
deviation (RSD). The satisfactory recovery results mean that
the ratio-metric fluorescent nanoprobes presented here can
realize the quantitative determination of Zn2+ and ATP in real
samples.

Conclusions

The red-emission CD-QCT-F system was constructed as the
ratio-metric fluorescence probe of Zn2+ based on the inner
filter effect of the QCT-Zn2+ complex. The detection range
and LOD of this probe are 0.14–30 μM and 0.14 μM. The
CD-QCT-F−-Zn2+ system was built as the ratio-metric fluo-
rescent probe of ATP with detection ranges of 0.55–10 and
10–35 μM and LOD of 0.55 μM. These probes are composed
of simple and eco-friendly materials. The sensitivity and se-
lectivity of these probes are satisfactory. The probes presented
here realize simultaneously determination of Zn2+ and ATP in
tap and lake water samples. There are also two striking draw-
backs for the above two probes. The CDs and QCT are poorly
soluble in water and hence perplex the determination proce-
dures of Zn2+ and ATP. This method cannot be used in vivo
because the Zn2+ and ATP are coexisting.
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