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Abstract
A colorimetric microplate assay for determination of Staphylococcus aureus DNA is described. Linear padlock probes were
designed to recognize target sequences. After DNA binding, the linear padlock probes were circularized by ligation and then
hybridize with biotin-labeled capture probes. Biotin-labeled capture probes act as primers to initiate the RCA. The biotin-labeled
RCA products hybridize with digoxin-labeled signal probes fixed on streptavidin-functionalized wells of a 96-well plate. To
enhance sensitivity, an AuNP-anti-digoxigenin-POx-HRP conjugate was added to the wells and then bound to digoxin-labeled
signalling probes. The oxidation of tetramethylbenzidine (TMB) by H2O2 produces a color change from colorless to blue via
HRP catalysis. After the reaction was terminated, absorbance is measured at 450 nm. For target sequences of Staphylococcus
aureus, the detection limit is 1.2 pM. For genomic DNA, the detection limit is 7.4 pg.μL−1. The potential application of the
method was verified by analyzing spiked food samples.

Keywords Rolling circle amplification (RCA) . Colorimetric microplate assay . Multifunctional gold nanoparticles . Biotin–
streptavidin system . Staphylococcus aureus

Introduction

Staphylococcus aureus (S. aureus) can be found in many
foods and can cause food poisoning, skin infections and even
sepsis, and being considered as an important food-borne

pathogen [1–5]. The gold standard for determination of
S. aureus is direct microscopic examination and culture, but
it requires 4–7 days and is tedious. It is necessary to develop
quickly and accurately method for determination of S. aureus,
which will be helpful to control pathogens [6].

Some rapid methods have been developed, among which
the molecular recognition method is the most important.
Nucleic acid amplification plays a major role in the determi-
nation of bacterial pathogens [7], many methods of nucleic
acid amplification have been developed such as nested-PCR
[8], real time-PCR [9] and nucleic acid sequence-based am-
plification (NASBA) [10]. However, these methods require
sophisticated thermo-cycling systems to amplify the target
DNA as well as expensive instruments to report the results.
Rolling circle amplification (RCA), as a signal-amplification
tool, have been studied [7, 11–13] The RCA include three
major steps: the first, target sequences are hybridized perfectly
with the 5′ and 3′ terminus of linear padlock probes, it is
disallowing any mismatch (even if single-nucleotide mis-
match) [7]. The ends of linear padlock probes are ligated by
E. coli DNA ligase. The second, Exonuclease I and
Exonuclease III are added into the above-ligation resulting
mixture to remove the non-circularized padlock probes.
Because non-circularized padlock probes may produce self-
ligation amplification in the subsequent RCA amplification
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[14]. The end, the capture probes as primer initiates the RCA
reaction under constant temperature via phi29 DNA polymer-
ase catalysis, the RCA products are very long reduplicated
single-strand DNA sequences that linked to capture probes.
RCA is not only the mismatch being restrained but also has a
low incidence of false positive results compared to PCR [11].
RCA has been used successfully to the determination of many
kinds of microorganism [11, 15, 16]. The RCA products can
be used for on-chip detection through signal centralization and
site-anchored amplification [7, 17, 18]. The RCA products
also can hybridize with a series of signal probes to output
various response signals [13, 18, 19].

RCA-based biosensors have been developed to detect bac-
terial pathogens, such as RCA based optomagnetic determi-
nation [20], RCA-based electrochemical biosensors [21], gold
nanowire based electrical DNA biosensors [16], RCA-based
surface plasmon resonance (SPR) biosensors [14], RCA-
based quartz crystal microbalance (QCM) biosensors [22]
and RCA-based terahertz (THz) spectroscopy biosensors
[23], etc. These RCA-based assays are sensitive but require
expensive instruments, restricting their utility. The
nanomaterial-based colorimetric methods shows satisfactory
results and the results can be visually observed [5, 24]. Herein,
a novel RCA-based colorimetric method was established in
96-well plates for determination of S. aureus. The 96-well
plates offered a high throughput platform, so this RCA-
based colorimetric method was significant advantages in high
throughput, ultrasensitive and rapid determination.

Materials and methods

Materials and apparatus

The single-stranded oligonucleotides were synthesized by
Genewiz Biotechnology Co., Ltd. (Suzhou, China, www.
genewiz.com). These sequences were showed in Table S1.
E. coli DNA ligase, Exonuclease I, Exonuclease III, and
Phi29 DNA polymerase were purchased from New England
Biolabs (USA, www.neb-online.de). QuickCut™ EcoRI,
QuickCut™ HindIII and QuickCut™ BamHI were
purchased from Takara (Dalian, China, www.takarabio.com).
TIANamp Bacteria DNA Kit was obtained from TIANGEN
(Beijing, China, www.tiangen.com). Anhydrous citric acid
trisodium salt (98%) was obtained from Acros Organics
(USA, www.acros.com). The HAuCl4, streptavidin (SA),
anti-digoxigenin-POx, horseradish peroxidase (HRP), bovine
serum albumin (BSA), N-ethyl-N′-(3-di-methylaminopropyl)
carbodiimide (EDC), sodium acetate, dimethyl sulfoxide
(DMSO), β-cyclodextrin, urea hydrogen peroxide, and
tetramethylbenzidine (TMB) were purchased from Sigma-
Aldrich (USA, www.sigmaaldrich.com). Sodium carbonate
and sodium bicarbonate were purchased from Sinopharm

Chemical Reagent Co., Ltd. (Shanghai, China, www.
sinoreagent.com). Biotin-secondary antibody was obtained
from Dingguo Changsheng Biotechnology Co., Ltd.
(Beijing, China, www.dingguo.com). The F96 Maxisorp
nunc-immuno plate (96-well plates) was purchased from
Thermo scientific (Denmark, www.thermofisher.com). All
other chemicals were analytical grade. The substrate solution
A consisted of 100 mM sodium acetate-citric acid buffer
(pH 5.0), 4.56 mM urea hydrogen peroxide, and 2.2 mM β-
cyclodextrin. The substrate solution Bwas prepared by adding
42 mM TMB into DMSO. The working solution contained
100 mM Tris-HCl (pH 7.5), 5% (w/v) saccharose, 0.5% (w/v)
BSA, and 0.5% (v/v) PEG 200. 1 L washing buffer (PBST
pH 7.4) consisted of 1.79 g NaH2PO4·2H2O, 13.76 g
Na2HPO4·12H2O, 9 g NaCl and 5 mL 10% (w/w) Tween-
20. The solutions were prepared with deionized water from a
Milli-Q system (Millipore, Billerica, MA, USA, www.
merckmillipore.com). UV–vis absorption was measured on a
microplate reader (Thermo fisher, USA, www.thermofisher.
com).

Preparation of streptavidin-functionalized 96-well
plates

Initially, biotin-secondary antibody (0.25 μg well−1) was
placed in the 96-well plates and then incubated at 37 °C for
3 h. Excess biotin-secondary antibody was removed and the
96-well plates were washed with washing buffer. 200 μL
well−1 of 0.5% skim milk (w/v) was added into the 96-well
plates to prevent nonspecific adsorption. After incubating at
37 °C for 1 h, the 96-well plates were washed with washing
buffer. Subsequently, 1 μg well−1 streptavidin were added into
the 96-well plates and then incubated at 37 °C for 1 h. Excess
reagent was decanted and then the 96-well plates were washed
with washing buffer, being stored at 4 °C.

Synthesis of AuNP-anti-digoxigenin-POx-HRP

AuNPs is a colloidal solution forming electron dense re-
gions between negatively charged particles. The AuNPs is
able to associate with proteins via Van der Waals forces,
the proteins forming a shell around each AuNPs particle
[25].To increase the loading amount of HRP toward one
reaction event, HRP was conjugated to anti-digoxigenin-
POx via condensation reaction between the amidogen and
the carboxyl in the presence of EDC [26], and then was
conjugated with AuNPs [27] (Fig. 1b).

AuNPs (~15 nm diameter) were prepared as following
[28]. All glassware was immersed in chromic acid for
24 h and rinsed with deionized water, then dried by oven.
Before being used, trisodium citrate solution and HAuCl4
were filtered through a 0.22-μm filter. 2.25 mL of 1% (w/
v) trisodium citrate was added into 100 mL boiling 0.01%
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(w/v) HAuCl4 with vigorous stirring. The color of the
mixture turned from pale yellow to deep blue, the final
color changed to wine red. The wine-red mixture solution
kept boiling for 15 min with continuous stirring, then was
moved away heating source. The mixture solution was
stirred continuously until cooled to room temperature.
The product was stored in dark place at 4 °C and used
to synthes ize AuNP-ant i -d igoxigenin-POx-HRP
conjugates.

AuNP-anti-digoxigenin-POx-HRP were prepared by
following the steps. Firstly, the AuNPs solution was
adjusted to pH 6.0 using 0.1 M K2CO3, and then the
anti-digoxigenin-POx, HRP (the enzyme activity ratio of
anti-digoxigenin-POx: HRP = 1:375) and 20 μM EDC
were added. The mixture was stirred for 3 h and then
centrifuged at 11603 rcf for 20 min at 4 °C. Secondly,
the precipitate was re-suspended in the mixed solution

of final concentration of 0.8% BSA (w/v) and 0.4%
PEG20000 (w/v), keeping for 30 min, being centrifuged
at 11603 rcf for 20 min at 4 °C. Finally, the precipitate
was re-suspended in the working solution and stored at
4 °C for subsequent experiment.

The RCA-based colorimetric method

Rolling circle amplification reaction

The linear padlock probes and the target sequence were dena-
tured at 95 °C for 5 min and then immediately put into ice bath
for 10 min. Next, the mixture was incubated at 50 °C for
60 min, and then 10 U of E. coli DNA ligase was added.
The ligationmixture incubated at 30 °C for 60min. To remove
non-circularized padlock probes and linear oligonucleotides in
the ligationmixture, 10μL of Exonucleasemixture (1 × buffer

Fig. 1 Schematic diagram of RCA colorimetric method for determination
of S. aureus DNA. a Diagram of the linear padlock probes. The linear
padlock probes included: the test region which complemented with target
sequences (T1 and T2); the general region which offer tandem
reduplicated sequences on the RCA products for signal probe

hybridizing (G); the special part which can be recognized by capture
probe (S). b Principle of the synthetic of AuNP-anti-digoxigenin-POx-
HRP conjugates. c Schematic illustration of the RCA colorimetric
method.

Microchim Acta (2020) 187: 119 Page 3 of 10 119



I, 10 U Exonuclease I, and 10 U Exonuclease III) was added
into each reaction. The mixture solution was incubated at
37 °C for 1 h and then was terminated by inactivated at
95 °C for 15 min. The end, the above-products was added into
25 μL RCA reaction system (1× phi 29 DNA polymerase
buffer, 1 μM biotin labeled capture probes), and incubated at
50 °C for 30 min. Then, added 5 U phi29 DNA polymerase,
1 mM dNTPs and 5 μg BSA into this RCA reaction system,
which was incubated at 35 °C for 90 min and inactivated at
65 °C for 10 min. The resulting products, which were 5′ ter-
minus biotin labeled long reduplicated single-strand DNA se-
quences, were used for further analysis.

Microbiological determination on the streptavidin
functionalized 96-well plates

First, the 5′ terminus biotin labeled RCA products hybridized
with signal probes (1 μL of the RCA products were hybrid-
ized with 2 μM signal probes at 60 °C for 30 min) were added
into the streptavidin-functionalized 96-well plates and incu-
bated at 37 °C for 30 min, then the plates were washed by
washing buffer. Second, after adding 100 μL AuNP-anti-
digoxigenin-POx-HRP, the plates were incubated at 37 °C
for 30 min, and then washed with washing buffer. Final, the
substrate mixture (contain substrate solution A and substrate
solution B) was added into the plates, then the plates were
placed at room temperature for 20 min, the stop solution being
added into the plates to stop the reaction. The result was mea-
sured by microplate reader at 450 nm.

Preparation of bacterial genomic DNA

E. coli O157: H7 (ATCC 35150), E. coli (CICC 10305),
S. aureus (ATCC 25923), S. epidermidis (ATCC 35984),
S. saprophyticus (ATCC 15305), Shigella soonei (CTCC
21535), L. monocytogenes (ATCC 7644), and P. aeruginosa
(ATCC 27853) were used in this experiment. They were cul-
tured overnight at 37 °C in LB medium. Genomic DNAwas
isolated according to the instructions of TIANamp Bacteria
DNA Kit. The extracted DNA was eluted with TE buffer
and stored at −20 °C. The concentration of microbial genomic
DNAwas determined according to the manufacturer’s instruc-
tions. Before the RCA reaction, the extracted DNA was
fragmented through enzymolysis using Quick Cut™ Bam
HI, Quick Cut™ Hind III, and Quick Cut™ Eco RI [29] for
30 min.

Preparation of artificial contaminated food samples

Milk and chicken breast were purchased from local markets
and washed with 0.85% NaCl (sterile). The chicken breast
sample was homogenized (samples/sterile 0.85%NaCl 1:10)
by homogenizer with 8000 r min−1 for 2 min. Themilk sample

was 10-fold diluted with sterile 0.85% NaCl. Two groups of
artificial contaminated milk samples and chicken breast sam-
ples were prepared. The S. aureus of exponential growth
phase was added into the milk samples and the chicken breast
samples. The above sample diluting solution was put into
7.5%NaCl broth medium, and incubated at 37 °C for over-
night. The bacterial genomic DNAwas isolated according to
the instructions of TIANampBacteria DNAKit. The extracted
DNAwas eluted with TE buffer and stored at −20 °C. Before
being analyzed by the proposed RCA-based colorimetric
method, the extracted DNA was fragmented through
enzymolysis using Quick Cut™ Bam HI, Quick Cut™ Hind
III, and Quick Cut™ Eco RI for 30 min.

Results and discussion

Principle of the RCA-based colorimetric method

Principle of probes design

Specific sequences in the 16S rDNA of the S. aureus were
selected as the target sequences. For accurate and rapid iden-
tification of S. aureus, three kinds of probes were designed to
the established RCA-based colorimetric method, which in-
cluded linear padlock probes, biotin-labeled capture probes,
and digoxin-labeled signal probes (Table S1).

As shown in Fig. 1a, the linear padlock probes include
three parts: T1 and T2 represent the test region locating at the
5′ and 3′terminus, this region is complementary to target se-
quences; G indicate a general region which provides the
reduplicated sequences on the RCA products for signal probe
hybridizing; S represent a special part which can be recog-
nized by the 5′terminus biotin-labeled capture probe. For mak-
ing sure the linear padlock probes effectively recognizing the
target sequence, asymmetrical design was applied to the linear
padlock probes, which was lengthening the 5′terminus se-
quence and shortening the 3′terminus sequence [14]. The lin-
ear padlock probes can discriminate the single-nucleotide mis-
match [7, 14]. This design improved the recognition ability of
the linear padlock probes to the target sequence effectively. In
order to substantiate the above designs, the products of the
ligation reactions and the RCAwere analyzed by 2% agarose
gel electrophoresis. As shown in Fig. S1A, the migration ve-
locity, which the products of linear padlock ligation treated
with target sequences, is slower than only the linear padlock
probes. This confirm that the linear padlock probes are ligated
into a ring only when the target sequences being present. Fig.
S1B display that the RCA products only from target se-
quences has a band near the sample hole, but the RCA prod-
ucts of single-nucleotide mismatch and negative control not
have it. It is verified that the probes of the RCA had the ability
to identify single-nucleotide mismatch.
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Each capture probes contain an additional (C)10 space link-
er at 5′terminus, which can improve the efficiency of circular-
ized padlock probes hybridization and enhance signal fixation
on the 96-well plate. The signal probes have the same (C)10
space linker as the capture probes.

Principle of the RCA-based colorimetric method

As shown in Fig. 1c, the principle of the RCA-based colori-
metric method is presented schematically. The key of the
RCA-based colorimetric method is the RCA reaction. The
RCA include three major steps: the first, target sequence hy-
bridize perfectly with the 5′ and 3′ terminus of linear padlock
probes, and then them are ligated and circularized by E. coli
DNA ligase, disallowing any mismatch (even if single-
nucleotide mismatch). The second, Exonuclease I and
Exonuclease III are added into the above-ligation mixture to
remove the unreacted padlock probes, which is able to pro-
duce self-ligation amplification in the subsequent RCA ampli-
fication. The self-ligation amplification can cause strong back-
ground signals [14]. The end, the biotin-labeled capture
probes act as primers to initiate the RCA reaction. The RCA
products are 5′ terminus biotin-labeled long single-stranded
DNAs, which have tandem reduplicated sequences [7].

5′ terminus digoxigenin-labeled signal probes hybridize
with the general region of RCA products. This hybridized
mixture is fixed on streptavidin-functionalized wells of a 96-
well plate. To enhance sensitivity, AuNP-anti-digoxigenin-
POx-HRP is added to the wells and then bound to
digoxigenin-labeled signal probes. Finally, the oxidation of
tetramethylbenzidine (TMB) by H2O2 produces a color
change from colorless to blue via HRP catalysis. After the
reaction is terminated, which is measured bymicroplate reader
at 450 nm.

Preparation of AuNP-anti-digoxigenin-POx-HRP

Optimizing the synthetic of AuNP-anti-digoxigenin-POx-HRP
The following parameters were optimized to get AuNP-anti-
digoxigenin-POx-HRP conjugated: (a) the pH of reaction
mixture; (b) concentration of EDC; (c) the ratio of anti-
digoxigenin-POx: HRP. Respective data and Figures are given
in the Electronic Supporting Material.

In short, the following experimental conditions were found
to give best results: (a) Optimal pH of reaction mixture:
pH 6.0; (b) Optimal concentration of EDC: 20 μM EDC; (c)
Best ratio of anti-digoxigenin-POx and HRP: 1 U:375 U.

Characterization of AuNP-anti-digoxigenin-POx-HRP The
AuNP-anti-digoxigenin-POx-HRP conjugates were rinsed
three times, and then were characterized by transmission elec-
tron micrographs (TEM), UV–vis absorption spectrum, and
FTIR spectra. The TEMof AuNP-anti-digoxigenin-POx-HRP

conjugates and AuNPs are shown in Fig.S3. The TEM dis-
plays that it is not significant difference between the AuNPs
and the AuNP-anti-digoxigenin-POx-HRP conjugates.

As Fig. 2a showing, the UV–vis absorption spectrum of the
functionalized and non-functionalizedAuNPs all have a plasmon
band near 520 nm,which is due to the surface plasmon resonance
of the AuNPs [26]. It illustrate that the functionalizedAuNPs had
dispersity as good as the AuNPs, the result is consistent with the
TEM. It is difference between the UV–vis absorption spectrum
of functionalized and non-functionalized AuNPs. The function-
alized AuNPs have an absorption at 280 nm which is character-
istic protein peak, proving the anti-digoxigenin-POx-HRP con-
jugates being attached to the AuNPs.

The FTIR spectra of AuNPs and AuNP-anti-digoxigenin-
POx-HRP conjugates are shown in Fig. 2b. Comparing with
the FTIR spectrum of AuNPs, new characteristic peaks of the
functionalized AuNPs appear at 1578 cm−1 (corresponding to
the bending vibration of N-H), 1415 cm−1, 1337 cm−1 and
1146 cm−1 (stretching vibrations of C-N), and 843 cm−1

(out-of-plane bending vibration). The broad band at near
3476 cm−1 became stronger, sharper and appeared a slight
drift, which is assigned to the stretching vibration of N-H. In
addition, the peak at near 1643 cm−1 became stronger is
corresponded to the stretching vibration of C=O. These
changes suggested that the anti-digoxigenin-POx-HRP conju-
gates are combined with AuNPs successfully.

Signal amplification effect of AuNP-anti-digoxigenin-POx-
HRP AuNPs as a nanocarrier to synthesize AuNP-anti-
digoxigenin-POx-HRP was researched. AuNP-anti-
digoxigenin-POx-HRP and anti-digoxigenin-POx were uti-
lized to detect target sequences of concentration from 10−9

to 10−5 M. The Fig. 3a is the diagram of the signal ampli-
fication using AuNP-anti-digoxigenin-POx-HRP. As
shown in Fig. 3b, when anti-digoxigenin-POx is used, the
UV–vis absorption decrease with the target concentration
decreasing. The concentration of target sequences is below
10−8 M, the UV absorption value do not change. When
AuNP-anti-digoxigenin-POx-HRP is used, the UV–vis ab-
sorption reduce significantly with the target concentration
from 10−5 to 10−9 M. When the RCA products initiated by
10−5 M target sequences are detected using anti-
digoxigenin-POx or AuNP-anti-digoxigenin-POx-HRP,
the UV–vis absorption of anti-digoxigenin-POx is 1.890
± 0.077 (n = 3); while, the UV–vis absorption of AuNP-
anti-digoxigenin-POx-HRP is 3.981 ± 0.093 (n = 3), being
2.11 times as much as anti-digoxigenin-POx. Therefore,
the AuNP-anti-digoxigenin-POx-HRP improve the ampli-
fication signal significantly.

Optimization of method The following parameters were
optimized: (a) amount of linear padlock probes; (b) hy-
bridization temperature between linear padlock probes
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and target sequences; (c) the time of the RCA; (d) the
time of RCA products bonding with streptavidin func-
tional 96-well plate. Respective text, data and
Figures are given in the Electronic Supporting Material.

So, the following experimental conditions were found
to give best results: (a) amount of linear padlock probes:
1 μM linear padlock probes; (b) hybridization temperature
between linear padlock probes and target sequences:
50 °C; (c) the time of the RCA: 90 min; (d) the time of
RCA products bonding with streptavidin functional 96-
well plate: 30 min.

Sensitivity of the RCA-based colorimetric method The sensi-
tivity of the RCA-based colorimetric method was evaluated
using optimization conditions. Figure 4 shows that there is a
good linear relationship between UV–vis absorption value

and the logarithm of the target sequences concentration from
10−9 to 10−6 M with a correlation coefficient of 0.99344. The
limits of detection (3S/N) of the RCA-based colorimetric
method is 1.2 × 10−12 M of target sequences. These products
have been analyzed by 2% agarose gel electrophoresis, the
result of agarose gel electrophoresis is agreed with that of
these findings (Fig. S7).

To evaluate the sensitivity of the method in bacterial sam-
ples, the different concentrations of bacterial genomic DNA
was analyzed using the proposed RCA-based colorimetric
method. Microbial genomic DNAwas isolated by TIANamp
Bacteria DNA Kit. The concentration of microbial genomic
DNAwas determined according to the manufacturer’s instruc-
tions. The UV–vis absorption values of different concentra-
tions bacterial genomic DNA are shown in Fig. 5. There is a
good linear relationship between the UV–vis absorption value

Fig. 3 Effects of signal amplification effect of AuNP-anti-digoxigenin-
POx-HRP. a The schematic diagram of the signal amplification using
AuNP-anti-digoxigenin-POx-HRP. b The UV–vis absorption value of

using anti-digoxigenin-POx and AuNP-anti-digoxigenin-POx-HRP to
detect different concentrations of target sequences.(n = 3)
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and the logarithm of the microbe genomic DNA concentration
from 1 × 10−2 to 1 ng μL−1 with a correlation coefficient of
0.99394. The limits of detection (3S/N) of this assay is 7.36 ×
10−3 ng μL−1 for the microbe genomic DNA. For verify these
results, these products were analyzed by 2% agarose gel elec-
trophoresis. As showed in Fig. S8, the electrophoretic results
correspond to that of the UV–vis absorption.

The sensitivity of the method was compared with that of
other similar methods (Table 1). The sensitivity of this method
is more or equal to the documents, and the method has obvi-
ous advantages in terms of high throughput, sensitivity, costs
and speed.

Specificity Bacterial genomic DNA, including E. coli
O157:H7, E. coli, S. aureus, S. epidermidis, S. saprophyticus,
Shigella soonei, L. monocytogenes, P. aeruginosa, were used
to evaluate the specificity of this method. Each microbial ge-
nomic DNA was tested by this method, the results were

reported through the UV–vis absorption. Subsequently, the
results were validated by 2% agarose gel electrophoresis. As
Fig. 6 shows that the UV–vis absorption produced by
S. aureus and the mixed are 1.439 ± 0.056, 1.213 ± 0.062
(n = 3) respectively, which is significantly higher than that of
other bacterial DNA samples (p < 0.01). These results are in
accord with that of agarose gel electrophoresis analysis
(Fig.S9). These can be concluded that the RCA-based colori-
metric method provided a specificity and effective means to
detect S. aureus.

Analysis artificial contaminated food samples To confirm the
practicability of this method for the detection of bacterial ge-
nomic DNA in food samples, artificial contaminated milk
samples and chicken breast samples were analyzed using this
colorimetric method. As shown in Table S2, the differences
among the contaminated samples and the negative controls
can be distinguished by the UV–vis absorption values. The

Fig. 5 The relationship between
the fluorescence intensity
(recorded at 450 nm) and
genomic DNA
concentrations.Inset:The standard
curve of this method upon
addition of 1 × 10−2 to
1 ng μL−1 M target sequences
(n = 3). Photographs of the 96-
well ELISA plate corresponding
to different concentration of ge-
nomic DNA

Fig. 4 The relationship between
the fluorescence intensity
(recorded at 450 nm) and target
sequences
concentrations.Inset:The standard
curve of this method upon
addition of 10−9 to 10−6 M target
sequences (n = 3). Photographs of
the 96-well ELISA plate corre-
sponding to different concentra-
tion of target sequences
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UV–vis absorption values of artificial contaminated milk and
chicken breast samples represent 1.563 ± 0.068 and 1.442 ±
0.044 (n = 3), separately. The above results can be significant-
ly distinguished from the negative controls (0.529 ± 0.041 and
0.460 ± 0.029 (n = 3), p < 0.01). These results are verified by
agarose gel electrophoresis (Fig.S9).

Conclusions

A colo r ime t r i c mic rop la t e a s say fo r de t ec t ing
Staphylococcus aureus DNA was establ ished on
streptavidin-functionalized 96-well plates using rolling cir-
cle amplification (RCA) as a molecular detection tool and
AuNP-anti-digoxigenin-POx-HRP as an efficient signal
transduction markers. In the method, RCA offered high
sensitivity and specific recognition for the target DNA of
Staphylococcus aureus. The RCA products were very long
reduplicated single-strand DNA sequences, which can hy-
bridize with AuNP-anti-digoxigenin-POx-HRP to output
amplified colorimetric signals. Under the optimum param-
eters, the detection limit of the colorimetric microplate as-
say for detecting target sequences was 1.2 pM and detect-
ing bacterial genomic DNA was 7.36 pg μL−1. Using the
method to detect artificial contaminated food samples, the
potential application of the proposed RCA-based colori-
metric method was verified. The method is a user-
friendly diagnostic tool for bacterial pathogens. Future re-
search can design more much individual species-specific
padlock probes to improve the multiplex detection capabil-
ities of the RCA-based colorimetric method. This method
may be also expanded for other bacteria and viruses.

Table 1 Comparison of this
method with other similar
methods

Analytical technique Nucleic acid
amplification method

Detection

equipment

Limit of
detection

Reference

Ligation-mediated
colorimetry

PCR Microplate reader 74 pM [30]

In situ microfluidic
electrochemical
detection method

PCR Flow-through
electrochemical

(EC)-q(PCR)
device

8 pg μL−1 [9]

AuNps-mediated
colorimetry

AS-PCR Microplate reader 10 pg [31]

Graphene Oxide–Based
fluorometric
determination

Strand-Displacement
Polymerization

Recycling

Fluorescence
Spectrometer

0.5 nM [32]

Electrochemical DNA
biosensor

RCA Electrochemical

Workstation

0.1 nM [33]

Au
nanoparticle-embedded
SPR biosensor

RCA Surface plasmon
resonance
(SPR)

10 pM [34]

Au nanoparticles
enhanced SPR
biosensor

RCA Surface plasmon
resonance
(SPR)

0.5 pM or
0.5 pg μL−1

[14]

Optomagnetic assay RCA Optomagnetic
setup

2 pM [20]

Au nanoparticles
enhanced
surface-anchored SPR
biosensor

RCA Surface plasmon
resonance
(SPR)

5 pM or

8.2 pg μL−1
[35]

Rolling Circle
Amplification
colorimetric method

RCA Microplate reader 1.2 pM or
7.36 pg μL−1

This work

Fig. 6 The result of the RCA-based colorimetric method for determina-
tion of bacterial genomic DNA. (n = 3)
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