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Abstract
Core-shell palladium cube@CeO2 (Pd cube@CeO2) nanoparticles are shown to display oxidase-like activity. This is exploited in
a method for determination of the activity of alkaline phosphatase (ALP). The Pd cube@CeO2 nanoparticles were thermally
synthesized from Ce(NO3)3, L-arginine and preformed Pd cube seeds in water. The Pd cube@CeO2 nanoparticles catalyze the
oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by oxygen. This results in the formation of oxidized TMB (oxTMB) with an
absorption peak at 652 nm. Ascorbic acid (AA) is generated from the hydrolysis of L-ascorbic acid 2-phosphate (AAP) catalyzed
by ALP. It can reduce oxTMB to TMB, and this results in a decrease of the absorbance. The method allows for quantitative
determination of the activity of ALP in the range from 0.1 to 4.0 U·L−1 and with a detection limit down to 0.07 U·L−1. Endowed
with high sensitivity and selectivity, the assay can quantify ALP activity in biological system with satisfactory results.
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Introduction

Alkaline phosphatase (ALP) plays a key role in catalytic
dephosphorilation [1]. ALP promotes the hydrolysis of
monoester phosphates, which is capable of producing
phosphates and products containing free hydroxy groups
[2]. ALP plays an important role in signal transduction and

regulation of intracellular processes [3, 4]. Many methods
have been reported for ALP detection, including electro-
chemistry [5], colorimtry [6], electrochemiluminescence
[7], fluorimetry [8] and surface enhanced Raman
scattering [9].

Colorimetry has become the preferred method for clinical
applications due to its simplicity, readability, low cost, fast re-
sponse and high throughput [10]. The most widely used color-
imetric assay for ALP activity detection is based on the conver-
sion of colorless p-nitrophenylphosphate (pNPP) to yellow p-
nitrophenol. Themethod is simple and effective, which has been
considered as a standard method for ALP activity monitoring.
However, pNPP is very sensitive to light and is prone to spon-
taneous hydrolysis, both of which lead to inaccurate measure-
ment results [11]. Consequently, developing sensitive, selective
and accurate method for ALP detection is of great importance.
In the past few years, nanozymes, a class of mimic enzymes that
show both the unique properties of nanomaterials and catalytic
functions, have been reported to replace natural enzymes. So far,
many materials have been defined as nanozymes, such as
Au@Pd nanoparticles [12], Au@Pt nanostructures [13],
Prussian blue nanocubes [14], Fe3O4 nanoparticles [15–17]
and Pt nanoparticles [18, 19]. Compared with natural enzymes,
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nanozymes are more stable and cheaper, which shows great
potential in biosensing [20, 21]. Recent studies have shown that
ALP assays can be easily achieved by modulating the catalytic
capabilities of nanozymes. For example, Wu et al. have reported
a colorimetric assay for ALP activity detection based on the
peroxidase-like activity of Prussian blue nanoparticles [22].
Jiang et al. reported a colorimetric assay for the detection of
ALP activity by employing copper (II)-based metal-organic
frameworks as peroxidase mimic and pyrophosphate as recog-
nition element [23]. Though these methods using peroxidase
mimetics show high sensitivity, they are limited by the utiliza-
tion of unstable H2O2. Therefore, many efforts have been made
to develop colorimetric assays for ALP detection using oxidase
mimetics since they can directly oxidize 3,3 ′,5,5 ′-
tetramethylbenzidine (TMB) without the addition of H2O2,
making it much simpler [10]. However, there are few types of
oxide mimetics that have been reported so far.

We describe a colorimetric assay for ALP activity based on
the oxidase-like activity of Pd cube@CeO2 nanoparticles. CeO2

nanoparticlesshow low oxidase-like activity [24, 25]. Therefore,
we utilize the core-shell composite of Pd cube and CeO2 to
ensure that the material has strong oxidase-like activity and
shows high sensitivity for ALP detection. Pd cube@CeO2 nano-
particles show oxidase-like activity that can directly oxidize
TMB to oxidized TMB (oxTMB), resulting in a bluish solution
and an intense absorption peak at 652 nm. ALP can catalyze the
hydrolysis of L-ascorbic acid 2-phosphate (AAP) to produce
ascorbic acid (AA) which can reduce oxTMB to TMB [26].
Consequently, the solution color turns to light blue with a de-
creased absorption intensity at 652 nm.On the basis of the above
facts, a colorimetric assay for ALP detection is developed.

Experimental section

Chemicals and materials

Polyvinylpyrrolidone (PVP, MW ≈ 55,000), KBr, 3,3′,5,5′-
tetramethylbenzidine (TMB), ALP (EC 3.1.3.1), AAP and AA
were purchased from Sigma-Aldrich (St. Louis, USA, www.

sigmaaldrich.com). Na2PdCl4 was obtained from Aladdin
Reagent company (Shanghai, China,www.aladdin-e.com). L-
arginine was purchased from Shanghai Macklin Biochemical
Co., Ltd. (Shanghai, China, www.macklin.cn). Ce(NO3)3·6H2O
was supplied by Alfa Aesar (Tianjin, China, www.alfa.com). The
water used in all experiments was supplied by a water purifier
nanopure water system (18.2 MΩ cm). All chemicals were used
as received without further purification.

Materials characterization

The UV-vis absorption spectra were recorded on a UV-8000
spectrophotometer (ShanghaiMetash Instruments Co.,Ltd.,
China, www.metash.com). Transmission electron
microscope (TEM) measurements were performed using a
JEM 1400 (JEOL, Ltd., Japan, www.jeol.co.jp) at an
acceleration voltage of 80 kV. High resolution transmission
electron microscopic (HRTEM) measurements were per-
formed using a JEM-2100 (JEOL Ltd., Japan, www.jeol.co.
jp) at an acceleration voltage of 200 kV. The X-ray diffraction
patterns of the products were collected on a Rigaku Ultima IV
(Japan, www.rigaku.com) with an operation voltage and
current maintained at 40 kVand 40 mA. The X-ray photoelec-
tron spectroscopy (XPS) were performed by using a VG
Thermo ESCALAB 250 spectrometer (VG Scientific, www.
pdf.directindustry.com) operated at 120 W. The binding
energy was calibrated against the carbon 1 s line.

Detection assay procedure

10 μL of ALP with different activities, 10 μL of AAP
(10 mM), 70 μL of Tris-HCl buffer (pH = 9.0, 10 mM) and
10 μL of MgCl2 solution (50 mM) were sequentially intro-
duced to 1.5 mL centrifuge tube. After thoroughly mixing and
incubating at 37 °C for 30 min, 100 μL of Pd cube@CeO2

nanoparticles (0.25 mg·mL−1), 100 μL of TMB (5 mM) and
700 μL of acetic acid buffer (pH = 4.0, 10 mM) were added
and incubated at 37 °C for another 10 min. Finally, the solu-
tion was transferred for the UV-vis absorption spectral
measurements.

Fig. 1 Kinetic assays of TMB
oxidation by Pd cube@CeO2

nanoparticles. a The fit based on
Michaelis-Menten
kineticsequation. b The
corresponding Lineweaver-Burk
plot
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Results and discussion

Highly monodisperse Pd cube@CeO2 composites are pre-
pared by L-arginine-triggered self-assembly of CeO2 on Pd
cube. The material characterization part is shown in Fig. S1-
S3. Typically, monodisperse Pd cubes with size of 12 nm are
synthesized based on previous work (Fig. S1). And then, the
Pd cube@CeO2 nanoparticles are synthesized by heating the
mixture of Ce(NO3)3, L-arginine, and pre-synthesized Pd
cube at 80 °C for 3 h [27].

Kinetics of 3,3′,5,5′-tetramethylbenzidine (TMB)
oxidation

In order to quantitatively evaluate the intrinsic oxidase-like
activity of Pd cube@CeO2 core-shell nanoparticles, we study
the steady-state kinetic by varying the concentrations of TMB.
The kinetic parameter for Pd cube@CeO2 nanoparticles is
determined by fitting the data of Fig. 1a into Michaelis-
Menten equation. The initial velocity can be calculated by
using the molar absorption coefficient of 3900 M−1 cm−1 for
oxTMB.Michaelis-Menten constant (Km) is the substrate con-
centration at which the reaction rate is half-maximum. A
smaller Km indicates a stronger binding affinity of enzyme
to substrate and hence often leads to a higher enzymatic ac-
tivity [28]. The Km value can be obtained from the
Lineweaver-Burk plot. From Fig. 1b, Km value is calculated
to be 0.21 mM, which is lower than the Km values mentioned
in previous report [25]. It indicates that Pd cube@CeO2 nano-
particles show good affinity to TMB.

Detection mechanism

The Pd cube alone is not sensitive to the detection of ALP
(Fig. S4), so the Pd cube@CeO2 core-shell nanoparticles
are adopted. The detection principle of Pd cube@CeO2

nanoparticles for ALP is shown in Scheme 1. Pd
cube@CeO2 nanoparticles show strong oxidase-like activ-
ity, which can oxidize TMB to oxTMB without the need
for H2O2 and result in a strong absorption peak centered

Scheme 1 Schematic illustration
of the detection principle of this
method based on the oxidase-like
activity of Pd cube@CeO2 core-
shell nanoparticles

Fig. 2 UV-vis absorption spectra of the detection systemin the absence
(a) and presence of AAP (b), ALP (c), ALP and AAP (d). Inset shows the
corresponding photos
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at 652 nm (a, Fig. 2). When either AAP or ALP is intro-
duced into detection assay, the changes of solution color
and absorbance is negligible compared to blank solution
(b and c, Fig. 2). After both AAP and ALP are added to
the detection system, the solution turns to colorless and
the absorption intensity at 652 nm decreases obviously (d,
Fig. 2), which is attributed to the fact that AA generating
form ALP-catalyzed hydrolysis of AAP can inhibit the
oxidation of TMB [22, 29]. Based on the changes of so-
lution colors and absorbance, this method can be used for
ALP detection. The method does not involve H2O2 in the
reaction, making it much simpler.

Optimization of assay conditions

Before the application of this assay for ALP activity de-
tection, several parameters such as pH value of buffer,

incubation time, the concentrations of Pd cube@CeO2

nanoparticles, TMB and AAP should be optimized. We
utilize ΔA (ΔA = A0-A) as the criterion to optimize the
detection conditions, where A0 and A are the absorbance
at 652 nm of the detection system in the absence and
presence of ALP, respectively.

Optimization of pH

In order to determine the effect of pH values on ALP
detection, we performed the assay in acetic acid buffer
with different pH values (3.6–5.6). As shown in Fig. S5,
with the increase of pH values, A0 increases firstly and
then decreases, while A keeps almost constant in the
whole pH range. When the pH is 4.0, ΔA reaches a
maximum value.

Fig. 4 a UV-vis absorbance spectra of Pd cube@CeO2nanoparticles-
TMB in the absence and presence of various concentrations of ALP (from
up to down: 0, 0.1, 0.2, 0.5, 1, 2, 4, 5, 6, 7, 8, 10,15, and 20 U·L−1), the

inset show the photos of corresponding solutions. b ALP concentration
dependent changes of the absorption intensity at 652 nm. Inset shows the
liner relationship between the ΔA and ALP concentration

Fig. 3 a UV-vis absorption spectra of Pd cube@CeO2nanoparticles-
TMB in the presence of various concentrations of AA (from top to down:
0, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.3, 0.5and 0.7 mM). Inset

shows the photos of the corresponding solutions. b AA concentration
dependent changes of the absorption intensity at 652 nm. Inset shows
the liner relationship between the ΔA and AA concentration
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Optimization of incubation time

Different reaction time has a great influence on the experimen-
tal results, and the effects of time (5, 10, 15, 20, 25 min) are
investigated (Fig. S6A). When the reaction time is 10 min, the
largest ΔA is obtained (Fig. S6B).

Optimization of Pd cube@CeO2 concentration

Different concentrations of Pd cube@CeO2 nanoparticles
represent different oxidizing ability of the detection sys-
tem. We select samples with concentrations of 0.01,
0.025, 0.05, and 0.075 mg·mL−1 (Fig. S7A). When the
concentration of Pd cube@CeO2 nanoparticles is
0.025 mg·mL−1, ΔA gets the maximum value (Fig. S7B).

Optimization of TMB concentration

To determine the effect of TMB concentration on the sensitiv-
ity of the detection system, we chosen different concentrations
of TMB from 0.1 to 0.9 mM. As shown in Fig. S8, too high or
too low concentration of TMB is not conducive to improving
ΔA. Both A0 and A increase with increasing TMB concen-
tration (Fig. S8A). When the TMB concentration is 0.5 mM,
ΔA reaches a maximum value (Fig. S8B).

Optimization of AAP concentration

To test the effect of AAP concentration on the sensitivity of
the detection system, we select different concentrations of
AAP from 0 to 0.25 mM (Fig. S9A). When the AAP concen-
tration is 0.1 mM, the ΔA value is the largest (Fig. S9B).

Application of this method to the determination of AA
and ALP activity

Under the optimum conditions, the Pd cube@CeO2 core-shell
nanoparticles-TMB system is used to detect AA based on its
oxidase-like activity. An obvious color change from dark blue
to light blue is found with the increasing concentrations of AA
(inset of Fig. 3a). In addition, as the concentration of AA
increases, the UV-vis absorption intensity at 652 nm decreases
gradually (Fig. 3a). As shown in Fig. 3b, a good linear rela-
tionship between ΔA and AA concentration can be obtained
in the range from 0.005 to 0.08 mM. The linear regression
equation isΔA = 4.668 [AA] + 0.016 (R2 = 0.994) with a de-
tection limit down to 1.3 μM.

In order to evaluate the performance of this method for
ALP detection, the color changes of the detection assay before
and after the introduction of various concentrations of ALP
are recorded by a digital camera. Obvious color change from
dark blue to light blue is found with the increasing

Table 1 Comparison of the
analytical performance of
different methods for ALP
detection

Biosensing materials Analytical method Detection limit (U·L−1) Linear range (U·L−1) Reference

Ce3(PO4)4 Flourimetry 2.3 0–50 [10]

AuNCs Flourimetry 0.002 0.1–100 [30]

NGQDsa Flourimetry 0.07 0.1–5 [1]

coumarin@Tb-GMP Flourimetry 10 25–200 [31]

Ce3+-ATP-Tris Flourimetry 0.1 0.1–10 [32]

Au@Ag NPs-GQDs Flourimetry 0.005 0.01–2 [33]

Au@Ag NPs-GQDs Colorimetry 0.009 0.01–6 [33]

AuNRs Colorimetry 0.01 0.01–0.4 [6]

PB NCs Colorimetry 0.23 0.6–6 [22]

CoOOH nanoflakes Colorimetry 0.026 0.04–160 [34]

Pd cube@CeO2 Colorimetry 0.07 0.1–4 This work

a nitrogen-dopedgraphene quantum dots

Fig. 5 The absorbance of this detection assay in the presence of possible
interfering substances only or coexistence with ALP. The final
concentrations of these substances are 5 U·L−1, BSA are
100 μg·mL−1.Error bars indicate the standard deviation of three
independent measurements
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concentrations of ALP (inset of Fig. 4). The UV-vis absorp-
tion spectra of the system after the addition of different con-
centrations of ALP are also recorded. As the concentration of
ALP increases, the absorbance at 652 nm decreases gradually
(Fig. 4a). As shown in Fig. 4b, a good linear relationship
between ΔA and the ALP concentration in the range from
0.1 to 4 U·L−1 is obtained. The linear regression equation is
ΔA = 0.074 [ALP] + 0.012 (R2 = 0.984) with a detection limit
down to 0.07 U·L−1. Then, we compare the linear range and
detection limit of this method with previously reported
methods. The corresponding results are shown in Table 1.
The analytical performances of our method are comparable
or even better than reported methods.

Selectivity

To demonstrate the selectivity of this assay for ALP, we firstly
investigate the effects of possible interferences (pepsin, BSA,
lysozyme, panceratin, trypsin and GOx). As shown in Fig. 5,
when other enzymes and proteins are individually added to the
sensing system, no significant change in the absorbance is
observed.While the absorbance at 652 nm decreases signifi-
cantly after ALP is added individually or simultaneously with
other interfering substances. Then, we study other interfering
substances that may be present in human serum, including
AA, L-cysteine (Cys), uric acid (UA), glutathione (GSH)
and L-homocysteine (HCy). As shown in Fig. S10, the absor-
bance of the detection system keep almost unchanged after the
addition of interfering substances. These results indicate that
the detection assay has high selectivity for ALP detection.

Real sample analysis

In order to evaluate the practical application of our proposed
method, the colorimetric assay is used to analyze ALP in
human serum samples. Serum samples are diluted 100-fold
and detected by using standard addition method. The solution
is awakened to determine the UV-vis absorption peak after
adding different concentrations of ALP (2 U·L−1 and 4 U·
L−1). As shown in Table 2, the recoveriesare in the range from
97.0% to 103.5% with the RSD ranging from 3.1% to 6.8%.
The experimental results are quite satisfactory, indicating that
the method has great potential in real sample detection.

Conclusion

We have established a colorimetric method for ALP activity
detection based on the high oxidase-like activity of Pd
cube@CeO2 nanoparticles. This method shows high sensitiv-
ity, good selectivity and great potential to detect ALP in real
samples, which provides good practicability and reliability for
clinical detection of ALP activity. This assay may not only
provide a new idea for construction of nanozymes with high
oxidase-like activity, but also broaden the applications of ox-
idase mimetics.The limitation of the detection system is that it
cannot distinguish the iso-enzymes of ALP in human plasma.
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