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An anti-BSA antibody-based immunochromatographic assay
for chloramphenicol and aflatoxin M1 by using carboxy-modified
CdSe/ZnS core–shell nanoparticles as label
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Abstract
A lateral-flow immunochromatographic assay with excellent sensitivity and wide application potential is described. The bovine
serum albumin (BSA) antibody was immobilized in the test line for universality, and preincubation was introduced for high
method sensitivity. Carboxy-modified CdSe/ZnS core–shell nanoparticles were used as label, and the fluorescence peaking at
605 nm was detected. The fluorescence in the test line was negative against the relevant analyte content. The chloramphenicol
(CAP) and the aflatoxinM1 (AFM1) inmilk were detected using the same strip to validate the universality. After optimization, the
detection limit for CAP is 10 pg·mL−1, which is three times less that of a conventional assay (30 pg·mL−1). The detection limit for
AFM1 was 6 pg·mL−1, which was 13 times less than that of a conventional assay (8 pg·mL−1). The method was applied in the
analysis of spiked milk samples. The performance was compared with that of the commercial ELISA kit, and good agreement
was observed.
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Introduction

Chloramphenicol (CAP) is widely used in veterinary medi-
cine, but excessive levels of CAP in human blood may lead
to diseases such as leukemia, aplastic anemia, and gray baby
syndrome [1, 2]. Thus, the use of CAP is banned in food-
producing animals in many countries, including China, the
USA, and the European Union, and a minimum required per-
formance limit value is set at 0.3 × 10−6 g·kg−1 [3]. As a group
I carcinogen and “milk toxin,” aflatoxin B1 (AFB1)-derived

aflatoxin M1 (AFM1) is hazardous to humans exposed to con-
taminated milk [4–6]. The limits on AFM1 levels in milk and
dairy products were set, and the sources of AFM1 contamina-
tion need to be monitored [7].

A paper-based lateral flow immunochromatographic assay
(ICA) was developed for sensitive and economical on-site
determination of residues, including CAP and AFM1 [8–10].
For better ICA detection efficiency, several signal labels, in-
cluding time-resolved fluorescence [11], up-converting phos-
phors [12], magnetic nanoparticles [13], quantum dots (QDs)
[14], and QD submicrobead (QB), have been developed and
discussed. QB has attracted great interest for its unique prop-
erties, such as narrow fluorescent emission spectra, high quan-
tum yield, high photochemical stability, and high-throughput
detection [15–19]. Single or several distinguishable signal-
providing labels are applied in a single ICA detection for
multiplexing and usually involves the modification of the ar-
chitecture of the ICA strip [20–28].

However, one ubiquitous characteristic of the existing ICA
system is that target-specific antigen or antibody immobilized
on the testing zone hinders the development of another crucial
property: universality. Transient and largely uncontrolled im-
mune recognition on the testing zone has led to insufficient
reaction and limited sensitivity.
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In this work, a universal and sensitive ICA (USICA) for
CAP and AFM1 was established using the anti-BSA antibody
as coating element, and a preincubation was introduced. BSA-
modified CAP (CAP–BSA) exposes the binding site thor-
oughly in mixture and competes with CAP for the binding site
on the anti-CAP antibody-modified QB in the preincubation
step for high sensitivity. Two kinds of immune complexes,
namely, QB–mAb–CAP and QB–mAb–CAP–BSA, were
formed. The QB–mAb–CAP–BSA is conjugated with the
anti-BSA antibody on the test zone by the BSA terminal,
and the QB–mAb–CAP is captured by the anti-IgG antibody
on the control zone in the USICA strip. The immune complex
QB–mAb–CAP–BSA is recognized by the BSA terminal,
which is nontarget-specific and brings the foundation for uni-
versality. The AFM1 is detected for validation of universality
by using the BSA-modified AFM1 and the USICA of the
same structure. The properties of the two USICAs are
systematically summarized and compared with those of
the ICA based on traditional structure (TICA). The ap-
plicability of the USICA is demonstrated by analyzing
spiked milk samples and its performance compared with
the commercial ELISA kit.

Experimental

Materials and instrumentsCAP andAFM1 standards, 1-ethyl-
3-(3-(dimethylamino)propyl)-carbodiimide hydrochloride
(EDC), and N-hydroxysuccinimide (NHS) were supplied by
the J&K Scientific Ltd. (Shanghai, China, www.jkchemical.
com/Company-inf.aspx?language=ch). The CAP−BSA and
AFM1 − BSA conjugates, the commercial ELISA kits for
CAP and AFM1, and the anti-CAP, anti-AFM1, anti-BSA,
and goat antimouse IgG antibodies were supplied by the
Shandong Landu Bio-Science & Technology Co., Ltd.
(Shandong, China, www.11467.com/qiye/45274356.htm).
Carboxylic group-modified CdSe/ZnS core–shell QBs (emis-
sion at 605 ± 5 nm) were purchased from the Beijing Najing
Biological Technology Co., Ltd. (Beijing, China, www.
najingbio.com/). The protein stabilizer solution (Cat: PR-SS-
002, Huzhou Yingchuang Biological Technology Co., Ltd.,
Huzhou, China, www.innoreagents.com) was used for QB–
mAb storage. Nitrocellulose (NC) membrane and the sample
and the absorbent pads were obtained from the Kinbio Tech.
Co., Ltd. (Shanghai, China, www.goldbio.cn/article-item-288.
html). All other reagents (analytical grade) were supplied by
the National Pharmaceutical Group Chemical Reagent Co.,
Ltd. (Shanghai, China, www.sinopharm.com/1156.html). A
fluorescent strip reader was supplied by the Beijing Najing
Biological Technology Co., Ltd. (Beijing, China). The
USICA and TICA strips were prepared by using the BioDot
XYZ platform combined with a BioJet Quanti3000k
dispenser and motion controller from BioDot (Irvine, CA)

and cut by an automatic programmable cutter from the
Shanghai Jinbiao Biotechnology Co., Ltd. (Shanghai, China,
www.goldbio.cn/article-item-288.html). Pure water was
prepared using the Elix-3 and the Milli-QA system
(Millipore Co., Bedford, MA, USA, http://www.well-honor.
com/goods1-202.html).

QB modification with anti-target mAb

Carboxy-modified QB was activated and modified using the
antitarget mAb through the active ester method [29]. Details
are described in the Electronic Supporting Material (ESM).

Fabrication of the USICA and the TICA systems The two ICA
systems were similar in structure. These systems contain three
parts: (1) the NC membrane in the middle, (2) the glass fiber,
and (3) absorption pads on both ends overlapping nearly 2mm
with NC membrane on the backing card. The USICA system
had an anti-BSA antibody at 0.25 mg·mL−1 immobilized at a
density of 3 μL·cm−1 in the NC membrane as test line, where-
as the TICA system had a BSA-modified target (CAP–BSA)
at a density of 3 μL·cm−1. The goat antimouse IgG antibodies
(0.5 mg mL−1) were immobilized in both ICA systems at a
density of 3 μL·cm−1 in the NC membrane as the control line.
The formed ICA system was dried at 37 °C in a blasting
drying trunk for 2 h, cut into strips (3.5 mm in width) by using
the automatic cutter, and stored at 4 °C until use.

Quantitative procedure of the USICA and the TICA systems
Parameters, such as the amount of mAb modified on QB, pH
value, ionic strength, the amount of antigen coated on T line,
the amount of surfactant, dilution ratio of QB–mAb, and ICA
reaction time, was optimized in the TICA system for best
detection results. In addition to the parameters optimized in
the TICA system, the amount of antigen used for
preincubation, the amount of anti-BSA mAb immobilized on
the T line, and the incubation time were optimized in the
USICA system. The optimization was carried out in compet-
itive inhibition mode, in which the target was spiked at the
final concentrations of 0 and 1.25 ng·mL−1, and the parameter
inducing the most obvious inhibition was selected. The ana-
lyte was dissolved in methanol, and the final methanol con-
centration was 5% (v/v) in the spiked samples. All experi-
ments were performed in triplicate. The fluorescence intensity
(FI) in the T line was inversely proportional to the analyte
content, and a calibration plot was established on this basis.

AFM1- and CAP-spiked samples were pretreated.
Trichloroacetic acid was added to the spiked milk samples to
a final concentration of 10% (w/v). After thorough mixing and
centrifugation, 2.5 μL NaOH (5 mol·L−1) was used per
100 μL supernatant for neutralizing. The insoluble materials
that appeared during neutralizing were removed by
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centrifugation, and the neutral supernatant was used for ICA.
The CAP- and AFM1-free milk samples, which were con-
firmed by LC–MS/MS, were collected from the local market.
Accuracy and precision analyses were carried out. The uni-
versality was validated by detecting the CAP and the AFM1

using the USICA strip.

Comparative study with commercial ELISA kit Spiked milk
samples were determined using the USICA and the TICA
strips and the commercial ELISA kit. Sample pretreatment
and the detection procedure for the commercial ELISA kit
was performed according to the manufacturer’s instructions.
A correlation coefficient (R2) of the two methods was calcu-
lated through a fit plot.

Results and discussion

Figure 1 presents a schematic for USICA and TICA using
CAP as an example. In USICA, preincubation was introduced
for high sensitivity, in which the target (CAP) and the BSA-
modified target (CAP–BSA) competed for the binding site on
the QB–mAb under optimal conditions. The anti-BSA anti-
body was introduced in the test line (T line) for universal
detection, and the nontarget-specific and BSA-containing
complexes were conjugated. The intensity of QB in the T line
was inversely proportional to the amount of the target, which
was the basis of establishment of the novel USICA system.
Meanwhile, in the TICA system, the immune recognition that
occurred on the testing zone was transient and largely uncon-
trolled, and universal detection was not discussed.

QB modification with antitarget mAb The morphology of the
anti-AFM1 mAb-modified QB under a scanning electron mi-
croscope (SEM) is shown in Fig. 2a. A layer of material ap-
peared on the surface (Fig. A insert) after modification.

Fourier transform infrared (FTIR) spectroscopy was applied
to characterize the result of modification. As shown in Fig. 2b,
the characteristic absorption peaks corresponding to protein
amide bands I (1641 cm−1) and II (1530 cm−1) existing in
the QB–mAb proved successful modification. The anti-CAP
mAb-modified QB was prepared using the same method and
applied in the following experiment.

Property and analytical performance of the USICA and the
TICA systems In the TICA for small molecule detection, com-
petitive recognition occurred on the test line. Target-specific
antigen immobilized on the T line was adverse for full expo-
sure of the binding site, and the transient and largely uncon-
trolled recognition on the T line negatively affected the degree
of thorough recognition. The USICA system was established
in this work to address these problems. Preincubation was
introduced for high sensitivity. The target-specific antigen
competed with the target for the binding site on the QB–
mAb in the preincubation solution. The binding site was fully
exposed in the solution, and competitive recognition was car-
ried out in optimal conditions, including ample time. The anti-
BSA antibody was introduced for universality. Two kinds of
complexes were formed in preincubation, namely, QB–mAb–
CAP and QB–mAb–CAP–BSA. Only the latter complexes
were captured by the anti-BSA antibody through the BSA
terminal in the complexes. The BSA in the target-specific
antigen was nontarget-specific and brought the foundation
for universality. Any analyte that can be modified with BSA
and antibody-available may be detected by this method. CAP
was detected using the USICA system under optimal condi-
tions. For sensitivity comparison, CAP was also detected
using the TICA system. The AFM1 was detected to validate
the universality of USICA system, and the TICA system was
used after systematic optimization. A calibration plot was
established by plotting the B/B0 × 100% against the target
amount in logarithm, where B and B0 represent the FI on the

Fig. 1 Schematic for USICA and
TICA. Preincubation was
introduced for competitive
recognition of high sensitivity,
and the T line was coated with
anti-BSA antibody for universal
detection (a); the competitive
recognition occurred at the T line
in TICA (b); Excess modified
QBs (e.g., QB–CAP–mAb) were
captured by element in the C line
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test line (FIT) with and without the presence of spiked analyte,
respectively.

The LOD was defined as the concentration of the spiked
target, at which 10% inhibition (IC10) of the total inhibition
was reached. Optimal parameters for CAP and AFM1 using
USICA and TICA are summarized in Table E1 (shown in
ESM) After optimization, the LOD of USICA for CAP was
nearly three times that of TICA (Table 1). The LOD for AFM1

improved about 13 times by using USICA compared with that
using TICA. These results verify the high sensitivity and the
universality of the USICA system. Compared with the recent-
ly reported nanomaterial-based optical methods for the deter-
mination of CAP and AFM1 in Table 1, the unique merit of
USICA is its universality.

The specificity of the USICA and the TICA systems for
CAP was investigated using the cross-reaction (CR) value.
Similar results among structural analogs, such as
thiamphenicol (TAP) and florfenicol (FF), and other contam-
inants, such as kanamycin (KNM), streptomycin (SPM), and
ceftiofur (CTF), were observed. The CR value was calculated
using the eq. CR%= [(IC50 analyte) / (IC50 analog)] × 100 [36].
Figure 3 shows that the structural analogs TAP (CR = 14.3%
in USICA) and FF (CR = 2.3% in USICA) had obvious CR
against CAP, and the other potential pollutants (KNM, SPM,
and CTF) had CR values lower than 0.01. The specificity of
the USICA and the TICA systems for AFM1 was also evalu-
ated by CR. Results show that the structural analogs aflatoxin
M2 (AFB1, CR = 58% in USICA), aflatoxin G2 (AFG2, CR =

Table 1 Overview of the recently reported nanomaterial-based optical methods for the determination of CAP and AFM1

Materials used Method applied Specificity Linear range1 LOD1 References

QB USICA CAP + FF2 + TAP3 0.02–0.1 0.01 This work

QB TICA CAP + FF + TAP 0.2–0.9 0.2 This work

STP4 Fluorescence CAP 0.005–0.25 1.26 Tu et al., 2020 [30]

QDs TICA CAP + TAP 0.02–0.66 0.016 Xie et al., 2019 [31]

GNPs7 TICA Not reported 0.019–1.2 0.019 Zhou et al., 2018 [18]

FMs8 TICA CAP + FF Not reported 0.08 Wang et al., 2017 [32]

QB USICA AFM1 +AFm2 +AFG2 +AFB2 0.01–0.05 0.006 This work

QB TICA AFM1 +AFm2 +AFG2 +AFB2 0.1–0.4 0.1 This work

Fluorophores Aptasensor AFM1 +AFB1 0.001–1000 0.02 Song et al., 2018 [8]

GNPs TICA AFM1 +AFB1 0.1–1 0.05 Wang et al., 2018 [33]

FMs TICA AFM1 +AFB1 + AFG1 +AFM2 10–320 4.4 Zhang et al., 2016 [34]

QD TICA AFM1 +AFB1 0.1–1.0 0.09 Wu et al., 2016 [35]

1 ng·mL−1 ; 2 florfenicol; 3 thiamphenicol; 4 signal transduction probe; 5 μmol·L−1 ; 6 nmol·L−1 ; 7 gold nanoparticles; 8 fluorescent microspheres

Fig. 2 SEM image of QB after conjugation (a) and a layer of mAb coated
on the surface (A insert). FTIR spectra of QB (curve a), anti-AFM1

antibody (curve b), and QB–mAb (curve c) (b). The characteristic

absorption peaks of protein that appeared in the final products proved
the success of the modification
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55% in USICA), and aflatoxin B2 (AFG2, CR = 20% in
USICA) had obvious CR against AFM1 and that the CR
values of aflatoxin G1 (AFG1), aflatoxin B1 (AFB1),
deoxynivalenol (DON), fumonisin B1 (FMB1), and
zearalenone (ZEN) were negligible (< 0.01%). These results
suggest that the USICA and the TICA system for CAP and
AFM1 are specific. Although specific, analogs might fake the
presence of the analyte, especially during the analysis of com-
plex samples. Some specificity data were usually demonstrat-
ed for reference in actual use (Table 1).

The accuracy and precision of the USICA and the TICA
systems were evaluated through the recovery of the intra- and

inter-assay, and the results are summarized in Table 2. The
analysis was carried out in triplicate at each spiked concentra-
tion. The intra-assay was completed within 1 day, and the
inter-assay was performed continuously for 3 days. The aver-
age recoveries of the two ICA systems ranged from 85% to
116%, which is acceptable for ICA quantitative analysis [37].

Comparative study with a commercial ELISA kit

The performances of the USICA and the TICA systems for
CAP or AFM1 were compared with that of the commercial

Fig. 3 Cross-reactivity of TICA and USICA to analogs. A negative control (5% methanol in standard solution) and analogs, including TAP, FF, KNM,
SPM, and CTF spiked at 1.25 ng·mL−1 for CAP (a) and AFG2, AFM2, AFB2, AFB1, AFG1, DON, ZEN, and FMB1 spiked at 5 ng·mL

−1 for AFM1 (b)

Table 2 Recovery of the USICA
and TICA systems for CAP- and
AFM1-spiked samples

Item Spiked
concentration

(pg·mL−1)

Intra-assay Inter-assaya

Meanb ± SD Recovery
(%)

CV
(%)

Mean ± SD Recovery
(%)

CV
(%)

CAP USICA 39 39 ± 3.3 100 8.4 41 ± 2.4 105 5.9

78 79 ± 7.2 101 9.2 75 ± 3.6 96 4.7

160 173 ± 5.7 108 3.4 168 ± 16 105 9.5

TICA 78 73 ± 4.6 94 6.2 78 ± 6.9 100 8.8

160 136 ± 6.6 85 5.0 156 ± 7.1 97 4.7

320 306 ± 2.2 95 7.3 355 ± 11 110 3.0

AFM1 USICA 15 16 ± 1.6 103 10.0 16 ± 1.6 108 9.6

30 35 ± 2.9 113 8.3 31 ± 2.3 104 7.1

60 73 ± 6.2 116 8.5 58 ± 5.2 96 8.7

TICA 125 110 ± 11.2 91 9.1 116 ± 11 93 3.4

250 247 ± 13.5 99 5.3 226 ± 16 90 5.1

500 464 ± 31.7 93 7.4 481 ± 39 96 7.4

a Assay was completed for 3 days continuously
bMean value of the three replicates at each spiked concentration
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ELISA kit to demonstrate reliability and practicability.
For the USICA and the TICA systems, the spiked milk
samples were pretreated using trichloroacetic acid, which
was mentioned in the “quantitative procedure of the
USICA and the TICA systems” section. For the ELISA,
the sample pretreatment was performed according to the
manufacturer’s instructions.

The results in Fig. 4 show that the USICA (R2 = 0.9854
for CAP and R2 = 0.9828 for AFM1) and the TICA (R2 =
0.9562 for CAP and R2 = 0.9664 for AFM1) systems were
in good agreement with the ELISA method. In addition to
their universality and high sensitivity, the USICA and the
TICA systems were easier to operate and took no more
than 40 min to complete one sample analysis. The tradi-
tional ELISA involved multiple incubation, washing, and
coloring, which took nearly 90 min. The main limit of the
established method is the increased susceptibility induced
by the delicate preincubation. Each step should be per-
formed exactly to address the side effect.

Conclusion

The USICA system combines the advantages of sensitivity and
universality. The USICA system is beneficial for quantitative
analysis due to its potential to provide a uniform ICA strip for
different analytes. Any analyte can be detected using the
USICA system if analyte-specific mAb and BSA-modified
analytes are available. The core merit of the USICA is its uni-
versality, and the susceptibility induced by the delicate
preincubation may be reduced by standard operations.

The availability of the ICA was improved by the USICA
system, paving the way for its wider application. On the basis
of this work, sensitive and universal detection systems for
other analytes may be further investigated.
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Fig. 4 Correlation between the ICA systems (x-axis) and the ELISA (y-
axis). The plot fits for CAP between USICA and ELISA (a) and between
TICA and ELISA (b) and AFM1 between USICA and ELISA (c) and

between TICA and ELISA (d). Eighteen blank samples were spiked with
analyte standard solutions under different concentrations in each group
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