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Abstract
Peptides exhibit unique binding behavior with graphene and its derivatives by forming bonds on its edges and planes. This makes
them useful for sensing and imaging applications. This review with (155 refs.) summarizes the advances made in the last decade
in the field of peptide-GO bioconjugation, and the use of these conjugates in analytical sciences and imaging. The introduction
emphasizes the need for understanding the biotic-abiotic interactions in order to construct controllable peptide-functionalized
graphitic material-based nanotools. The next section covers covalent and non-covalent interactions between peptide and oxidized
graphene derivatives along with a discussion of the adsorption events during interfacing. We then describe applications of
peptide-graphene conjugates in bioassays, with subsections on (a) detection of cancer cells, (b) monitoring protease activity,
(c) determination of environmental pollutants and (d) determination of pathogenic microorganisms. The concluding section
describes the current status of peptide functionalized graphitic bioconjugates and addresses future perspectives.
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Bioconjugation

Introduction

Nanotools are capable of being utilised in analytical proce-
dures by replacing the frequently used materials in order to
increase the standard of each method and therefore the out-
comes. They offer a cost-effective approach in the field of
diagnostics. When a nanomaterial is involved in the detection

step it is classified as a nanoprobe which is a category of
nanotools [1–3].

Nanoparticles based on carbon are the most versatile,
amongst the various types of carbon-based nanomaterials,
the plausible chemical properties of graphene and its oxidised
precursors such as enormous surface to volume ratio [4–7],
fluorescence quenching ability [8], high electron mobility [9],
cost-efficient and large-scale production [10, 11] makes them
desirable candidates for construction of probing devices. Their
surface morphology can be further enhanced by biomolecule
functionalization [12–16]. Recent reports established that
nanoscale graphene derivatives conjugated with low molecu-
lar weight peptides have emerged as promising materials for
construction of analytical formulations having diagnostic abil-
ities. Graphene oxide (GO) and reduced graphene oxide
(rGO) have emerged on the forefront for construction of hy-
brid scaffolds having immense potential to offer in the field of
diagnostics [17–19].

Peptide molecules selected from combinatorial libraries
have significantly displayed covalent as well as non-covalent
interaction with different abiotic surfaces such as graphene
[20–24]. The mechanism of interaction is usually governed
by the applicability of the formed nano complex [25–27].
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The short structure and specificity of peptides differentiates
them from proteins [28]. Peptides offer a useful resource for
materials science by taking advantage of its characteristic
property of biological specificity and multifunctionality into
inorganic or carbon-based nanomaterials while simultaneous-
ly controlling structures and properties of nanoparticles [29,
30]. Unlike proteins, peptides do not aggregate on the
nanomaterial surface upon interaction [13]. The desirable
properties of peptides as listed in Table 1, enable them to retain
a controllable and repeatable structure on the inorganic
nanomaterial surface thereby providing versatility in forming
various tertiary structures [31]. Properties like economical
synthesis and capability of recognizing graphitic materials
followed by interaction of peptides to form ordered structures
on GO and rGO surfaces advocates their use in material inter-
facing [32–34]. Due to these advantageous properties, pep-
tides are attractive molecules to functionalize graphitic mate-
rials and enhancing their inherent chemical and structural
properties [35].

Fabrication of material for diagnostic devices requires a
multidisciplinary approach and a scrupulous understanding
of both an inorganic material and a biological element [41,
42]. The structure of these tools primarily depends on the
incorporation of bioactive material participating in the recog-
nition process [43]. Through the medium of this review article
we intend to discuss the use of peptide functionalized graphit-
ic nanomaterials as analytical nanotools. This article also aims
at providing a clear perspective to readers regarding interac-
tion behaviour of peptides with the abiotic graphitic precur-
sors, thus encouraging application of the conjugate in future
real time diagnostic applications.

Interactions enabling immobilization
of peptide to graphitic derivatives

Both covalent and non-covalent interactions facilitate conju-
gation of peptide biomolecules with graphitic materials.
Peptides preferentially bind at the sites containing functional
groups either at the edges or at planes thereby modifying the
unique topology of graphene-based nanomaterials Figure 1.
Table 2 presents the different interactions prevalent amongst
peptide and protein molecules. The interaction between

peptide molecules and graphitic derivatives involves compli-
cated reactions because the charge status of the surface func-
tional groups of peptide depends robustly on the environmen-
tal conditions, pH value, and ionic strength of the buffer.
Peptide molecules may possess a negative or a positive
charge. Likewise, there is a variation in functional groups
possessed by graphene and its oxidised derivatives like GO/
rGO mainly because of preparation procedure followed and
storage conditions [44–46].

Immobilization of peptides on graphene

Graphene comprises of sp2 hybridized C-C clouds closely
arranged in hexagonal symmetry reflecting a two-
dimensional (2D) structure [8, 9]. It does not contain oxygen
and is perfectly planar [52, 53]. Due to its intrinsic semi-
hydrophilic properties, phage display technique has been
employed by researchers to find peptide sequence that specif-
ically bind to graphene [54, 55]. Such studies involve amal-
gamation of computational designing prior to physical exper-
iments to confirm interaction [56]. Interaction of different
peptide sequences with graphitic materials and their applica-
tions have been summarised in Table 3.

Covalent interaction is not possible owing to the fact that,
there are no reactive groups present and also because of low
dispersion in aqueous mediums [56, 63]. Peptides may be
immobilized on graphene with the help of non-covalent inter-
action mechanisms like self-assembly by maintaining mild
acidic conditions along with sonication treatment. Peptide
molecules exhibit a self organizing tendency after interaction
procedure is accomplished [57, 64]. It was observed that, in
biosensing applications the self-assembled peptide molecules
acted as a bridge between the target molecule and the graphitic
surface [47, 59]. Presence of aromatic functional groups en-
able self-assemble of peptides to graphene by use of π-
interactions [58].

Van der Waals forces also encourage the interaction due to
water repelling properties possessed by graphene [65–67].
These days researchers are concentrating on cross-linking bio-
molecules to graphene majorly by application of non-covalent
conjugation strategies. Previous studies have convincingly
demonstrated that non-covalent method of interaction does not
alter the primary architecture of graphene thereby retaining the

Table 1 Desired properties of
peptides for biosensing
applications [36–40]

S. No Properties

1. Chemical diversity

2. Self-Assembly

3. Robustness

4. Molecular recognition

5. Target specificity and high affinity for organic and inorganic compounds.

6. Ease of synthesis and Conjugation.
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physical and chemical structure of the graphitic surfaces and
also, it’s chemical properties [68]. If the limiting factors of
low dispersibility causing difficulty in loading biomolecules is
overcome, graphene fabricated with peptide molecules can
open novel diagnostic avenues by making use of its commend-
able flexibility and electron mobility.

Immobilization of peptides on graphene oxide (GO)

In comparison to graphene, GO is an oxygen-rich carbon ma-
terial containing many sp3 carbons. They are not perfectly
planar. The presence of high density of oxygen functionalities
such as epoxide, hydroxyl, and carboxylic enhance its biomol-
ecule biocompatibility [13, 69]. The presence of both aromatic
and aliphatic moieties along with numerous defects on its
topography encourage biomolecules to form complex on the

reaction sites via both covalent as well as non- covalent inter-
action [70–72]. Table 4 depicts GO binding peptide sequence
along with applications of the formed conjugates.

Non-covalent interactions

The non-covalent absorption of peptides on GO can be ac-
complished by a fusion of π interaction, electrostatic and hy-
drophobic force along with interaction of hydrogen molecules
[87–90]. These interactions are achieved by following modest
protocol of placing aqueous peptide with graphitic material
followed by stirring and incubation [91, 92]. Surface phenom-
enon’s such as binding of peptide and diffusion with the abi-
otic material takes place. Incubation time and peptide concen-
tration are major determinants controlling peptide coverage on
GO substrates [37, 93]. It has been observed that peptide upon

Table 2 Different types of prominent interactions in peptides and proteins [47–51]

Interaction Type Chemical representation Typical 
Distance

Free Energy

Covalent Bond 1.5 Å 356 kJ mol-1

Electrostatic interactions 3.0 Å 5.9 kJ mol-1

Hydrogen Bond 2.5-3.2 Å 2-6 kJ mol-1

Van der Waals 3.5 Å 2-4 KJ mol-1

Cation–π interaction 6.0 Å 2-4 KJ mol-1

π stacking interaction 4.9 Å 8-12 kJ/mol-1
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Fig. 1 AFM image of (a) Graphene surface before incubation (b) Graphene surface functionalized with self-assembled peptide (c) Molecular dynamics-
based structure of peptide graphene sheet. [Figures have been reprinted with permission Ref. 25]



incubation with GO undergoes stacking through electrostatic
interactions. The aromatic rings present in amino acids have a
tendency to interact with the hydrophobic basal planes of GO
and organize in a parallel plane through π interactions
[94–96]. Similarly, formulation of a nanohybrid comprising
of self assembled peptide with GO for biomimetic minerali-
zation of hydroxyapatite (HA) was reported [97]. In this study
peptide was interacted with GO in a controlled manner which
further enhanced availability of nucleation sites for develop-
ment of HA crystals.

In this kind of adsorption, the carbon forms networks with
the hydrophobic domains of the biomolecule [91]. The hydro-
phobic effect is a result of dominant directional interactions
among water molecules and the complementarity of those
reciprocal reactions [98, 99]. Non-covalent interaction be-
tween GO and biomolecule greatly relies on factors like elec-
tron density and geometry of biomolecule. It has been ob-
served that the hydrogen bonds between GO side groups and
biomolecules additionally support surface adhesion [100].
Hence, biomolecules interact with GO through electrostatic

Table 4 GO interaction with peptide molecules along with applications

Peptide Sequence Interactions Applications Ref.

KCALNNGSGFPRGRAK π stacking Fluorescence-based biosensor. [73]

GGGRKRIHIGPGPAFYTT π stacking Molecular recognition, screening drugs, and
designing biosensors.

[74]

SNAP-25 (DEANQRATKMLGSG) Covalent interactions Fluorescent biosensors, high selectivity and low
detection limit than traditional immunoassays.

[75]

WHWQRPLMPVSI π stacking Spectroscopic biosensing. [76]

CALNNDEVDK-FAM Electrostatic Interactions Targeted anticancer drug delivery and help in
therapeutic self-monitoring.

[77]

KKNYSSSISSIHC Electronic interactions/π stacking Fluorescence-based sensor for Endotoxin detection. [78]

CLVPRGSC π stacking Detection of thrombin protease activity and other
proteases related to cancer diseases such as
matrix metalloproteinases.

[79]

VEVKVEVK (V8); FEFKFEFK (F8) π stacking Biomedical application to design novel hybrid
peptide hydrogels

[80]

MPG, GALFLGFLGAAGS TMGAWSQPK-SKRKV π stacking Nano gene carrier, nano drug-loading complex. [81]

NLWAAQRYGRELRRMS DKFVD π stacking Sensitive detection of target in cell and
fluorescence imaging.

[82]

RRRRNLWAAQRYGREL RRMSDKFVD π stacking Disease diagnosis, progression tracking and
therapeutic evaluation.

[82]

RFRFRFRF π stacking Surface-tethered peptide, aquaporins mimicking. [83]

FLGVVFKLASKVFPAVF GKV π stacking Inhibitory effect against pathogens Candida albicans
and Escherichia coli (E. coli)

[84]

ε-poly-L-lysine Electrostatic Interaction Isolation and removal of drug resistant pathogens
from water.

[85]

CGGHSSKLQFWYFWY Electrostatic Interaction Biosensing [86]

Table 3 Studies depicting graphene binding peptide sequence along with their applications

Peptide sequence Interactions Applications Ref.

DELERRIRELEARIK Hydrophobic
interactions

Diagnostic nano devices. [25]

HSSYWYAFNNKT–
GGGGLLRASSVWGRKYYVDLAGCAKA

Non-covalent
interactions

Enhances selectivity of the fabricated bacterium
biosensor.

[57]

AEAEAKAKAEAEAKAK Hydrophobic
interactions

Key role in potential bio-surface engineering. [58]

FEFEFKFKFEFEFKFK π stacking Biomolecular sensing and diagnostic applications. [59]

GBP-GGG-OHP
(HSSYWYAFNNKTGGGGLLRASSVWGRKYYVDLAGCA-
KA)

π stacking Graphene binding motif linked to the antimicrobial
peptide.

[59]

EPLQLKM π stacking Hybrid material with electronic, optical or catalytic
properties.

[60]

IMVTESSDYSSY π stacking Electronic recognition of bio-analytes using field-effect
transistor (FET) biosensor.

[61]

IMVTESSDYSSY π stacking Biosensing, drug-delivery and tissue engineering [62]
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interactions with different degrees of stability. The advantage
of physical immobilization of peptides is that the bulk charac-
teristics of GO are least affected and controlled-assembly of
peptides is achieved. Self-assembly of peptide on GO surface
involves few drawbacks such as low stability due to lack of
permanent functionalization and prediction of interaction,
these are application specific limitations and can be addressed
by following covalent interaction mechanisms.

Covalent interactions

The presence of enhanced oxygen containing functional
groups available on GO facilitate biomolecule immobilization
through covalent conjugation mechanisms. Hydrophobic
forces along with π interactions are the dominant covalent
forces taking place between aromatic and hydrophobic resi-
dues of peptides and hydrophobic basal plane of GO surface
[62]. During covalent interaction the peptide molecules are
bound to GO by the application of cross-linkers like 1-

Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), N-
Hydroxysuccinimide (NHS) and Polyethylene glycol (PEG)
[101–103]. The function of these linkers is to induce
amidation reaction with the abundantly available surface car-
boxyl groups to enable conjugation. For instance, ethylene
glycol unit of PEG enhances hydrophilic property of GO sur-
face which further enables attachment of peptides in an aque-
ous medium [104].Whereas, NHS stabilises the nanocomplex
by creating ester functional groups with carboxylates [105].
EDC/NHSwere employed as cross-linkers for creating a bond
between nisin and GO. Initially GOwas conjugated with nisin
through amide linkages followed by application of PEG
which resulted in the formation of a 3DGOmembrane system
[106]. Xu G and his colleagues reported interaction of GO
with PEG followed by trypsin immobilization, with a purpose
of enhancing the immobilization capacity of GO surface along
with restricting adsorption of addition biomolecules [107].

Interaction between GO and chymotrypsin was studied and
it was found that GO strongly inhibit the activity of

Fig. 2 Schematic representation of peptide functionalized GO/rGO conjugate

Microchim Acta (2020) 187: 27 Page 5 of 15 27



chymotrypsin, which might be due to the coexistence of an-
ionic, hydrophobic, and π stacking interactions [106, 108].
Zhang and co-workers found that horseradish peroxidase
(HRP) and lysozyme were immobilized on GO sheets through
electrostatic interactions if the pH level was below the isoelec-
tric point; if the pH level was above the isoelectric point, they
suggested that hydrogen bond interactions prevailed [109,
110]. However, the electrostatic interactions are more pro-
nounced on GO during covalent interaction, whereas both van
der Waals and electrostatic interactions play a major role in the
adsorption of proteins on reduced GO [100]. The increase in the
van der Waals interaction on rGO is attributed to the increase in
unfunctionalized regions on the surface [111, 112].

Detection protocols require selectivity, these linkers mini-
mise the absorption of unnecessary adsorption of biomole-
cules. Reports suggest that covalent functionalization tends
to improve the inherent characteristics of GO by opening band
gap making it stable and soluble in aqueous biological medi-
um [113]. Although covalent immobilization mechanisms de-
liver exorbitant binding strength and enhanced stability to
conjugate during harsh chemical - temperature treatments,
there are numerous limitations which restricts its applicability.
Most of the covalent conjugation methods are not definite in
the occurrence of changes [87]. There is an irreversible
rehybridization in sp2 configuration of carbon atoms to sp3

during covalent amide reactions [91]. This type of binding
sometimes affects the optical and electronic properties of
nanomaterials by disrupting the extensive π bonding on the
GO surface [114]. To over come these limitations researchers
are using click chemistry, a type of covalent conjugation strat-
egy. It has been proven to be efficient for bioconjugation of
nanomaterials with biomolecules as it prevents alteration of
peptide activity [26, 115]. Chemical reactions involved in click
chemistry are quick in nature, feasible to perform, enhance
stability of the reaction and are applicable over molecules with
diverse functionalities [116]. Major limitations of click chemis-
try conjugation reaction involve non availability of click chem-
istry products, use of copper catalyst in abundance causing
copper saturation and production of large quantity by-
products [117]. In this context, azide-alkyne click chemistry
approach was employed to accomplish functionalization of
GO nanoparticles with different biomolecules [118].

Immobilization of peptides on reduced graphene
oxide (rGO)

There are few studies depicting peptide interaction with rGO,
a form of GO having reduced oxygen content [119]. It is
usually formed by application of reducing agents which in
turn increase interlayer spacing [120]. The structure of rGO
is compared with graphene but even after reduction it com-
prises of oxygen functionalities which enable complex forma-
tion with peptide molecules [121–123]. Owing to structuralTa
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similarity with graphene, rGO also comprises of π interaction
along with increased van der Waals interaction because of
prevalent unfunctionalized regions on the surface [124]. In
comparison to GO, electrostatic interaction seldom occurs be-
cause of decreased surface functionalities [71]. It has been
inferred that hydrophobic interactions also enable adsorption
of proteins and peptides on rGO. Reduction in biological ac-
tivity of horse peroxidase (HRP)-GO conjugate was observed
by Zhang and co-workers [125]. To overcome this limitation
HRP was interacted with rGO via hydrophobic interaction.
Following conjugation an enhanced biomolecule loading

and prolonged stability was reported. Similarly, formation
of rGO-peptide conjugate having large surface area and
enhanced chemical stability at high temperatures was re-
ported [12]. Figure 2 illustrates different mechanism for
peptide immobilization to GO/rGO. There are few applica-
tions which require high oxygen containing functional
groups for peptide conjugation whereas some require re-
duced oxygen functionalities. Investigations revealed that
absence of functional surface groups impart a lower amount
of perturbation to peptides upon immobilization with rGO
[63].

Fig. 4 a Schematic illustration depicting fabrication of an aptasensor for ATP detection. b Response plot of aptasensor working at 0.18 V voltage
[Reprinted with permission from Ref. 23]
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Fig. 3 Applications of graphene functionalized peptide Complex as a (a)
Early stage prognostic cancer detector (b) Pathogen detector and
disinfectant for water (c) Detector of Helicobacter pylori (H. pylori) on

teeth enamel (d) FRET sensor for detection of environmental pollutants
[Figures have been reprinted with permission Ref. [106, 141, 148]



From the above discussion it can be inferred that the selec-
tion of graphitic derivative for peptide functionalization de-
pends on the application of the formed nanoconjugate. Table 5
describes the functional groups of different graphitic deriva-
tives along with absorption peaks to provide a better under-
standing of their physico-chemical property. It should be not-
ed that laboratory scale production of graphitic derivatives
results in batch-to-batch variations.

Applications of peptide functionalized
graphitic materials

Graphene and its oxidised derivatives are being studied exten-
sively in distinct disciplines for applications having novel rel-
evance (Fig. 3). Modelling and controlling the fabrication of
peptide nanostructures onto single layer may advance the gen-
esis of 2D bio nanosensing devices:

Detection of cancer cells

For early detection and measurement of an antigen which is
found to be proteolytically active (PSA) from urine sample
Feng T and co-workers reported a GO-FITC-labelled
peptide-based Fluorescence Resonance Energy Transfer
(FRET) sensor [140]. Prostate tumor is the prime reason of
mortality in males associated with cancer. There is no treat-
ment available to cure prostatic carcinoma but early diagnosis
of PSA can reduce the mortality rates [141].The peptide fab-
ricated GO fluorescence sensing technique was constructed by
selecting a peptide (HSSKLQ) having PSA-sensitive core
substrate a reported by previous research, the mentioned poly-
peptide is distinctly cleaved by the PSA [140]. Conjugation of
peptide with GO single sheet was confirmed by AFM. The
fluorescence of the peptide decreased on conjugation with GO
which can be attributed to the fluorescence quenching ability
of GO. The fluorescence of the dye-labelled peptide was
quenched by efficient electron transfer. The kinetic studies
were conducted to affirm that absorption of peptide on GO
takes place very rapidly. The conjugate was reported to be
PSA sensitive. The labelled peptide self-assembled on GO
via electrostatic and π interactions. The reported method is
effective in comparison to other PSA screening techniques.

Formation of a rGO-silk peptide based electrical
immunosensor for detection of PSA was described by Wang
[122]. In the reported immunosensor, functionalization of pep-
tide with rGO enhanced the surface area enabling successful
binding of anti-PSA on the surface of the electrode. The re-
ported immunosensor exhibited elevated selectivity towards
PSA in the existence of known interfering species.
Immunosensor’s performance was quantified at different con-
centrations of PSA and it was observed that peak current de-
creased with growing concentration of PSA. The rGO-peptide

fabricated sensor is robust and be utilised for rapid retention of
tumor markers.

Diagnosing Cyclin A2 in various types of early-stage can-
cers utilizing graphene conjugated with peptides was evaluat-
ed. The study reported utilization of porphyrin to enhance
selectivity of graphene by preventing nonspecific binding in-
teractions [142]. On the graphene surface, hexapeptide P0
(RWIMYF) and poly(ethylene glycol) were fixed as Cyclin
A2 detection probe and non-specific binding protection agent,
respectively. Electrochemical impedance spectroscopy results
revealed that the sensing technique was remarkably respon-
sive and selective with the estimated detection limit of cyclin
A2 as 0.32 pM. The developed GO-peptide sensor not only
detected Cyclin A2 in cell extracts but was also capable of
differentiating healthy cells from cancer causing cells in which
cyclin A2 was overexpressed.

Research by Castillo and co-workers reported the applica-
tion of peptide nanotube conjugated with GO electrode mod-
ified by folic acid [143]. They described a method for the
construction of GO electrode modified with a novel complex
composed of peptide nanotubes along with folic acid for the
selective identification of human cervical cancer cells [144].
Microscopic techniques like Scanning Electron Microscopy
(SEM) and Atomic force microscopy (AFM) confirmed suc-
cessful functionalization of peptide nanotubes with folic acid.
The conjugation of GO electrode with peptide nanotube-folic
acid complex produced rush in the current signal. Cyclic volt-
ammograms in the presence of [Fe (CN)6]

3−/4- as a redox
species indicated that the adherence of the folate receptor from
human cervical cancer cells to the peptide nanotube-folic acid
modified electrode reduced the electron transfer causing a
decrease in the measured current [144]. Control experiments
confirmed that the peptide nanotube-folic acid electrode spe-
cifically recognized folate receptors and a detection limit of
250 human cervical cancer cells per mL was obtained.
Therefore, the formed conjugate may be used for early-stage
diagnoses of deadly ailments like cancer or leishmaniasis
disease.

Determination of adenosine triphosphate (ATP)

Determination of ATP level released is vital to regulate meta-
bolic processes of the body. Since release of ATP is associated
with several neurological and nervous system related condi-
tions. Zhenjiang and his fellow researchers described a
voltammetric method for monitoring ATP content. The report-
ed method used GO-poly(3,4-ethylenedioxythiophene)
(PEDOT) conjugate functionalized with peptide molecules
[145] (Fig. 4).

Clinical performance of the aptasensor was investigated by
sensing presence of ATP in serum extracted from human
blood samples by measurements based on electrochemical
impedance spectroscopy (EIS). The formed aptasensor
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exhibited enhanced selectivity towards ATP detection. The
selected substrate, GO comprises of numerous oxygenated
hydrophilic groups which enable fabrication of small mole-
cules like peptides. The attached peptides prevent non- specif-
ic binding of biomolecules on the GO-PDOT surface by de-
veloping a protective hydration coating [146, 147]. The selec-
tivity of the aptasensor can be contributed to electrostatic in-
teractions along with aromatic bond formation. The designed
aptasensor overcomes limitations of reduced sensitivity and
biofouling usually exhibited by conventional sensing
mechanisms.

Monitoring protease activity

Early detection of protease related disease is a rising concern
of the scientific community. Construction of a GO based sen-
sor fabricated with polypeptide molecule was reported [58]. In
this study, thrombin was sensed using the GO-peptide conju-
gate by determining the current response obtained during cy-
clic voltammetry experiments [59]. GO acted as a favourable
nanomaterial for the sensor formation owing to its adsorption
properties and characteristic fluorescence quenching ability.
Whereas, dye labelled peptide molecule acted as a probe.
The interaction mechanism was interpreted by observing the
before and after incubation changes between amino
acids and GO. Peptide formed a complex with the GO
nanosheets by electrostatic interactions along with π in-
teractions. According to the study biomolecules exhibit
different driving forces during conjugation with GO.
Concentration of peptide along with buffer was
optimised and fluorescence intensity was observed. The
sensing platform exhibited thrombin at 2 nM detection
limit. Random sequences of peptides were analysed to
confirm selectivity. According to Zhang M and co-
workers the reported concept can also be utilised for
construction of different type of protease sensors by changing
the peptide sequences.

Determination of environmental pollutants

In 2015, Zhu Yand co-workers illustrated the construction of
a novel aptamer-GO FRET sensor for One-Step detection of
Bisphenol A by application of fluorometric assay [148].
Nucleic acid aptamers have drawn enormous interest since
discovery [149, 150]. Peptide aptamers are short and comprise
of 5–20 amino acid residues. The property of binding on par-
ticular sites of the target molecule makes them a desirable
candidate for biosensing applications [151]. Bisphenol A
(BPA) is used as a monomer during polycarbonate synthesis,
poly(vinyl chloride) (PVC) production and as a plasticizer
worldwide. It enters the human body by oral exposure, inha-
lation and transdermal. BPA is a critical causal agent of several
endocrine system disorders [152]. The reported biosensor was

created using GO and anti-BPA aptamer labelled with
Fluorescein amidite (FAM). GO acted as a fluorescence
quencher. FRET was produced in the absence of BPA when
FAM-ssDNA adsorbed onto GO. The anti-BPA aptamer ex-
hibited observable signal changes on incorporation of BPA. It
modifies its configuration thereby obstructing the absorption
of nucleic acid aptamer on the GO surface. The application of
reported GO−DNA detection approach was analysed by test-
ing spiked water samples with known BPA quantity.
Specificity of the sensor was observed by addition of analogs.
According to the results the biosensor distinguished the pres-
ence of analogs. The developed conjugate showed good de-
tection performance and is rapid, efficient as compared to
conventional BPA sensing systems.

Formation of 2,4,6-trinitrotoluene (TNT) optical detector
was also reported in 2015, by Zhang [61]. TNT is an explosive
extremely toxic to the environment [140]. The reported label-
free biosensor comprised of GO covalently bonded with pep-
tides specific to TNT. Cross-linkers EDC and NHS were used
to covalently bind to form a complex between the GO and
peptide. Covalent binding resulted in modification of GO
structure. Since the peptides in the study were TNT specific,
they combined with the TNT via hydrogen bonding. 2,4-
Dinitrotoluene (DNT) along with isoamyl acetate were used
to confirm the specificity of the biosensor towards TNT. The
results of the study indicated enhanced absorption for peptide-
functionalised GO in comparison to GO alone. The reported
biosensor can be employed for detection of explosives even at
low concentrations.

Detection of pathogenic microorganisms

Consumption of unregulated antibiotics has resulted in emer-
gence of multiple drug resistance in disease causing bacteria
[153]. Methicillin-resistant strain of Staphylococcus aureus
(MRSA) is a gram-positive bacterium, capable of causing skin
infections usually acquired from hospitals. It is challenging to
cure as a result of acquired resistance towards several antibi-
otics [138].

Kanchanapally and co-workers (2015) investigated and re-
ported the successful eradication of MRSA [106]. Water con-
taining MRSAwas passed through GO membrane fabricated
with antimicrobial peptide (AMP) nisin. The membrane re-
sulted in complete disinfection ofMRSA. It was observed that
the 3D GO film only allowed passage of water thereby
retaining the MRSA on its surface. Difference in pore size of
GO-AMP film i.e. 300 nm and that of MRSA being 1000 nm
resulted in efficient capture of the pathogenic microorganism.
Nisin is effective in killing the MRSA since it prevents the
synthesis of bacterial cell wall on its surface. As reported by
the author synergistic effect of the membrane is also among
the several reasons behind the effective destruction of the mi-
croorganism. The results were justified using microscopic
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techniques like SEM and TEM. Reverse transcriptase-
polymerase chain reaction (RT-PCR) data indicated 100%
elimination of MRSA. Since MRSA is the foremost cause of
sepsis associated mortality. Reported nisin conjugated GO
membrane can prove to be an inexpensive and effective diag-
nostic tool.

E. coli O157:H7 is an enterohemorrhagic strain of E. coli
infamous for causing waterborne infections to humans [154].
Zhou C and co-workers (2018) reported the formation of a
sensor for effective validation of E. coliO157:H7 from differ-
ent specimens like water and juice. The sensor works on the
principle of surface plasmon resonance (SPR). Magainin I
altered by cysteine at C terminals was used as a recognition
element. The AMP was conjugated with the Silver nanoparti-
cles and rGO non-covalently via self-assembly. The function
of rGO in the constructed sensor was to enhance signal am-
plification. Magainin I-C detected the pathogenic microorgan-
ism at 5 × 102 CFU/mL. The sensor sensitivity was also tested
for other non-pathogenic microorganisms. According to the
results obtained the detector can be used for disinfection
of other E. coli species as well. The constructed sensor
is highly sensitive, rapid and economical as compared
to traditional methods [155]. Its applicability can be
extended to detect various food samples for the pres-
ence of foodborne pathogens which tend to deteriorate
the quality of the product. Further, the rGO conjugated
AMP biosensor might be used for early clinical diagno-
sis owing to its characteristic feature of reproducibility
and stability towards different samples.

Conclusions and perspectives

Interfaces between graphitic nanomaterials and peptides have
immense potential to create novel complexes having applica-
tions ranging from diagnostics to therapeutics. On the basis of
available literature, it can be inferred that, GO has an edge
over graphene and rGO due to presence of intrinsic oxygen-
ated functional groups on its planar surface. To form stable
complexes with peptide molecules, it is essential to have ep-
oxides, hydroxyl and carboxyl functional groups. Graphene
and rGO lack these groups due to which there are not enough
reaction sites available for peptide bonding. It was observed
that irrespective of the type of immobilization mechanism
followed, several conformational changes occur which im-
pacts the inherent structure of peptide and functional chemis-
try of graphitic material. Conducting in silico studies using
various simulation tools followed by physical research pro-
vides a precise insight into changes caused by application of
covalent and non-covalent mechanisms. This area has not
been explored much by researchers as the complex interac-
tions between peptide and graphene derivatives are difficult to
interpret and require highly sophisticated instruments.

However, an understanding of different interactions between
nanoparticle and biomacromolecules is of utmost importance
to make a cost-effective and controllable bio-functionalized
materials having sensing capability.
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