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A system composed of vanadium(IV) disulfide quantum dots
and molybdenum(IV) disulfide nanosheets for use in an
aptamer-based fluorometric tetracycline assay
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Abstract
A system composed of vanadium(IV) disulfide quantum dots (VS2 QDs) and molybdenum(IV) disulfide (MoS2) nanosheets for
use in an aptamer-based fluorometric tetracycline assay was developed. The tetracycline (TET) aptamer was first immobilzed on
the VS2 QDs with a typical size of 3 nm. The blue fluorescence of the VS2 QDs (labeled with aptamer) with emission maxima at
448 nm (under excitation at 360 nm) was subsequently quenched by MoS2 nanosheets. If TET is recognized by the aptamer, the
VS2 QDs drift away from the basal plane of the MoS2 nanosheets. This generated “turn-on” fluorescence of the VS2 QDs. AVS2
QD/MoS2 nanosheet-based fluorometric TET aptasensor was thus constructed. Selective and sensitive TET bioanalysis was
realized in a linear range of 1 to 250 ng mL−1. The detection limit was 0.06 ng mL−1. Its applicability of determination of TET in
milk samples has been demonstrated.
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Introduction

Tetracycline (TET) is produced by actinomycetes. It can in-
hibit the peptide chain extension and bacterial protein synthe-
sis. Because of the effective antimicrobial properties, few side
effect and low price, it has been widely used in the treatment
of infectious diseases in humans and animals [1]. Nowadays,
the abuse of TET has caused serious environmental and health
problems [2]. For instance, the antibiotic residues in daily
foods such as meat, milk, honey, fish and eggs [3] may lead
to the accumulation of TET in human. This will cause damage
to the digestive tract and liver, affect the development of the
skeleton, and weaken the immune system function [4]. In this
concern, China has set the maximum residue limit of TET
residues in honey and milk or muscle tissue to 50 μg kg−1,

100 μg kg−1, respectively [5]. Exploring effective sensing
approach to facile monitor TET is hence imperative.

Various techniques, including high performance liquid chro-
matography (HPLC), gas chromatography-mass spectrometry
(GC-MS), capillary electrophoresis (CE) and enzyme-linked
immunosorbent assay (ELISA) etc. have been developed for
TET detection [6–10]. By comparison, the recently emerged
aptamer-based bioanalytical method attracts extensive attention
[11]. The aptamers are 3D structured single-stranded oligonu-
cleotides. They are normally synthesized by Systematic
Evolution of Ligands by Exponential enrichment (SELEX)
with high affinity and specificity [12]. Compared with protein
antibodies and enzymes, the aptamers can be cost-effectively
synthesized with high purity and reproducibility. Besides, they
also have advantages of small size, high stability, easy to mod-
ify, long-term preservation and without immunogenicity [13].
These attributes enable them to be promising in aptamer-based
bioanalysis with high affinity and reproducibility [14]. Luo
et al. developed CS-AuNPs probe for colorimetric aptasensing
of tetracycline [15]. Xu et al. reported a ferrocene/carbon
nanofbers-based ratiometric electrochemical aptasensor for de-
tection of tetracycline residues [16]. Despite of the progress,
developing new bioassay system for sensitive and specific de-
termination of antibiotics is still a challenge.
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Ultrathin two-dimensional (2D) transition metal chalco-
genides and transition metal oxides have gained increased
attention in the fields of electronics, sensors and catalysis
[17]. Particular research interest has focused on integrating
these 2D nanosheets into biosensors, stemming from unique
structural and electrical properties combing with high loading
efficiency for biomolecules [18]. Generally, most transition
metal nanosheets have the ability to quench fluorescence,
through energy-transfer or electron-transfer from excited
fluorophores to nanosheets. And more importantly, the large
surface area of 2D nanomaterial can offer more quenching
sites, enabling high quenching efficiency and detection sensi-
tivity [19]. Both theoretical calculations and experimental
studies have demonstrated that MoS2 nanosheets can physi-
cally adsorb aromatic compounds (such as pyridine or purine)
and conjugated compounds [20]. Zhu and co-workers have
reported high affinity of single-stranded DNA (ssDNA) to
MoS2 nanosheets, through Van der Waals interactions be-
tween lamellar planes and bases. They also demonstrated that
MoS2 nanosheets have a high fluorescence quenching capa-
bility towards dye labeled-ssDNA [21]. Herein, a system of
VS2 QD/MoS2 nanosheets for use in an aptamer-based fluo-
rometric tetracycline assay has been developed. The TET
aptamers were first fabricated on the surfaces of VS2 QDs.
Then, the fluorescence of TET aptamer labeled VS2 QDs
was quenched by MoS2 nanosheets. When the TET was spe-
cifically recognized by the aptamer, the VS2 QDs may be
taken away from the MoS2 nanosheets. This will lead to
“turn-on” fluorescence of the VS2 QDs. A VS2 QD/MoS2
nanosheets-based fluorescent aptasensing platform for TET
is thus constructed.

Experimental section

Chemicals and instrumentation

Specific details of chemicals and instrumentation are provided
in the electronic supplementary material. The MoS2 nano-
sheets were thermolytically obtained following our previously
reported method [22]. The VS2 QDs were synthesized via a
one-step hydrothermal approach [23]. The concentration of
VS2 QDs is ∼2.2 mg mL−1 after purification by silica gel
column chromatography. Related details can also be found
in the electronic supplementary material.

Fabrication of aptamer-labeled VS2 QDs

The condensation reaction between amino and carboxyl
groups [24] is involved to fabricate the TET aptamer labeled
VS2 QDs. The detailed procedures can be described as fol-
lows: First, 100.0 μL of 500 mMEDC was added into 1.0 mL
of VS2 QD suspension (∼2.2 mg mL−1), and the final

concentration of QD suspension was 2.0 mg mL−1. Second,
the mixture was continuously stirred for 30 min to activate the
carboxyl group on the QD surface. Third, 0.9 mL of Tris-HCl
was added, the resulting concentration of the carboxyl-
activated VS2 QD suspension was 1.0 mg mL−1 (2.0 mL,
~3.7 μM). Finally, incubation of the TET aptamer (3.0 μM)
with carboxyl-activated VS2 QDs at room temperature for
15 min, the TET aptamer labeled VS2 QDs were achieved.

Aptamer-based fluorometric tetracycline assay

In a typical process, 2.0 mL of TETaptamer labeled VS2 QDs
(1.0 mg mL−1, ~3.7 μM) was first mixed with 30.0 μL of
0.2 mg mL−1 MoS2 nanosheets. Then, 50.0 μL TET solution
with tunable concentration was added and mixed thoroughly.
After each sample reacted for 25min under room temperature,
the fluorescence emission was measured under the excitation
of 360 nm.

Selectivity

The selectivity of the aptamer-based fluorometric TET assay
towards several antibiotics (such as OTC, DOX, KAN, OFX,
PNC and CIP) was investigated. Briefly, the fluorescence of
the VS2 QDs quenched by MoS2 nanosheets (3.0 μg mL−1)
was recorded as the initial intensity. After addition of 50 μL
(20 μg mL−1) each of the interferential species into the solu-
tion (2.0 mL), the fluorescence intensity was recorded again.

TET assay in milk samples

Milk samples were supplied from retail supermarket
(Changchun, China) and treated by the following steps.
Briefly, 5.0 mL raw milk was mixed with EDTA’s McLinin
Protein Buffer (50 μL 400 mM, pH = 5). To deposit protein
and dissolve fat and other organic substances in the sample
matrix, 20.0 mL trichloroacetic acid was added and mixed for
1 min. The mixture was then centrifuged at 8000 rpm for
20 min to remove the protein, fat and other organic sub-
stances. The pH of supernatant was adjusted to 7.5 by 1 M
NaOH solution. After filtration, the final solution was used for
detection. A certain amount of TET was spiked into the raw
milk. The spiked sample was pretreated and analyzed
similarly.

Results and discussion

Fluorescence of aptamer-labeled VS2 QDs

The synthesis and characterization of water-soluble mono-
layer MoS2 QDs have been reported in our previous work
[25]. Pronounced blue-shift of excitonic absorption
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beyond single-layer MoS2 nanosheets and unusual up-
conversion photoluminescence at room temperature were
unprecedentedly discovered. Following the modified pro-
cedures, we prepared VS2 QDs with a relative uniform
size of ~3 nm (Fig. S1a and S1b) similarly. Detailed struc-
tural characterization, luminescence behavior and promis-
ing applications for glutathione and tetracycline determi-
nation can be found in recent reports [23, 26]. In this
work, another system composed of VS2 QDs and MoS2
nanosheets has been designed for use in aptamer-based
fluorometric assay. Specific determination of tetracycline
in practical samples has been exemplified.

For analyte determination, the aptamer labeled VS2
QDs was first prepared via the condensation reaction of
carboxyl-activated VS2 QDs and amino-terminated TET
aptamer. Scheme 1a shows the schematic illustration of
the fabrication of the aptamer labeled VS2 QDs. In
Fig. 1a, the aptamer labeled VS2 QDs exhibits a similar
emission peak at around 448 nm (blue light) with the VS2
QDs under an excitation wavelength of 360 nm. While the
fluorescence intensity slightly declines compared to the
primary one. When the aptamer labeled VS2 QDs was

stored in the dark at 4 °C for 5, 10, 15, 20 days, imper-
ceptible changes in the fluorescence intensity are ob-
served (Fig. 1b). This result indicates that the aptamer
labeled VS2 QDs have a good stability in aqueous
solution.

The MoS2 nanosheets were synthesized via pyrolysis
of ammonium molybdate, a layered C3N4 template and
sulfur source under a N2 atmosphere [22]. The character-
istic ultrathin structure of these nanosheets can be clearly
seen from Fig. S2a. Well-resolved crystal lattice with an
interplanar spacing of 0.62 nm can be assigned to the
distance of (002) crystal plane of hexagonal MoS2. All
the diffraction peaks in Fig. S2b can be indexed to the
crystalline planes of hexagonal MoS2 (ICDD, reference
number, 00–006–0097). The UV-visible absorption spec-
trum of MoS2 nanosheets reveals a wide absorption in the
range of 350 nm to 600 nm. This absorption spectrum is
extensively overlapped with the emission spectrum of the
aptamer labeled VS2 QDs (Fig. 2a). This behavior implies
a possibility of VS2 QD fluorescence quenching by MoS2
nanosheets. Figure 2b compares the fluorescence intensity
change of the aptamer labeled VS2 QDs in the absence or
presence of MoS2 nanosheets. Extensively weakened
fluorescence is observed in the presence of MoS2 nano-
sheets, since the emitted fluorescence of the VS2 QDs is
partially absorbed by the MoS2 nanosheets and the fluo-
rescence is thus quenched.

To explore the possible mechanism of fluorescence
quenching, the lifetime of the aptamer labeled QD emis-
sion was measured and compared with that of the aptamer
labeled VS2 QD/MoS2 nanosheets. The fluorescence life-
time of the composite system decreases (Fig. 3), indicating
that the fluorescence decay cannot be ascribed to static
quenching and inner filter effect [27]. Although the esti-
mated distance between acceptor and donor is less than
10 nm (detai led calculat ion can be found in the
Electronic Supporting Material), the possibility of fluores-
cence quenching by photoinduced electron transfer still
cannot be excluded. More efforts are required in near fu-
ture to explore the exact mechanism.

Scheme 1 Schematic representation of the preparation of aptamer
labeled VS2 QD (a) for aptamer-based fluorometric tetracycline assay (b).

Fig. 1 a Fluorescence emission
spectra of VS2 QDs and aptamer
labeled VS2 QDs under the same
condition. b The photostability of
aptamer labeled VS2 QDs during
20 days.
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Aptamer-based fluorometric TET assay

The change in fluorescence intensity of the aptamer labeled
VS2 QD/MoS2 system in the presence of TET is studied.
Figure 2b depicts that remarkable fluorescence recovery is
realized in the presence of 600 ng mL−1 TET. The specific
recognition between TET and the aptamer leads to the VS2
QDs detached from the surface ofMoS2 nanosheets. The fluo-
rescence is therefore recovered. By monitoring the turn-on
fluorescence intensity, the TET may thus be detected.

The mechanism of the aptamer labeled VS2 QD/MoS2
nanosheets for TET detection is schematically represented in
Scheme 1b. In the scheme, the interactions between all the
species are also indicated. The VS2 QD probe emits intense
blue light at 448 nm under UV light excitation of 360 nm. The
MoS2 nanosheet serves as fluorescence quenching species.
The TET aptamer labeled VS2 QDs are adsorbed on the sur-
faces of MoS2 nanosheets through van der walls force, the
fluorescence under 360 nm excitation is efficiently quenched.
When the molecular recognition between TET and the
aptamer labeled VS2 QDs takes place, well-folded TET-
aptamer complex is formed. The conformation change of the
complex decreases the exposure of nucleobases, the VS2 QDs

are detached from the surface of MoS2 nanosheets. The fluo-
rescence of the VS2 QD probe is thus restored.

Optimization of assay conditions

The following parameters are optimized: (a) concentration of
MoS2; (b) incubation time; (c) tetracycline aptamer concentra-
tion; (d) sample pH value. Respective text and Figures on opti-
mization are shown in Fig. S3 in the Electronic Supporting
Material. In short, the following experimental conditions are
found to give best results: (a) optimal concentration of MoS2:
3 μg mL−1; (b) optimal incubation time: 25 min; (c) optimal
tetracycline aptamer concentration: 3 μM; (d) best sample pH
value: 7.5.

TET aptasensing performances

Under optimal conditions, fluorescence detection of TET was
carried out. Figure 4a shows the tunable fluorescence spectra
towards different concentration of TET. The small inset magni-
fied the fluorescence emission behavior at low TET concentra-
tion. The plot of TET concentration-dependent fluorescence in-
tensity is presented in Fig. 4b. A good linear relationship between
the fluorescence intensity and TET concentration in the range
from 1 to 250 ng mL−1 can be observed in Fig. 4c. The linear
regression equation is FL = 1.67 ×CTET (ng mL−1) + 1007.22.
The correlation coefficient is 0.9982. A detection limit of
0.06 ng mL−1 is achieved (3δ/S, δ is the standard deviation of
the blank signal and S is the slope of the linear calibration plot).
Compared with most of the aptasensing approaches for the de-
tection of TET, the VS2 QD/MoS2 aptamer-based fluorescent
assay exhibits a relatively low detection limit (Table 1), showing
a promise in food quality and safety control.

Selectivity study

A series of derivatives with similar structure to tetracycline (such
as OTC, DOX, KAN, OFX, PNC and CIP) are selected to eval-
uate the possible interference effect on the determination of TET.
Under above conditions, 50 μL of 20 g mL−1 TET and each of

Fig. 2 a UV − vis absorption
spectrum ofMoS2 nanosheets and
fluorescence emission spectrum
of aptamer labeled VS2 QDs. b
The fluorescence spectra of
aptamer labeled VS2 QDs and
aptamer labeled VS2 QD/MoS2
nanosheet without and with TET.

Fig. 3 The lifetime change of the aptamer labeled VS2 QDs and aptamer
labeled VS2 QD/MoS2 nanosheet.
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the antibiotics were added, and the fluorescence intensity was
recorded. All data are obtained based on three repetitive mea-
surements. As shown in Fig. 4d, none of these antibiotics causes
obvious fluorescence increase. Above study demonstrates a high
specificity to tetracycline over other antibiotics, since the aptamer
can distinguish even minor structural difference between the tar-
get and its analog [31].

Detection of TET in milk samples

To further demonstrate the possibility of the aptasensor
for practical application, the concentrations of TET in

several milk samples were detected. Since the tetracycline
veterinary drugs in all the milk samples are found below
the detection limit, a series of spiked samples were pre-
pared by addition of 50 μL different concentration of
TET. For each concentration of TET (5 ng mL−1,
20 ng mL−1, 50 ng mL−1 and 100 ng mL−1), three repli-
cate samples were prepared. Under the optimal condi-
tions, the TET concentration of each spiked sample was
detected. The relative standard deviation and spiked re-
covery are presented in Table 2. The recovery of TET is
in the range of 96.7–107.1%. The relative standard devi-
ation (RSD) is less than 3.22%.

Fig. 4 a The change of fluorescence spectra with TET concentration. b
The trend of fluorescence recovery with TET concentration. c The linear
relationship between emission intensity and TET concentration. d The

specificity of VS2 QD-based aptasensor towards a series of structurally
similar tetracycline derivatives.

Table 1 TET assay performances compared with other fluorescent sensing approaches

Method Linear range LOD Ref.

Polyethyleneimine capped bimetallic Au/Pt nanoclusters 0.5–10 ng mL−1 0.35 ng mL−1 [28]

FICAwith ZnCdSe/ZnS QD 20–100 ng mL−1 20 ng mL−1 [29]

Fluorescent TET detection using dually emitting carbon dots 0.48–14.4 μg mL−1 0.25 ng mL−1 [30]

VS2 QD/MoS2 aptamer-based fluorescent assay 1–250 ng mL−1 0.06 ng mL−1 This work
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Conclusions

Using MoS2 nanosheets as an efficient quencher to the
blue fluorescence of VS2 QDs, a VS2 QD/MoS2

nanosheets-based aptasensor for TET determination was
developed. The specific recognition between aptamer
and target resulted in an increase of the distance between
the VS2 QDs and MoS2 nanosheets. The VS2 QDs were
thus detached from the MoS2 nanosheets, and the fluores-
cence was recovered. This aptamer-based fluorescent as-
say approach has advantages of high sensitivity, low de-
tection limit and high specificity. Its feasibility of deter-
mination of TET in milk samples has been demonstrated.
Note that, the interference caused by biomatter is a disad-
vantage for the method working in the UV (excitation at
360 nm). Many samples display strong background UV
absorption and fluorescence. In this regards, the UV light
used for fluorescence excitation could be screened off by
UV absorbers, which may weaken the signal. Thus, there
still exists a limitation of the present approach in practical
application.
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