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Abstract
Molybdenum oxide quantum dots (MoOx QDs) were synthesized by a one-pot method and used as a versatile probe in an
electrochemiluminescent (ECL) immunoassay of the non-small cell lung cancer biomarker cytokeratin 19 fragment 21–1
(CYFRA21-1) as a model analyte. The MoOx QDs exhibited stable and strong cathodic green ECL, with an emission peak at
535 nm, in the presence of K2S2O8 within the potential range of −2.0 to 0 V. On exposure to CYFRA21-1, the ECL decreases
because of the immunoreaction between CYFRA21-1 and its antibody which generates a barrier for electron transfer. The
determination of CYFRA21-1 with favorable analytical performances was successfully realized under the optimal conditions.
ECL decreases linearly in the 1 pg mL−1 to 350 ng mL−1 CYFRA21-1 concentration range, and the detection is as low as
0.3 pg mL−1. Excellent recoveries from CYFRA21-1-spiked human serum indicate that the assay can be operated under
physiological conditions.
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Introduction

Electrochemiluminescent (ECL) immunoassays provide an
ultrasensitive and highly selective tool for detecting disease-

related biomarkers. The key challenge of ECL immunosensor
fabrication is the selection of a proper luminescent material
[1]. Apart from traditional ones (luminol and Ru complexes),
various nanomaterial-based ECL luminophores with high
ECL efficiency, such as CdSe quantum dots (QDs) [2, 3],
Ag2Se@CdSe [1], CdTe [4], CeO2 [5], ZnO/CdS [6], N-
CQDs [7], and GO-g-C3N4 [8], have been successfully ex-
plored and used to fabricate biosensors for analytical applica-
tions. Among these nano-luminophores, QD-based ECL emit-
ters have received much attention in view of their unique size-
dependent electrochemical properties and ECL parameter tun-
ability [9]. Although various QD-based ECL emitters, espe-
cially IIB-VIA type QDs, have been extensively designed for
and applied in bioanalysis [4], innovative, stable, and highly
efficient QD-based ECL luminophores for ECL sensors are
still highly sought after. MoOx QDs have been extensively
studied in view of their superior electronic properties, high
photostability, low toxicity, and excellent chemical stability
[10–14], and have been widely employed in various fields
[10, 15–17]. However, the ECL properties and related appli-
cations of MoOx QDs remain underexplored.

We synthesized water-soluble MoOx QDs by a one-pot
environmentally friendly method and characterized them as
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a potential ECL luminophore. The results demonstrate that
these QDs exhibit excellent cathodic ECL properties in the
presence of K2S2O8 as a co-reactant, and the origin of this
behavior was discussed in detail. Subsequently, MoOx QDs
were employed to fabricate a universal ECL immunosensing
platform, the performance of which was evaluated for
cytokeratin 19 fragment 21–1 (CYFRA21-1, biomarker used
in the diagnosis of non-small cell lung cancer) as a model
analyte. The platform allows rapid and sensitive CYFRA
21-1 detection and offered the benefits of good sensitivity,
selectivity, wide linear range, and acceptable precision, and
is therefore concluded to hold great promise for biological
applications. Importantly, the insights gained in this work
are expected to facilitate the construction of other high-
performance ECL detection systems based on MoOx QDs or
their nanocomposites.

Materials and methods

Reagents and chemicals

MoS2 powder was purchased from Sigma Aldrich (average
diameter 90 nm; Shanghai, China) (https://www.sigmaaldrich.
com/china-mainland.html), and HAuCl4 was sourced from
Aladdin Reagent Co., Ltd. (Shanghai, China) (https://www.
aladdin-e.com/). Sodium citrate, tannic acid, H2O2, K2S2O8,
NaH2PO4·2H2O, Na2HPO4·12H2O, KCl , NaOH,
K3[Fe(CN)6], and K4[Fe(CN)6]·3H2O were procured from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China)
(https://www.reagent.com.cn/). CYFRA 21-1 and anti-
CYFRA 21-1, carcino-embryonic antigen (CEA), fibronectin
(FN), and α-fetoprotein (AFP) were obtained from Xiamen
Wan Tai Kerry Biotechnology Co., Ltd. (Xiamen, China)
(http://www.innodx.com/about/?19.html). Bovine serum
albumin (BSA) was purchased from BBI Life Sciences
Corporation (Shanghai, China) (https://www.sangon.com/).
MoOx QDs were synthesized by previous reported
procedures with some modification [15]. Gold nanoparticles
(Au NPs) were synthesized following the previously reported
procedures (see details in Supporting Information) [18]. All
chemicals and solvents were of analytical grade and were used
without further purification.

Instruments and measurements

Transmission electron microscopy (TEM) imaging and
energy-dispersive X-ray spectroscopy (EDS) elemental anal-
ysis of the MoOx QDs were performed using a JEM-2100
instrument (JEOL, Japan). Fluorescence spectra were record-
ed on an Eclipse spectrofluorometer (Varian). Fourier trans-
form infrared (FT-IR) spectra were recorded on a NicoletiS50
spectrometer (Thermo Fisher Scient i f ic , China) .

Electrochemical impedance spectroscopy (EIS) measure-
ments were conducted on a RST electrochemical work station
(Suzhou Risetest Instrument Co., Ltd., China), and other elec-
trochemical measurements were conducted on a CHI660b
electrochemical workstation (Chenhua Instrument Company
of Shanghai, China). ECL behavior was studied using an
MPI-A ECL analyzer (Xi’An Remax Electronic Science &
Technology, China) equipped with a photomultiplier tube
(PMT) biased at 700 V. ECL experiments were performed in
a conventional three-electrode setup comprising a modified/
non-modified glassy carbon electrode (GCE, 3 mm in diame-
ter) as a working electrode, an Ag/AgCl electrode as a refer-
ence electrode, and a Pt wire as a counter electrode.

Fabrication of the ECL immunosensor

The fabrication is illustrated in Scheme 1. The glassy carbon
electrode (GCE) was successively polished with 0.3- and
0.05-μmalumina powder on fine chamois, cleaned by sequen-
tial ultrasonication in ethanol and water (3 min each), and
blown dry with nitrogen. The surface of the pretreated elec-
trode was coated with MoOx QDs solution (8 μL,
0.035 g mL−1) and dried under vacuum. Then, 5 μL of Au
NP-chitosan (Au NP-CS) (5:1) was drop-cast on the electrode
surface and allowed to dry under vacuum. Anti-CYFRA21-1
(5μL, 50μgmL−1) was drop-cast on the sensing interface and
left overnight at 4 °C, which was followed by 1 h incubation
with BSA (5 μL, 1 wt%) to block nonspecific adsorption.
Finally, the GCE was washed with deionized water to afford
the label-free ECL immunosensor, which was stored at 4 °C
when not in use.

To optimize ECL response conditions, we investigated fac-
tors affecting the performance of the immunosensor, e.g., the
amount of immobilizedMoOx QDs, concentration of K2S2O8,
and detection solution pH (Fig. S1).

Determination of CYFRA21-1

The immunosensor was incubated with CYFRA21-1 so-
lutions of different concentrations for 1 h at 37 °C and
thoroughly washed with phosphate buffer (0.1 M,
pH 7.4). Measurements were performed in PBS contain-
ing 0.1 M KCl and 0.1 M K2S2O8 at scanning potentials
range from −2.0 to 0 V, a scanning rate of 100 mV s−1,
and a PMT voltage of 800 V. The sensing electrode was
placed into the ECL cell, and ECL signals were recorded
at different CYFRA21-1 concentrations. In the presence
of CYFRA21-1, signal intensity decreases because of the
formation of a non-conductive immunocomplex in the
immunoreaction of CYFRA21-1 with anti-CYFRA21-1,
which allows the quantitation of the former.
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Results and discussion

Choice of materials

The MoOx QDs were chosen because they exhibit a sta-
ble and strong cathodic ECL signal when using K2S2O8

as the coreactant in aqueous solution of pH 7.4.
Furthermore, Au NPs not only provides an effective ma-
trix to capture a great deal of antibody, but also acceler-
ates the electron transportation rate to enhance the ECL
intensity. Combining with the excellent adhesive ability
of chirosan (chit), a highly sensitive ECL immunoassay
platform based on MoOx QDs/Au NPs-chit nanocompsite
film has been successfully constructed.

Characterization of the QDs

The MoOx QDs were characterized by TEM, EDS,
photoluminescence (PL), and FT-IR spectroscopy. As
shown in Fig. 1a and b, the QDs are relatively uniform
spherical particles (average diameter = 2–5 nm) and con-
tain Mo and O (Fig. 1b). The FT-IR spectrum of MoOx

QDs (Fig. 1c) features three main absorption peaks at 986,
835, and 553 cm−1, which are ascribed to Mo = O, doubly
coordinated oxygen (Mo2–O), and triply coordinated ox-
ygen (Mo3–O) stretching vibrations, respectively [19]. In
addition, the fluorescence emission spectrum (λex =
315 nm) of MoOx QDs shows an emission maximum at
430 nm (Fig. 1d).

Performance of the assay

As already mentioned, MoOx QDs were chosen as a novel
ECL probe to develop a bioassay platform. As the inherent
ECL behavior of MoOx QDs has not been reported yet, we
investigated the ECL properties of MoOx QDs immobilized

on GCE in the presence of K2S2O8 as a co-reactant to probe
the feasibility of this system. Figure 2a shows the ECL re-
sponse curves of bare (curve a) and MoOx QD-modified
(curve b) GCEs recorded at a scan rate of 100 mV s−1 within
the potential range of −2.0 to 0 V. In contrast to the case of the
bare GCE, strong cathodic ECL is observed for the MoOx

QDs/GCE in the presence of externally added K2S2O8. The
intensity of the latter signal does not significantly change dur-
ing 10 continuous cyclic voltammetry scans (inset of Fig. 2a),
i.e., the ECL emission of the MoOx QDs/GCE is fairly strong,
stable, and hence suitable for the fabrication of ECL sensors.

The ECL spectrum of the MoOx QDs/S2O8
2− system was

also investigated using a series of optical filters. As shown in
Fig. 2b, the ECL emission maximum of this system is red-
shifted by 105 nm relative to the PL emission maximum of
MoOx QDs at 430 nm (Fig. 1d), as has also been observed for
other ECL-active nanomaterials such as methionine-stabilized
Au nanoclusters [20], Si nanocrystals [21], and CdSe
nanocrystals [22]. This phenomenon is ascribed to the strong
effect of surface states on electrochemical and ECL processes
[23]. Taken together, the above results imply that MoOx QDs
and S2O8

2− can form an excellent ECL system (MoOx QDs/
S2O8

2−) in which QDs act as the luminophore and S2O8
2− acts

as the co-reactant [5, 24, 25]:

MoOx QDsþ e−→MoOx
•− ð1Þ

S2O8
2− þ e−→SO4

2− þ SO4
•− ð2Þ

MoOx QDs
•− þ SO4

•−→MoOx QDs
* þ SO4

2− ð3Þ
MoOx QDs

*→MoOx QDsþ hν ð4Þ

During initial potential scanning in the negative direction,
MoOx captures electrons (e

−) and is reduced toMoOx
•−, while

S2O8
2− is reduced to SO4

•− and SO4
2−. The reaction between

MoOx
•− and SO4

•− affords excited MoOx
* that emits light

upon returning to the ground state.

Scheme 1 Illustration of the
preparation of the ECL
immunosensor platform

Page 3 of 8 855Microchim Acta (2019) 186: 855



ECL efficiency (ΦECL) is defined as the number of photons
emitted per unit charge transferred during the chemiluminescence
reaction and depends on the efficiency of excited state population
and the quantum yield of emission from this state. The ΦECL of
MoOx QDs in solution was calculated using [Ru(bpy)3]

2+ as a
standard according to the following equation [26].

ΦECL ¼ Φ°
ECL IQ°

f =Q f I
°� � ð5Þ

Here, Φ°ECL = 5.0% is the ECL efficiency of [Ru(bpy)3]
2+

obtained via an annihilation mechanism in 0.1 M ACN with
1 mM (TBA)BF4 [27], Qf and Q°

f are the transferred faradaic

charges for the MoOx QD film and [Ru(bpy)3]
2+, respectively,

and I and Io are the respective integrated PMT responses. We
estimated ΦECL of MoOx QDs as 4.23%, revealing the excel-
lent ECL properties of these QDs.

Characterization of the immunosensor

The operation of the ECL immunosensor relies on the speci-
ficity of antigen-antibody recognition. MoOx QDs/Au NPs-
chit were used as antibody carriers and sensing platform for
GCE modification, and the formation of a non-conductive

Fig. 1 Representative TEM
image (a), EDS spectrum (b), FT-
IR spectrum (c), and
photoluminescence excitation and
emission spectra (d) of MoOx

QDs

Fig. 2 a ECL responses of (a) bare and (b) MoOx QD-modified GCE in
0.1 M phosphate buffer (pH 5.0) containing 0.1 M K2S2O8 and 0.1 M
KCl. Inset shows the ECL emission of MoOx QDs/GCE during 12

continuous voltammetric cycles. b ECL spectrum of the MoOx QDs/
S2O8

2− ECL system
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antigen-antibody complex was expected to hinder electron
transfer and thus decrease ECL response. The ECL behavior
of the immunosensor was investigated in 0.1 M PBS (pH 7.4)
containing of 0.1MKCl and 0.1MK2S2O8 using CYFRA21-
1 as a model analyte. As shown in Fig. 3a, MoOx QDs/GCE
exhibits strong ECL emission (curve a), which slightly de-
creases upon the introduction of Au NPs-chit (curve b). This
decrease is attributed to the presence of CS (that is not condu-
cive to ECL) or resonance energy transfer between Au NPs
and MoOx QDs. The introduction of anti-CYFRA21-1 (curve
c) and BSA (curve d) results in a further decrease of ECL
signal intensity due to the blockage of electron transfer by
inert protein molecules. Finally, the immunoreaction of
CYFRA21-1 with the immobilized anti-CYFRA21-1 to af-
ford a non-conductive immunocomplex results in an addition-
al intensity decrease (curve e), as this complex hinders elec-
tron and mass transfer between ECL reagents and the elec-
trode surface. This suggests that the intensity decrease can be
utilized to quantify CYFRA21-1.

To better understand the process of immunosensor fab-
rication, individual fabrication stages were investigated by
cyclic voltammetry (CV) and EIS measurements, which
were performed in 5.0 mM K3[Fe(CN)6]/K4[Fe(CN)6] so-
lution containing 0.10 M KCl. Figure 3b shows the CV
curves of the stepwise modified electrode, showing that a
pair of well-defined redox peaks (curve a) is observed for
the bare GCE. After modification with MoOx QDs (curve
b), the peak current decreases, while peak potential sepa-
rat ion (ΔEp) increases, which suggests that the
immobilized MoOx QDs attenuated electron transfer.
However, the subsequent introduction of Au NPs-chit re-
sults in an increase of peak current and a decrease of ΔEp
(curve c), i.e., the excellent electrical conductivity of Au
NPs and the excellent film forming ability and adhesive-
ness of CS facilitates electron transfer. As the electrode
was further incubated with anti-CYFRA21-1, BSA, and
CYFRA21-1, the peak current (curves d, e, and f, respec-
tively) progressively decreases, while ΔEp increases,

since the non-conductive protein molecules hinder elec-
tron transfer [28, 29]. Figure 3c shows the electrochemi-
cal impedance spectra of bare and modified electrodes,
demonstrating that the bare GCE (curve a) has a lower
impedance than the MoOx QD-modified GCE (curve b),
as MoOx QDs hinder surface electron transfer. The immo-
bilization of Au NPs-chit results in an obvious decrease of
impedance (curve c) due to the excellent electrical con-
ductivity of Au NPs. Finally, the introduction of anti-
CYFRA21-1, BSA, and CYFRA21-1 successively in-
creases electron transfer resistance (curves d, e, and f,
respectively), as the non-conductive protein layer acts a
barrier for electron transfer. Taken together, the above
findings are indicative of successful immunosensor
fabrication.

Performance of the immunoassay

The immunosensor was used for CYFRA21-1 detection under
optimized conditions (Fig. 4). Figure 4a shows that the ECL
response (IECL) decreases with increasing CYFRA21-1 con-
centration, while Fig. 4b reveals that this decrease linearly
depends on the logarithm of CYFRA21-1 concentration (log
c) within the range of 0.001–350 ng mL−1. The linear relation
can be described by the equation IECL = 759.5 log c + 2520,
with a correlation coefficient of 0.9890. The detection limit
(0.3 pg mL−1) was calculated as three times the standard de-
viation of the blank signal. Compared with the previous re-
ports for detection of CYFRA21-1 [30–34], the constructed
label-free ECL immunosensor has a good performance in
terms of a wider linear range and a lower limit of detection
(Table 1).

The operational stability of our sensing platform was investi-
gated under the conditions of continuous cyclic potential scan-
ning (Fig. 4c, 12 cycles at 1 pg mL−1 CYFRA21-1 standard
solutions) in 0.1 M phosphate buffer (pH 7.4) containing 0.1 M
KCl and 0.1 M K2S2O8, strong and stable ECL signals are ob-
served (relative standard deviation (RSD) = 0.54%).

Fig. 3 a ECL responses of (a) MoOx QDs, (b) MoOx QDs/Au NPs-chit,
(c) MoOx QDs/Au NPs-chit/Ab, (d) MoOx QDs/Au NPs-chit/Ab/BSA,
and (e) MoOx QDs /Au NPs-chit/Ab/BSA/CYFRA21-1. b Cyclic volt-
ammograms and (C) EIS spectra of working electrodes modified with (a)

nothing (bare electrode), (b) MoOx QDs, (c) MoOx QDs/Au NPs-chit, (d)
MoOx QDs/Au NPs-chit/Ab, (e) MoOx QDs/Au NPs-chit/BSA/Ab, and
(f) MoOx QDs/Au NPs-chit/BSA/Ab/CYFRA21-1
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Furthermore, we demonstrates that >90% of ECL intensity is
retained after four-week storage at 4 °C and thus shows that the
fabricated immunosensor exhibits excellent stability. Finally, sen-
sor reproducibilitywas examined by determining intra- and inter-
assay precisions. The former parameter was estimated by mea-
suring the response of the sensor to 1 pg mL−1 CYFRA21-1 for
six times, while the latter was determined by assaying the re-
sponse of 10 modified electrodes to 1 pg mL−1 CYFRA21-1.
As a result, intra- and inter-assay RSDs were obtained as
3.18 and 4.39%, respectively, which indicates that the
fabricated immunosensor provides well-reproducible re-
sults. Besides, after the antigen of CYFRA21-1 was incu-
bated onto the GCE/MoOx QDs/Au NPs-chit/BSA/Ab for
1 h, the electrode surface was regenerated by treatment

with Gly −HCl (pH 2.2) buffer containing 0.05% Tween
20 to remove the coupled CYFRA21-1 on the electrode
surface [35]. After each acid treatment, the surface was
again incubated with the CYFRA21-1. The results dis-
plays that the immunosensor is stable up to 7 recycles
without obvious loss of affinity and residual of
CYFRA21-1 after elusion.

To further investigate the specificity of our immunosensor,
we examined its responses to several interfering proteins,
namely CEA, FN, AFP, and CA125 (Fig. 4d). Notably, re-
sponses to these proteins (0.2 μg mL−1) are much weaker than
that to a 2000-fold smaller concentration of CYFRA21-1
(0.1 ng mL−1), which demonstrates the excellent specificity
of our sensor.

Fig. 4 a ECL responses of the
immunosensor in 0.1 M
phosphate buffer (pH 7.4)
containing 0.1 M KCl and 0.1 M
K2S2O8 to CYFRA21-1 (from a
to l: 0.001, 0.01, 0.05, 0.1, 0.2,
0.5, 1, 10, 50, 100, 200,
350 ng mL−1). b Dependence of
ECL intensity on the concentra-
tion of CYFRA21-1. c Stability of
ECL emission from GCE/MoOx

QDs/Au NPs-chit/Ab/BSA under
continuous scanning for 12 cycles
at 1 pg mL−1 CYFRA21-1 in
0.1 M phosphate buffer (pH 7.4)
containing 0.1 M KCl and 0.1 M
K2S2O8. d Responses of the fab-
ricated ECL sensor to different
proteins. ΔECL intensity I0-I,
where I0 and I are the ECL
intensities of GCE/MoOx QDs/
Au NPs-chit/Ab/BSA in K2S2O8

solution in the absence and
presence of targets, respectively

Table 1 Comparisons of different method for CYFRA21-1 detection

Detection method Electrode Materials Linear range
(ng mL−1)

LOD
(pg mL−1)

Ref

Electrochemical
immunoassay

HAATM/CYFRA21–1/Ab1/GA/3D–G/GCE 0.1–150 43 [30]

Amperometric
immunosensor

ZIF–8–HQ–BSA–Ab2–CYFRA21–1–anti–CYFRA21–1/AuNPs/PANI
hydrogel/GCE

1 × 10−4 – 100 0.65 [31]

Electrochemical
immunosensor

CYFRA21–1/BSA/Ab1/GA/3D–G @Au/GCE 0.25–800 100 [32]

Electrochemical
immunosensor

BSA/anti-CYFRA–21–1/APTES/ZrO2–RGO/ITO 2–22 122 [33]

Electrochemical
immunoassay

PMCP–Au–anti–Cyfra21–1/Cyfra21–1/BSA/anti-Cyfra21–1/GCE 1–150 400 [34]

ECL immunoassay GCE/MoOx QDs/Au NPs–chit/BSA/Ab/CYFRA21–1 1.0 × 10−3 – 350 0.3 This
work
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Real sample application

To test the analytical reliability and application potential of the
immunosensor, we employed it for the standard addition
method-based analysis of human serum samples spiked with
CYFRA21-1 standard solution to different final concentra-
tions (2.00, 5.00, and 10.00 ng mL−1). The human serum
samples were collected from the Second Hospital of Fuzhou.
Prior to measurement, the serum samples were diluted 10
times (1:10 diluted with 0.1 M phosphate buffer solution,
pH 7.4). Following that, 5 μL of the above sample was
dropped onto the immunosensor and then thoroughly washed
with phosphate buffer (0.1 M, pH 7.4) after the immunoreac-
tion with 30 min of incubation at 37 °C. The concentration of
CYFRA21-1 in the serum sample was calculated according to
its degree of ECL inhibition. With the addition of different
concentrations of CYFRA21-1 standard into the serum sam-
ple, the recoveries were calculated. As shown in Table 2, the
observed recoveries range from 98.6 to 103.1%, while the
corresponding RSDs range from 4.53 to 7.21%, which indi-
cated that the resulting sensor has potential application in
complicated real samples.

Conclusions

An ECL sensing platform based on MoOx QDs/Au NPs-
chitosan film has been successfully fabricated. MoOx QDs
were used as the ECL probe due to their excellent ECL per-
formance with K2S2O8 as co-reactant. Under the optimized
experimental conditions, CYFRA21-1 can be effectively
assayed by monitoring the decreased ECL response upon the
immunoreaction on the sensor surface. The immunoassay dis-
plays good performances with a wide linear range, high sen-
sitivity, acceptable stability and reproducibility, indicating its
potential applications for the detection of other biomolecules,
such as other biomarkers, DNA, and cell. However, the rela-
tively complex preparation process and low detection poten-
tial applied in this system might cause some side reactions for
real samples detection, which limiting the application of
MoOx QDs in other ECL sensors.
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