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Abstract
This review (with 147 references) summarizes the state of the art in methods for signal amplification in immunoassays by using
noble metal nanoparticles (MeNPs). Following an introduction into the field, a first large section covers MeNPs as signal tracers.
The next sections describes the use of MeNPs as carriers for biomolecules, and of doped, decorated or functionalized MeNPs. A
next large section covers MeNPs as used in aggregation-based assays that result in a change of color or dynamic light scattering
(DLS). This is followed by a discussion of MeNPs that undergo etching, size reduction, or growth and thereby change color and
DLS, with subsections onmethods based on etching, particle growth or particle formation.We then rviewmethods whereMeNPs
acts as catalysts (enzyme mimics), with subsections on MeNPs and on doped or composed MeNPs. A final large section
discusses the synergies of MeNPs or multiple signal amplification strategies in immunoassays. Several Tables are presented that
give an overview on the wealth of methods and materials. A concluding section summarizes the current status, addresses current
challenges, and gives an outlook on potential future trends.
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Introduction

The sensitivity of any immunoassay is determined mainly by
the intensity of the output signal. As the increasing demands
for environmental monitoring [1], food safety analysis [2],
disease diagnosis [3] and other research areas [4–6], novel
signal amplification strategies are required to maximize the
signal output. Avariety of metal nanoparticles (NPs), or metal
NPs doped by other materials have nontoxicity, chemical sta-
bility, fine biological compatibility, excellent catalytic activity
and high surface-to-volume ratio. They have beenwidely used
as essential components of signal amplification strategies to
enhance the sensitivity of the immunoassays. They include

magnetic bead [7], gold NPs (AuNPs) [8], silver NPs
(AgNPs) [9], Fe3O4@SiO2 [4], Ag@bovine serum albumin
(Ag@BSA) [10], zinc oxide nanoflower-bismuth sulfide com-
posites (ZNF@Bi2S3) [11] and so on. With the development
of nanotechnology, great attention has been paid to the com-
bination of different nanomaterials to develop the signal am-
plification strategies. These strategies include magnetic NPs/
aptamer/carbon dots nanocomposites [12], TiO2/S-
BiVO4@Ag2S nanocomposites [13], MoS2-PEI-Au nano-
composites and Au@BSA core/shell NPs [14], N-GNRs-Fe-
MOFs@AuNPs nanocomposites and AuPt-methylene nano-
rod [15]. Metal NPs with rich nanostructures not only load
large number of signal elements such as antibody and enzyme,
but also improve the electronic properties and produce detect-
able signals for indirect detection of targets, resulting high
sensitivity of an immunoassay. Several reviews have been
published focused on the synthesis, performance and applica-
tions of metal NPs in assay design [16–22], few dedicated to
the signal amplification strategies in immunoassays. Here, we
summarize selected articles from 2007 onwards on noble met-
al NPs as elements of signal amplification strategies in the
development of immunoassays. Various signal amplification
strategies using noble metal NPs are summarized in Fig. 1,
such as serving as (a) signal tracers, (b) carriers, (c)
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aggregators, (d) enzyme mimics, (e) in growth or etching of
NPs, and (f) in synergistic effects.

Noble metal NPs serving as signal tracers

Gold nanoparticles (AuNPs) have the distinguishing
physical and chemical properties, such as biocompatibil-
ity, easy conjugation to biomolecules and better electro-
chemical or optical transduction property. They have
become highly valuable nanomaterials in signal amplifi-
cation strategies of immunoassay (Table 1). AuNPs la-
beled with antibody can act as the tracers for signal
amplification by increasing amount of themselves in
the position of detection line. Without any complicated
labeling procedure, positively charged AuNPs-tracers
can be directly bound to the negatively charged antibod-
ies. Based on this mechanism, a large number of lateral
flow assays utilizing antibody labeled positively charged
AuNPs have been designed for different targets [23–26].
The AuNPs act as signal amplification tracers accumu-
late numerous AuNPs on test line which are correlated
with the amounts of target in samples.

To further enhance the sensitivity, an AuNPs growth
and accumulation signal amplification strategy based lat-
eral flow assay was developed for rapid detection of
Salmonella Enteritidis [27]. For having high catalytic ac-
tivity, AuNPs produce new AuNPs on the surface of the
initial AuNPs during the reaction between HAuCl4 and
NH2OH·HCl. The remarkable enhanced signal can be
clearly and visually distinguished even under a lower con-
centration of S. Enteritidis. The sensitivity (104 CFU/mL)
is enhanced 100-fold compared to the traditional AuNPs
based strategy (106 CFU/mL). This AuNPs growth and
accumulation signal amplification strategy based assay
need two “10 min reaction” steps (Fig. 2a).

For signal amplification of lateral flow assay without an
additional operation step, a strategy utilizing two AuNP-
antibody conjugates was designed for detection of troponin
I [28]. The 1st AuNPs-tracer was the AuNPs labeled with
an anti-troponin I antibody and the 2nd AuNPs-tracer was
the AuNPs labeled with an anti-BSA antibody. The 2nd
AuNPs-tracer was designed to bind only with the 1st
AuNPs-tracer with a higher size. Both two AuNPs-tracers
act as signal amplification probes to aggregate numerous
AuNPs on test line. The detection sensitivity (0.01 ng/mL)
is increased about 100-fold compared to the conventional
lateral flow assay (1 ng/mL) (Fig. 2b). Fang and coworkers
designed a dual labeling signal amplification strategy
using high affinity AuNPs-biotinylated anti-pesticide
imidacloprid antibody (nanogold-BAb) and nanogold-
streptavidin (nanogold-Sa) probe (Fig. 2c). The detection
signal was the amount of nanogold-BAb and nanogold-Sa
probes. The signal amplification was achieved by using
nanogold-BAb probe for the determination of imidacloprid
and nanogold-Sa probe for signal enhancement. The visual
detection sensitivity and semi-quantitative analytical ca-
pacity of the assay are 10-fold and 160-fold higher than
those of traditional lateral flow assay, respectively [29].
The immunochromatographic assays based on metal
nanomaterials as signal tracers are simple, rapid and con-
venient to perform, and no equipments and professional

Fig. 1 The roles of metal NPs in signal amplification in immunoassays

Table 1 An overview on metal nanomaterials commonly used as signal tracers in immunochromatographic assays

Particle type Principle Targets Limit of detection Measurement range Reference

AuNPs1 Accumulation Carbohydrate antigen 5 U/mL 5-100 U/mL [23]

AuNPs Accumulation Streptococcus agalactiae 1.5 × 105 CFU N 3 [25]

AuNCs2 Quenching Cadmium ions 0.18 ng/mL 0.25-8 ng/mL [24]

AuNPs Growth and accumulation Salmonella Enteritidis 104 CFU/mL 103-108 CFU/mL [27]

AuNPs Dual AuNPs accumulation Troponin I 0.01 ng/mL 0.10-14.27 ng/mL [28]

AuNPs Loop-mediated isothermal amplification E. coli O157:H7 1 cell 1-105 cells [26]

1 Nanoparticles; 2 Nanoclusters; 3 Not provided;
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analyst are required. Meanwhile, the sensitivities of these
techniques are relatively lower compared to other assays.

Noble metal NPs serving as carriers

Noble metal NPs themselves as carriers for antibody,
enzyme and other bio-molecules

Various material NPs, such as AuNPs, TiO2, as well as CuS-
SiO2 have high surface areas, unique physicochemical prop-
erties, high chemical stability and ease to be functionalized.
They have been used as carriers for loading different signal
elements including antibodies, enzymes, oligo nucleotides
and other bio-molecules [5, 7, 30–43] (Table 2).

Based on sandwich immunoreactions, AuNPs were used
as labeling carriers of horseradish peroxidase (HRP)-anti-
body in combination with TMB as substrates. Parolo and
coworkers designed a lateral flow format for detection of
Human IgG used as model protein [44]. AuNPs have high
surface areas of AuNPs, which load more amount of HRP
than that of IgG. The signal amplification of catalytically
oxidized substrate related to the concentration of targets is
enhanced around 10-fold compared to the results that ob-
tained just from the direct measurement of the AuNPs as
non-modified tracers. Zhou’s group used AuNPs as carriers

for loading antibody and HRP simultaneously, and devel-
oped a competitive immunoreaction format for detection of
Pb(II) [45]. As low as 9 pg/mL of Pb(II) is still detectable,
while for traditional IgG-HRP based ELISA only signal as
high as 750 pg/mL of target is distinguishable [45]. Yin
et al. designed an electrochemical immunoassay by using
AuNPs as carrier for loading anti-His tag antibody labeled
with HRP as signal amplification unit and methyl binding
domain protein of MeCP2 as DNA CpG methylation
recognization unit (Fig. 3a). After an immunoreaction,
the AuNPs-IgG-HRP was captured on the electrode sur-
face. Under the catalysis of HRP towards hydroquinone
oxidized in the presence of H2O2, the amplified electro-
chemical reduction signal was produced [46].

On the basis of competitive immunoassay, Wang’s group
proposed a bio-barcode amplification strategy for detection of
small molecules, triazophos. In the assay, AuNPs were used as
carrier for loading 6-carboxyfluorescein labeled single-
stranded thiol-oligonucleotides and antibody. The targets in
the sample compete with ovalbumin (OVA)-haptens coated
on the bottom of microplate for binding to the antibody-
AuNP-thiol-oligonucleotides. The fluorescence intensity
quenched by AuNPs was inversely proportional to concentra-
tion of triazophos (Fig. 3b). The prominent advantage of the
competitive fluorescence bio-barcode immunoassay is higher
sensitivity than indirect competitive ELISA [13].

a

b c

A B

C

Fig. 2 Schematic diagram of metal NPs themselves as signal tracers. (A)
AuNPs growth and accumulation signal amplification strategy based lat-
eral flow assay. (a) principle of the signal amplification, (b) analysis
process of the signal amplified lateral flow assay, (c) comparison pictures
for enhancement effect illustration. Reproduced with permission from

Ref. [27]. Copyright Elsevier, 2017. (B) Schematic illustration of the dual
AuNPs-tracers based lateral flow assay. Reproduced with permission
from Ref. [28]. Copyright Elsevier, 2010. (C) Schematic illustration of
the dual labeling signal amplification strategy based lateral flow assay.
Reproduced with permission from Ref. [29]. Copyright Elsevier, 2015
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Noble metal NPs doped, decorated or functionalized
with other materials as carriers or signal labels

To further enhance the sensitivity of immunoassays, metal
NPs integrated with other materials have been employed as
carriers to design various signal amplification strategies
[47–61]. For example, using thionine (TH)-doped mesopo-
rous ZnO nanostrawberries (MP-ZnO) for loading HRP la-
beled goat anti-human IgG (HRP-anti-IgG), and the
immobilized ultralong Ag nanowires with the capture anti-
body (Fig. 4a), Cao et al. developed an electrochemical im-
munoassay for detection of human IgG [48]. The electrochem-
ical signal of the sandwich-type immunoassay was signifi-
cantly amplified due to crystalline framework, high surface
area of the MP nanomaterials and the superconductivity of
silver nanowires.

Based on zinc oxide nanoflower-bismuth sulfide
(ZNF@Bi2S3) composites materials and reduced graphene
oxide (rGO), a photoelectrochemical (PEC) immunoassay
was constructed for squamous cell carcinoma antigen
(SCCA) detection [11]. In the assay, ZNF@Bi2S3 composites
and rGO were used as photoactive materials and signal labels
respectively. HRP was used not only to block nonspecific
binding sites, but also participate in luminol-based chemilu-
minescence (CL) system to induce inner light source. The
induced CL emission acted as an inner light source excited
photoactive materials. The rGO trigged the CL resonance en-
ergy transfer between luminol and rGO which decreased the
efficient of CL emission to ZNF@Bi2S3 composites and elec-
trons amount to electrode surface. The steric hindrance, in-
creased by the introduced rGO-Ab2 hindered the electron do-
nor to the surface of Bi2S3 for reaction with the
photogenerated holes (Fig. 4b). This novel signal amplifica-
tion strategy based PEC immunoassay exhibits low detection
limit, good reproducibility and wide linear ranges. Based on
avidin functionalized Ru@SiO2 and carboxylated g-
C3N4(CN), Ai and Yin’s group constructed another PEC

immunoassay [12]. In the assay, N6-methyladenosine-5′-tri-
phosphate (m6ATP), Ru@SiO2 and CN were used as the de-
tection target molecule, signal amplification unit to improve
the photocurrent and the support for the antibody immobiliza-
tion, respectively. Phos-tag-biotin was employed as bridge of
target and Ru@SiO2 (Fig. 4c). The sensitivity of the PEC
immunoassay is improved by the specific interaction between
Phos-tag and phosphate group, biotin and avidin.

Metal NPs have been doped with other materials, such as
AuNP-doped BSA microspheres (Au@BSA) [14], nanosilver-
doped BSA microspheres (Ag@BSA) [10] and AuNP-doped
mesoporous SiO2 (Au/SiO2) [62]. They can be employed as
carrier for loading numerous molecule recognition antibody,
HRP or luminol molecules in electrochemical immunoassays.
For example, Zhang and coworkers developed a sandwich-type
electrochemiluminescence immunoassay for the detection of
alpha fetal protein (AFP) by using luminol-Au@BSA NPs to
load secondary antibodies (Ab2) and luminol molecules [14]. In
the assay, the MoS2 nanosheets were labeled with
polyethylenimine (PEI) polymer and AuNPs were electrostati-
cally adsorbed to form MoS2-PEI-Au nanostructures. The tar-
get molecules were sandwiching captured by the primary anti-
body (Ab1) and the luminol-Au@BSA-Ab2 nanocomposite
through specific immunoreactions (Fig. 4d). The
electrochemiluminescence signal amplification was achieved
by the catalytic performance ofMoS2-PEI-Au nanocomposites.
Zhou and coworkers assembled a HRP-tyramine conjugates
electrochemical immunoassay based on nanosilver-doped
BSA microspheres (Ag@BSA) and glassy carbon electrode
for detection of carcinoembryonic antigen (CEA). HRP and
detection antibody were immobilized on the surface of
Ag@BSA (Fig. 4e). The signal amplification was obtained by
coupling enzymatic biocatalytic precipitation with tyramine
and carbon electrode modified with capture antibody [10].
The multi-enzyme assembly electrochemical immunoassay ex-
hibits higher sensitivity in comparison with traditional
Ag@BSA labeling method.

a b

Fig. 3 Schematic diagram ofmetal NPs as carriers. aAuNPs as carrier for
loading antibody, HRP and methyl binding domain protein of MeCP2 in
electrochemical immunoassay. Reproduced with permission from Ref.
[46]. Copyright Elsevier, 2013. b AuNPs as carrier for loading antibody

and 6-carboxyfluorescein labeled single-stranded thiol-oligonucleotides
in competitive fluorescence bio-barcode immunoassay. Reproduced with
permission from Ref. [13]. Copyright Elsevier, 2017
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The sensitivities of these methods were improved by
employing metal NPs as bio-molecules carrier because the
metal NPs offer an opportunity to load a large amount of
biomolecules, such as enzymes improving the sensitivity of
the assay. However, the stability of metal NPs based probes in
immunoassays are comparable lower than those of IgG-
enzyme conjugates. And the synthesis procedures of metal
NPs probe are time-consuming and labor-intensive. Table 2
summarizes the main characteristics of these methods.

Noble metal NPs serving as aggregations

Localized surface plasmon resonance (LSPR) is the most re-
markable inherent optical properties of AuNPs and AgNPs.
Colloidal solutions of AuNPs and AgNPs have different

colour in the visible spectrum region when they are well
spaced in comparison with when they are aggregated.
Therefore, designed immunoreactions between the analyte
and the metal NPs can lead to a colour change of the solution.
The aggregations of AuNPs and AgNPs change the colour of
colloidal solution from red to purple-blue and from yellow to
brown respectively allowing the visual detection of the target
analyte [21] (Table 3).

Noble metal NPs as aggregations induced by addition
of target analyte to trigger the change of colour
and DLS of the solution

Based on aggregation of antibody-functionalized NPs coupled
with DLS, sandwich type format (NPs-Ab1-analyte-Ab2-NPs)
metal NPs aggregation assays (NanoDLSays) are used as a

a

b

d

c

e

Fig. 4 Schematic diagram of metal NPs doped or functionalized with
other materials as carriers. (A)MP-ZnO functionalized with TH as carrier
for loading HRP-anti-IgG in electrochemical immunoassay. (a) prepara-
tion procedure of MP-ZnO-TH for loading HRP-anti-IgG, (b) schematic
view of electrochemical sandwich-type electrochemical immunoassay
procedure. Reproduced with permission from Ref. [48]. Copyright
Elsevier, 2013. (B) ZNF@Bi2S3 composites as carrier for loading capture
antibodies in photoelectrochemical (PEC) immunoassay. Reproduced
with permission from Ref. [11]. Copyright Elsevier, 2015. (C) Avidin
functionalized Ru@SiO2 as signal labels in PEC immunoassay. (a) prep-
aration procedure of avidin functionalized Ru@SiO2, (b) schematic view
of PEC immunoassay procedure. Reproduced with permission.

Reproduced with permission from Ref. [12]. Copyright Elsevier, 2018.
(D) Au@BSA functionalized with luminol as carrier for loading Ab2 in
electrochemiluminescence immunoassay. (a) formation of MoS2-PEI-Au
nanocomposites, (b) preparation procedure of luminol-Au@BSA-Ab2
cojugation. Reproduced with permission from Ref. [14]. Copyright
Elsevier, 2017. (E) Ag@BSA functionalized with HRP and Ab2 as carrier
for loading tyramine in multi-enzyme assembly electrochemical immu-
noassay. (a) preparation procedure of HRP-Ag@BSA-Ab2, (b) schematic
view of HRP-tyramine conjugate, (c) schematic view of multi-enzyme
assembly electrochemical immunoassay. Reproduced with permission
from Ref. [10]. Copyright Elsevier, 2013
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model to establish the general immunoassays in the fields of
molecular biology [66, 67], food analysis [68] and clinical
diagnostics [69, 70]. Zhou’s group proposed a NanoDLSay
by using functionalized AuNPs with anti-β-casein mono-
(McAb) and polyclonal (PcAb) antibodies, respectively as

probes for detection of β-casein in bovine milk [68]. After
addition of sample to the AuNPs probes, aggregation of
AuNPs occur red through sandwich type format
immunoreactions. The β-casein triggered AuNPs aggregation
resulted in an obvious colour change from red to blue which

a

b

Fig. 5 Schematic diagram of AuNPs as aggregations induced by target
analyte. a Schematic diagram of AuNPs functionalized by anti-β-casein
McAb and PcAb, respectively as probes in NanoDLSay. Reproduced
with permission from Ref. [68]. Copyright Elsevier, 2014. b Schematic

diagram of AuNPs functionalized by anti-PAP McAb as aggregations in
NanoDLSay. Reproduced with permission from Ref. [69]. Copyright
Elsevier, 2010

Table 3 An overview on metal nanomaterials commonly used as aggregations in immunoassays

Particle type Principle Analytical application Limit of detection Measurement range Reference

AuNPs 1 Dynamic light scattering Protein 5 μg/mL 10-25 μg/mL [66]

AuNPs Dynamic light scattering Human IgG 10 ng/mL 0.05-10 μg/mL [67]

AuNPs Colorimetric method Casein 0.03 μg/mL 0.08-250 μg/mL [68]

AuNPs Enzyme-mediated surface
plasmon resonance

Treponema pallidum 0.98 pg/mL 1 pg/ mL-10 ng/mL [72]

AgNPs Dynamic light scattering Hepatitis B surface antigen 0.005 IU/mL 0.005-1 IU/mL [70]

AuNPs DNA nano-assembly protection ATP 0.75 μM N 2 [73]

Au@AgNPs Colorimetric and surface
enhanced Raman scattering

Alkaline phosphatase activity 0.1 U/L 0.50-10.0 U/L [74]

1 Nanoparticles; 2 Not provided;
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was also monitored with DLS (Fig. 5a). Huo designed a
NanoDLSay by using anti-prostatic acid phosphatase (PAP)
McAb labeled with AuNPs as probes for examine of PAP
(Fig. 5b), a potential biomarker for prostate cancer detection
and diagnosis [69].

Noble metal NPs as aggregations induced by enzyme
to trigger the change of colour and DLS
of the solution

Enzyme-mediated aggregation of AuNPs in plasmonic
ELISA (P-ELISA) has received considerable attention
because it allows a naked-eye detection of target in very
low numbers. Based on HRP-mediated AuNPs aggrega-
tion, Xiong’s group integrated a P-ELISA for highly
sensitive detection of ochratoxin A (OTA) [71]. In this
assay, anti-OTA McAb was used as a coating antibody
and OTA-labeled catalase (CAT) conjugate (OTA-CAT)
was used as competing antigen to consume H2O2.
AuNPs aggregation was triggered through the phenol
polymerization of tyramine (TYR), which was induced
by hydroxyl radicals from HRP-catalyzed H2O2. The

color response generated through AuNPs aggregation
(Fig. 6a). The signal output was amplified by ultrahigh
CAT catalytic activity for H2O2. The designed P-ELISA
exhibit a high sensitivity for OTA quantitation with a
cut-off limit of 150 pg/mL visually. Based on acetylcho-
linesterase (AChE)-mediated aggregation of AuNPs, Nie
and coworkers developed an ultrasensitive P-ELISA for
the detection of total antibodies to T. pallidum [72]. The
immunoreactions of the target antibodies were triggered
by the AChE-catalyzed hydrolysis of acetylthiocholine
to produce thiocholine which changed the surface
charge distribution on the AuNPs and lead to the ag-
glomeration of the AuNPs (Fig. 6b). The induced
changes of DLS allowed the quantitative assay of
T. pallidum antibodies. The sensitivity (0.89 × 10−12 g/
ml) is 1000-fold improvements in sensitivity over a con-
ventional ELISA (1.0 × 10−9 g/ml).

The major limitation of the aggregations based immunoas-
says is ‘autoaggregation’. external factors, such as pH, ionic
strength and temperature may induce undesirable aggregation
of metal nanoparticles, and then result in high backgrounds or
false positive results.

a

b

Fig. 6 Schematic diagram of
enzyme-mediated aggregation of
AuNPs in P-ELISA. a Schematic
diagram of HRP-mediated
AuNPs aggregation for detection
of OTA. Reproduced with
permission from Ref. [71].
Copyright Elsevier, 2017. b
Schematic diagram of AChE-
mediated aggregation of AuNPs
for detection of anti-T. pallidum
antibodies. Reproduced with
permission from Ref. [72].
Copyright Elsevier, 2014

Microchim Acta (2019) 186: 859859 Page 8 of 22



Noble metal NPs serving as in etching
or growth of NPs

The LSPR extinction of AuNPs and AgNPs is strongly depen-
dent upon the diameter, morphology, composition, the sur-
rounding media, and aggregation state of the NPs [16].
Through mediated etching or growth of the NPs, enhanced
signal amplification linearly correlated with the concentra-
tions of analytes can be achieved [73, 75, 76] (Table 4).

Noble metal NPs by etching to change the colour
and DLS of the solution

Based on alkaline phosphatase (ALP)-triggered etching
of gold nanorods (AuNRs), Zhang and coworkers de-
signed a P-ELISA for highly sensitive colorimetric de-
tection of human IgG [55]. As the sandwich-type
immunocomplex formation reaction, the ALP labeled
on the antibody hydrolyzed ascorbic acid 2-phosphate
into ascorbic acid. Subsequently, iodate was reduced to
iodine which etched AuNRs from rod to sphere in
shape, leading to a blue-shift of LSPR (Fig. 7a). The
visual P-ELISA achieved a naked-eye detectable limit of
3 ng/mL of human IgG. Based on CAT-triggered etch-
ing of triangular silver nanoprisms (AgNPRs), Yao and
coworkers designed an AgNPRs etching P-ELISA for
colorimetric determination of Cr (III) in environmental
water samples. H2O2 was used to etch triangular
AgNPRs into spherical AgNPRs, inducing a change in
color and the LSPR wavelength shift of the AgNPRs
reaction solution. The reaction was achieved by control-
ling H2O2 concentration that remains after degradation
by CAT which was labeled with an Ab2. The color
change and the LSPR wavelength shift were closely
correlated with the concentration of Cr (III). The devel-
oped P-ELISA can be used for the quantitative detection
of Cr (III) with a limit of detection (LOD) of 3.13 ng/
mL through the LSPR wavelength shift of the solution.
They also can be used for the visual detection of Cr
(III) with a sensitivity of 6.25 ng/mL indicated by a

color visual change [77]. Also based on AgNPRs etch-
ing principle, Tang’s group proposed a glucose oxidase
(GOx)-triggered P-ELISA for the detection of cancer
biomarkers [78]. In the assay, GOx catalysed oxidation
of glucose to produce H2O2 which acted as an oxidant
to etch the AgNPRs into smaller spherical silver NPs
(Fig. 7b). The reaction was accompanied by substantial
blue shift of the LSPR and change of colour of the
solution. The AgNPRs-etched P-ELISA can be used
for the detection of cancer biomarkers in the concentra-
tions from 10 fg/mL to 100 pg/mL.

Noble metal NPs by growth to change the colour
and DLS of the solution

Based on ALP-mediated growth of AgNPs, Xuan and co-
workers developed a visual P-ELISA for sensitive and rapid
detection of cancer biomarkers in clinical serum samples [79].
In the assay, ALP was bound to the detection antibody and the
AgNPs were integrated with ALP, which hydrolyzed ascorbic
acid-phosphate to produce reductant ascorbic acid.
Subsequently, the ascorbic acid reacted with silver ions to
produce metal silver which nucleated to become silver
nanocrystals. The further growth of silver nanocrystals result-
ed in the formation of larger sized AgNPs (Fig. 8a). As a
consequence, the colorless solution turned yellow along with
the appearance of an absorption band at around 400 nm. The
color intensity of the solution as well as their corresponding
absorbance was proportional to the concentrations of analytes.
Based on GOx-catalyzed growth of AuNPs, Liu and co-
workers described a quantitative colorimetric immunoassay
for ultrasensitive detection of cancer biomarkers [80]. The
surfaces of magnetic beads (MBs) were modified with detec-
tion antibody (Ab2) labeled byGOxwhich can generate H2O2.
After a sandwich immunoreaction on the polystyrene sub-
strate, the captured target pulled down the Ab2-GOx-MBs
conjugates on the substrate, where the GOx catalyzed the ox-
idation of glucose to produce H2O2. The produced H2O2 lead
the growth of AuNPs in the presence of AuCl4

−, resulting the
colour and DLS changes of the solution (Fig. 8b).

Table 4 An overview on the etching and growth of metal NPs in immunoassays

Particle type Principle Targets Limit of detection Measurement range Reference

AuNPs 1 Catalase-catalyzed growth Prostate specific antigen 1.0 × 10−18 g/mL N a [75]

AuNPs EDTA-mediated growth Cancer antigen 7.5 × 10−15 U/mL 0.4-10 × 10−12 U/mL [81]

AuNPs Glucose oxidase -catalyzed growth Cancer biomarkers 93 aM 10-105 fg/mL [80]

AgNPRs 2 Glucose oxidase-mediated Etching Prostate specific antigen 4.1 fg/mL 10 fg/mL-100 pg/mL [78]

AgNPs Alkaline phosphatase -mediated growth Cancer biomarkers 0.23 ng/mL N 3 [79]

AgNPRs Catalase-mediated Etching Cr(III) 3.13 ng/mL 3.13-50 ng/mL [77]

AuNPs Iodine-Mediated Etching Human IgG 100 pg/mL 0.1-10 ng/ mL [55]

1 Nanoparticles; 2 Nanoprism 3 Not provided;
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Noble metal NPs by adjust the formation of AuNPs
to change the colour and DLS of the solution

Based on reduction HAuCl4 to form AuNPs, Huang’s group
fabricated an ethylene diamine tetraacetic acid (EDTA)-trig-
gered assay for detection of disease biomarker and drug [81].
In the assay, the analyte-recognizable antibody was labeled
with EDTAwhich catalyzed decomposition of H2O2 and ad-
justed the growth of H2O2-induced formation of AuNPs with
color variation. Through combining with a sandwich immu-
noassay, a various color AuNPs suspension can be obtained as
a read-out means (Fig. 9). The fabricated sensitive assay al-
lows for naked-eye detection of cancer antigen15-3 and small
molecular drug methamphetamine with high accuracy.

In the growth based immunoassay, the factors including
ageing of the solutions, type of reaction vessel and reaction
scale of the system can interfere and result in false positive
results. The etching based immunoassay is the mainly robust

to the field conditions compared to other approaches such as
aggregations, growth and metallization of NPs.

Noble metal NPs serving as catalysts (enzyme
mimics)

Noble metal NPs itself as catalysts (enzyme mimics)
to catalyze substrates to trigger a detectable signal

Wei and Wang reviewed various NPs with enzyme-like char-
acteristics mainly focused on their kinetics, mechanisms, the
activity tuning of catalysts, as well as applications in numer-
ous fields [82]. Metal NPs not only can enhance the activities
of HRP [83], but also have unique peroxidase-like activity
which can catalytic oxidation of peroxidase substrate
3,3,5,5-tetramethylbenzidine (TMB) with H2O2 [84]. These

a b

Fig. 8 Schematic diagram of AgNPs and AuNPs growth in
immunoassay. a Schematic diagram of ALP-mediated growth of
AgNPs. Reproduced with permission from Ref. [79]. Copyright Royal

Society of Chemistry, 2016. b Schematic diagram of GOx-catalyzed
growth of AuNPs. Reproduced with permission from Ref. [80].
Copyright American Chemical Society, 2014

a b

Fig. 7 Schematic diagram ofAuNRs andAgNPRs etching in P-ELISA. a
Schematic diagram of ALP-triggered etching of AuNRs. Reproduced
with permission from Ref. [55]. Copyright American Chemical Society,

2015. b Schematic diagram of GOx-triggered etching of AgNPRs.
Reproduced with permission from Ref. [78]. Copyright Elsevier, 2015
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findings open up a wide range of new potential applications of
metal NPs in immunoassays.

Metal NPs, such as Pt, Au and Ag NPs have more active
sites on their surface than enzymes, usually just only one site.
Thus, when they are used as enzyme mimics, signals are gen-
erated at many active sites per NP allowing higher signal
amplification [85–89]. Gao and coworkers first reported the
intrinsic peroxidase-like activity of Fe3O4 NPs which
catalysed the reaction of peroxidase substrates to give the
same colour changes as HRP. The catalysis showed typical
Michaelis-Menten kinetics and H2O2, pH and temperature
dependence. Based on this finding, they proposed a novel
immunoassay by using Fe3O4 NPs as functions of capture,
separation and detection tools [90]. Duan and coworkers de-
veloped a nanozyme-strip for the detection of Ebola virus by
using Fe3O4 NPs as a nanozyme probe [91]. The diagnostic
accuracy for clinical samples is comparable with ELISA,
while the performance of the nanozyme-strip is much faster
(within 30 min) and simpler (without need of any equipments
and specialist). The sensitivity (1 ng/ml) is 100-fold more
sensitive than that of traditional lateral flow assay (100 ng/ml).
Syed Rahin Ahmed and coworkers also designed a modified

ELISA for the detection of Influenza Virus by using the
peroxidase-mimic of AuNPs for signal amplification
(Fig. 10). The sensitivity improves to 500-fold higher than
that of commercial virus kits [87].

Noble metal NPs doped or combining with other
nanomaterials as catalysts to catalyze substrates
to trigger a detectable signal

Natural enzymes have critical limitations for immunoassay ap-
plication, such as low stability under harsh temperature and pH
conditions. To overcome these limitations, various nanostruc-
tures have been synthesized as enzyme mimics for signal am-
plification of immunoassay. Nanohybrids with nanostructures
exhibit amazing synergistic effects to enhance the catalytic ac-
tivity that can be used in the field of biosensors and immuno-
assays. The combing nanostructures of metal NPs with other
material as artificial enzymes have been intensively studied for
colorimetric and electrochemical immunoassays [4, 86, 92–95].

For example, Wang and coworkers fabricated a powerful
enzyme mimic by loading Pt nanocatalysts on hydrophobic
carbon nanotubes (CNTs) which were dispersed in graphene

Fig. 9 Schematic diagram of
ELISA-like assay based on
EDTA-triggered AuNPs
formation. Reproduced with
permission from Ref. [81].
Copyright Elsevier, 2017

Fig. 10 Schematic diagram of peroxidase-mimic enzymatic reaction of
AuNPs. a viruses coated on a polystyrene 96-well plate, b antibody-
AuNPs conjugate bound with virus through immunoreactions, c TMB-

H2O2 added and d color changes due to peroxidase-mimic activity of
AuNPs. Reproduced with permission from Ref. [87]. Copyright
WILEY-VCH, 2016
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oxide (GO) nanocolloids. The nanohybrids exhibits greatly
enhanced peroxidase-like catalysis comparable to natural en-
zymes. An electrochemical immunoassay has been success-
fully developed using the nanohybrids GO-CNT–Pt as cata-
lysts [94]. Park’s group synthetized a hybrid structure of
graphene-AuNPs and designed a colorimetric immunoassay
by using antibody conjugated graphene-AuNPs for sensitive
detection of norovirus-like particles in human serum
(Fig. 11a). The sensitivity (92.7 pg/mL) is 112 times higher
than that of a conventional ELISA (10.4 ng/mL) [92]. Park’s
group also produced nanohybrids composed of AuNPs and
CNTs. The AuNP-CNT nanohybrids shows enhanced
peroxidase-like catalytic activity which is used as part of an
ultrasensitive colorimetric test for influenza virus A
(Fig. 11b). The detection limit (3.4 PFU/ml) shows 385 times
lower than that of conventional ELISA (1312 PFU/ml) [93].

Based on N-doped graphene nanoribbons immobilized Fe-
based-Metal-organic frameworks deposited with AuNPs (N-
GNRs-Fe-MOFs@AuNPs) nanocomposites, Tang and co-
workers designed a sensitive sandwich-type electrochemical
immunoassay for the detection of galectin-3 (Gal-3) [15]. A
glassy carbon electrode (GCE) was modified with AuNPs
immobilized by Ab1 against Gal-3. Methylene blue (MB) as
an electron transfer mediators was responsible for electron
production and signal amplification. The Ab2 against Gal-3
was combined with AuPt-MB nanohybrids which displayed
redox-active, uniform morphology and good electrochemical
activity to generate and amplify the electrochemical signal.
The sandwich type format of N-GNRs-Fe-MOFs@AuNPs-
Ab1 coupled with AuPt-MB-Ab2 greatly enhanced the immu-
noassay’s sensitivity (Fig. 12).

Fe3O4 NPs coupling with other nanomaterials, can accel-
erate catalytic activity in various signal amplification strat-
egies in electrochemical immunoassays [1, 96–98]. For ex-
ample, Wei and coworkers fabricated an ultrasensitive
photoelectrochemical (PEC) immunoassay for the detection
of microcystin-LR (MC-LR) based on Fe3O4 NPs/
polydopamine (Fe3O4@PDA) which was used as the label
carrier to conjugate the Ab2 and HRP. CdS/TiO2 nanorod
arrays, having high photo-to-current conversion efficiency
were used as a sensitive PEC material to immobilize anti-
gens. After the specific immunoreaction of MC-LR with its
antibody, the photocurrent change was amplified due to the
synergistically accelerate catalytic activity of Fe3O4 NPs
and HRP on the electrode surface [1]. Wu and coworkers
designed an ultrasensitive electrochemical immunoassay by
using the synergetic effect of dumbbell-like Pt-Fe3O4 NPs
in catalyzing H2O2 reduction for squamous cell carcinoma
antigen (SCC-Ag) [98]. The Ab1 specific for SCC was
immobilized onto nitrogen-doped graphene sheets modified
glassy carbon electrode. The Pt-Fe3O4 NPs were used as
carrier for loading the Ab2 (Fig. 13a). The synergetic effect
of Pt-Fe3O4 NPs results in the high sensitivity of the assay.
Liu’s group also developed a highly sensitive electrochem-
ical immunoassay for detection of chlorpyrifos. The glass
carbon electrode was modified with polydopamine nano-
spheres (PDANSs) as the assay platform. Fe3O4 NPs was
coated on CNTs as the signal label. The flake-like CNTs@f-
Fe3O4 nanocomposites possessing large surface area was
used as carrier for loading abundant of Ab2 and HRP
(Fig. 13b). The high sensitivity of the assay is achieved
attributed to the peroxidase-mimic activity of Fe3O4 [96].

a

b

Fig. 11 Schematic diagram of
AuNPs combining with other
nanomaterials as catalysts. a
Schematic illustration of
graphane-AuNPs nanohybrids as
enhanced peroxidase-like
catalysis in colorimetric
immunoassay. Reproduced with
permission from Ref. [92].
Copyright Elsevier, 2017. b
Schematic illustration of CNTs-
AuNPs nanohybrids as enhanced
peroxidase-like catalysis in
colorimetric test. Reproduced
with permission from Ref. [93].
Copyright Elsevier, 2016
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The enzyme activity of metal NPs is mainly dependent on
particle size. After loading more biomoleculars, the enzyme
activity of metal NPs decrease even disappear. These limit the
usage of metal NPs as enzyme mimics in immunoassays.
Table 5 sumarizes the metal NPs used as catalysts.

Noble metal NPs serving as in synergistic
effects

Metal NPs have synergistic effect for biocompatibility and con-
ductivity to enhance signal transduction producing amplify

a

b

Fig. 13 Schematic diagram of catalytic activity of Fe3O4 NPs combining
with other nanomaterials as catalysts in electrochemical immunoassay. a
Schematic illustration of dumbbell-like Pt-Fe3O4 NPs in catalyzing H2O2

reduction. Reproduced with permission from Ref. [98]. Copyright

Elsevier, 2013. b Schematic illustration of flake-like CNTs@f-Fe3O4

nanocomposites as peroxidase-mimic activity. Reproduced with permis-
sion from Ref. [96]. Copyright Elsevier, 2015

Fig. 12 Schematic diagram of
doped metal NPs nanocomposites
as catalysts in sandwich-type
electrochemical immunoassay.
Reproduced with permission
from Ref. [15]. Copyright
Elsevier, 2017. a Schematic
illustration of N-GNRs-Fe-
MOFs@AuNPs. b Schematic
illustration of AuPt-MB-Ab2
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recognition events with designed signal tags. Association of dif-
ferent metal NPs or metal NPs with other nanocomposits can
escalate the signal amplification effect [100, 101]. For instance,
utilizing the superior photoelectric properties of Zinc Oxide
(ZnO) and the better electron transportation property of AuNP,
the amalgamating ZnO with AuNP can result in more sensitive
response against SK-BR-3 cancer cells [102] and
Carcinoembryonic antibody [103]. Several metal NPs have been
simultaneously employed in one or multiple signal amplification
strategies in an immunoassay [6, 13, 104–129] (Table 6).

Using ZnO-label/cadmium sulfide (CdS)-staining and en-
hanced cathodic preconcentration/in-situ anodic stripping
voltammetry (ASV) analysis of the stained CdS, Qin and co-
workers fabricated an ultrasensitivemetal-labeled amperomet-
ric immunoassay for human IgG and human heart-type fatty-
acid-binding protein. In the assay, the glassy carbon electrode
(GCE) was modified with β-cyclodextrin-graphene sheets
(CD-GS) nanocomposite. BSA, Ab1, antigen and ZnO-
multiwalled carbon nanotubes (MWCNTs) labeled Ab2
(Ab2-ZnO-MWCNTs) were anchored on the CD-GS nano-
composite through an immunoreaction, forming a sandwich-
type immunoelectrode (Ab2-ZnO-MWCNTs/antigen/BSA/
Ab1/CD-GS/GCE). The following in-situ ASV detection
was used for sensitive enhanced immunoassay [6]. Feng and
coworkers fabricated a PEC immunoassay based on TiO2/S-
BiVO4@Ag2S composites by layer-by-layer method for
quantitative detection of the ochratoxin A (OTA). TiO2 has
good photoelectric activity and large surface area. The S-
BiVO4 has porous structure surfaces which is beneficial for
the sufficient in-situ growth of Ag2S NPs with high absorb
visible-light. The cascade band-edge levels of assembled
TiO2/S-BiVO4@Ag2S composites promote ultrafast transfer
of charge and effectively inhibited the recombination of e
−/h + pairs. Consequently, the response of photocurrent was
enhanced and the conversion efficiency of photocurrent was
improved [13]. Based on Graphene/chitosan-ferrocene (GO/
CS-Fc) and Fe3O4/AuNPs as the assay platform, Peng and
coworkers designed a novel electrochemical immunoassay
for the detection of carcinoembryonic antigen (CEA). Due to
possessing high surface area, GO/CS-Fc was used as carrier
for loading a large amount of Ab1. Fe3O4/AuNPs were labeled
with Ab2. After the immunoreactions, a sandwich structure
GO/CS-Fc/Ab1-CEA-Ab2/Fe3O4/AuNPs was formed. The re-
dox cycling efficiency was enhanced by introducing the
Fe3O4/AuNPs/Ab2 onto the electrode surface (Fig. 14).
Based on the redox cycling amplification strategy, the detec-
tion signal (30 μA) is 10-fold increased compared to that
without Fe3O4/Au NPs labeling (3 μA) [130].

Using gold-silver hollow microspheres (AuAgHSs) as la-
bels, Tang and coworkers fabricated a dual signal amplifica-
tion strategy in electrochemical immunoassay for the detec-
tion of carcinoembryonic antigen (CEA used as model ana-
lyte) [106]. The amplification of the electrochemical signalTa
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was based on the catalytic recycling of the product with the aid
of the labeled GOx on the AuAgHSs and the immobilized
prussian blue nanoparticles (PBNPs) on the graphene nano-
sheets. With a sandwich-type immunoassay on the graphene-
based platform, the first signal amplification was introduced
based on the catalytic oxidation of glucose by GOx labeled on
the AuAgHSs. The generated H2O2 was catalytically reduced
by PBNPs immobilized on the electrode with the second am-
plification. Lin and coworkers also designed a dual signal
amplification strategy based electrochemical immunoassay
for ultrasensitive detection of benzo[a]pyrene (BaP). Fe3O4/
polyaniline/Nafion (Fe3O4/PANI) nanocomposites were as-
sembled on the surface of Nafion/ITO as assay platform to
capture BaP. Fe3O4 NPs in the Fe3O4/PANI nanocomposites
served as a mimetic peroxidase to catalyze the reduction of
H2O2, providing a good pathway of electron transfer. Highly-
carbonized spheres (HCS) were used as nanocarrier for load-
ing HPR and Ab2. After competitive immunoreactions be-
tween the BaP on the assay platform and BaP in the sample

solution with the Ab1, multi-HRP-HCS-Ab2 label was capture
by Ab1 on the assay platform (Fig. 15a). The enhanced signal
of catalytic current was achieved by using Fe3O4/PANI nano-
composites as the multiplex binding biomimetic peroxidase
for the reduction of H2O2 [97].

Combing the high loading capacity of MBs for ALP and
ALP-triggered dispersion of aggregated AuNPs, Zhan and co-
workers proposed a dual-signal amplified P-ELISA for sensi-
tive detection of respiratory syncytial virus [113]. In this assay,
MBs were employed as carrier to load large amount of ALP
molecules for signal amplification. The introduction of Zn2+ to
the detection system induced the accelerated dephosphorylation
reaction of ALP to trigger the dispersion of aggregated AuNPs,
resulting in the amplification of the signal (Fig. 15b). The sen-
sitivity of the P-ELISA (0.021 pg/mL) exceed that of conven-
tional ELISA (1 pg/mL) by about 50 times.

Based on both AuNPs and electro-active indicator labeled
rolling circle amplification, Su and coworkers developed a
multiple signal amplification electrochemical immunoassay

Fig. 14 Schematic diagram of
GO/CS-Fc and Fe3O4/AuNPs
based electrochemical
immunosensor. Reproduced with
permission from Ref. [130].
Copyright Elsevier, 2015

ba

Fig. 15 Schematic diagram of different metal NPs in signal dual-
amplification strategy. a Schematic illustration of Fe3O4/PANI
nanocomposites based electrochemical immunoassay. Reproduced with

permission from Ref. [97]. Copyright Elsevier, 2012. b Schematic
illustration of MBs-ALP-triggered AuNPs aggregation in P-ELISA.
Reproduced with permission from Ref. [113]. Copyright Elsevier, 2017
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for the detection of alpha-fetoprotein. In the assay, AuNPswere
used as carrier for loading a large amount of primary DNA, Pt
NPs were used as the carrier of ferrocenemonocarboxylic (Fc)
andHRP. After an immuno-sandwich protocol, the conjugates of
primary DNA and Ab2 acted as a precursor to initiate rolling
circle amplification. The enzymatic signals were amplified by
the catalysis of HRP and Pt NPs with the addition of H2O2.
The multiple amplified signals lead to low detection limit of
alpha-fetoprotein [105]. Based on enzyme-mediated AuNP
growth and silica NPs carrying poly acrylic acid nanospherical
brushes (SiO2@PAA@CAT/GOx), multiple signal amplification
strategy P-ELISAs have been developed [127, 131, 132]. For
example, based on CAT-mediated AuNP growth and silica NPs
carrying poly acrylic acid nanospherical brushes
(SiO2@PAA@CAT), Huang and coworkers designed a P-
ELISA for ultrasensitive detection of disease-related biomarker
ochratoxin A (OTA) by using sandwich formats [131].
SiO2@PAA was not only served as a “CAT container”
(SiO2@PAA@CAT) to generate a signal amplification, but also
used as a regulator to adjust the binding ability between compet-
itive antigens and antibodies because of its relatively greater
volume weight (Fig. 16). The LODs of the proposed P-ELISA

are at least 7 orders lower than that of competitive CAT-based P-
ELISA (by the naked eye) and 8 orders lower than that of HRP-
based conventional ELISA (by the microplate reader), respec-
tively. Based on the same principle, Zhang and coworkers pro-
posed another P-ELISA using SiO2@PAA@GOx nanospherical
brushes for detection of Typical Tetrabromobisphenol A
Derivative and Byproduct [132]. The sensitivity of the method
(3.3 × 10−4 μg/L) is 3 orders of magnitude higher than that using
conventional colorimetric ELISA with the same antibody
(0.7018 μg/L).

Although the synergistic effects of metal NPs can escalate
the signal amplification of the assay. Association of more met-
al NPs or other nanocomposits makes the system of the assay
more complicated.

Conclusions and perspectives

Considerable progresses of noble metal NPs based signal am-
plification strategies in immunoassays have been made in re-
cent years. However, the following significant issues are still
deserved in-depth exploration. (1) Integration of different

b

a

Fig. 16 Schematic diagram of SiO2@PAA@CAT@OTA based P-
ELISA. Reproduced with permission from Ref. [131]. Copyright
American Chemical Society, 2016. a Schematic illustration of

SiO2@PAA@CAT@OTA preparation, b Schematic diagram of P-
ELISA based on CAT-catalyzed growth of AuNPs
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techniques. The integration of metal NPs based signal amplifi-
cation strategies with other techniques, such as nanofluidics,
electrochemistry, molecular biology, biophysics and
multiplexingmethodologies provide possibilities for fabrication
of new ultrasensitive immunoassay. (2) Combining of multiple
signal amplification strategies. The combination of different
signal amplification strategies in one immunoassay is an avenue
for development of new ultrasensitive immunoassay. (3)
Generation of new nanohybrids. To generate new nanohybrids
with enhanced catalytic activity, higher stability and lower tox-
icity for signal amplification strategy applications is also highly
desirable. (4) Synergy research for noble metal NPs each other
or with other nanomaterials. The synergy research both in ex-
periments and theories is needed for fundamental understand-
ing and better applications of noble metal NPs in signal ampli-
fication strategy. Using synergies of noble metal NPs each other
or with other nanomaterials should be tailored for the design of
novel signal amplification strategy.
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