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Abstract
Boronic acid-doped carbon nanoparticles were prepared and are shown to undergo aggregation induced emission (AIE).
The nanoparticle composite is a viable fluorescent probe for glucose determination by using the RGB technique and a
smartphone. The structure and the chemical composition of the doped carbon nanoparticles were confirmed by SEM,
TEM, FTIR and UV-vis spectroscopy. The combination of 4-carboxyphenylboronic acid with o-phenylenediamine and
rhodamine B endowed the hybrid with high fluorescence intensity (quantum yield 46%). Compared with conventional
two-step preparation of boronic acid-based fluorescent probes for glucose, the present one step synthesis strategy is
simpler and more effective. The addition of glucose causes the formation of covalent bonds between the cis-diols group
of glucose molecules and boronic acid moiety. Fluorescent intensity can be quantified using dual wavelengths simulta-
neously, where both increases, as the target analytes bind to the bronic acid. These variations was monitored by the
smartphone camera, and the green channel intensities of the colored images were processed by using the RGB option of
a smartphone. The assay works in the 32 μM to 2 mM glucose concentration range and has an 8 μM detection limit. The
method was successfully used for the assay of glucose in diluted human serum.
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Introduction

More than 117 million people suffer from diabetes around
the world, and it was forecast that the figure will reach
300 million by 2025 [1, 2]. Reliable methods for measur-
ing blood glucose level is essential to manage diabetes
progression and treatment [3]. The most common methods
for glucose monitoring are enzyme-based [4]. In these

sensors, glucose oxidase (GOx) oxidizes glucose and pro-
duces hydrogen peroxide, which leads to indirectly mea-
suring of glucose level by monitoring the redox reaction
of hydrogen peroxide [5]. However, the high cost and
instability of enzyme limit the application of enzyme-
based glucose sensors [6]. The other method for determi-
nation of glucose is a system without the enzyme by de-
signing and synthesizing probe for glucose [7]. Compared
with the enzymatic glucose sensor, the non-enzymatic
system offers several advantages such as higher stability,
lower cost, and easier preparation [8].

The diol compounds and boronic acid has been applied
as a chemical receptors and molecular recognition tool
instead of GOx bio-receptors in non-enzymatic glucose
sensor [9]. Boronic acid has a high affinity to reaction
with compounds containing 1,2-diols or 1,3-diols through
a reversible ester formation [10]. Various detection
methods such as electrochemical [11], surface enhanced
raman spectroscopy (SERS) [12], colorimetric [13] and
fluorescence [14] was developed based on boronate
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affinity for non-enzymatic glucose detection. Among
various measuring method, fluorescence detection is
more attractive because provides advantages of high
sensitivity, simplicity of operation and non-invasiveness
[15]. In this regard, it is important to develop an accu-
rate non-enzymatic fluorescent strategy as alternative for
the detection of glucose. For instance, Naaz et al. de-
signed fluorescent silver nanoclusters anchored with 3-
aminophenyl boronic acid (AgNCs-a-APBA) for precise
determination of blood glucose level [16]. In this strat-
egy, the hydrogen bonding-driven aggregation of APBA
with AgNCs enhance the fluorescence intensity of
AgNCs. Upon addition of glucose, disaggregation of
the nanoclusters triggered and photoluminescence (PL)
intensity decreased. Most of fluorescent platform for
nonenzymatic glucose sensing is based on the two-step
fabrication of nanoparticle [9]. However, we designed
bronic acid fluorescence probe through one step hydro-
thermal process.

Portable analytical platform has offered on-the-spot
sample detection as a potential alternative to conven-
tional analytical methodologies. These new methodolo-
gies are specially designed to provide analytical infor-
mation in a simple, inexpensive and rapid way for in-
situ analysis [17]. With the increase in the widespread
smartphone popularity, mobile point-of-care technology
(MPOCT) has shown promise in meeting the needs of
decentralized laboratory testing [18]. Pocket-size
smartphones as a handheld device camera enables image
acquisition with the high-resolution. The images ac-
quired using this smartphone can be used for quantifi-
cation of target analytes based on the characteristics
such as color and overall fluorescence intensity [19].

In this study, we describe a smartphone based meth-
od with low cost and high portability to detect glucose
in blood serum sample. We synthesized carbon nanopar-
ticle containing of boric acid as a new fluorescent re-
ceptor for glucose assay applications. The carbon nano-
particles are directly functionalized by boronic acids
(binding sites) in the one step, without need to addition-
al surface modification. The glucose selectively lead to
the aggregation of the BCNP peobe based on the cova-
lent binding between the cis-diols of glucose and boron-
ic acid [20], resulting in a linear fluorescence increase
in the range of 0.032–2 mM with detection limit of
8 μM. The overall work is illustrated in Scheme 1,
which depicts the applications of the as synthesized
BCNP probe for glucose detection using smartphone
based platform. Besides, the designed fluorescent
nanoprobe was applied for quantitative detection of glu-
cose in the serum sample. Thus, it has great promise as
a facile practical platform for clinical glucose sensing.

Experimental

Materials and instruments

4-Carboxyphenylboronic acid (4-CPBA), o-phenylenediamine
(OPD) and rhodamine B (Rh B), glucose, ascorbic acid (AA),
dopamine (DA), uric acid (UA), glucose, L-glutathione (GSH),
KCl, NaCl, CaCl2, MgCl2, alanine (Ala), arginine (Ag), cysteine
(Cys), homocysteine (H-Cys), tryptophan (Thr), proline (Pro)
and serine (Ser) were purchased from Sigma Aldrich (United
States, http://www.sigma-aldrich.com/). All the reagents were
used without any further purification. Deionized water from a
Milli-Q Plus system (Millipore) was used in all solutions and
experiment.

The fluorescence spectra and the UV-Vis absorption spec-
tra were measured at room temperature on a spectrophotome-
ter Varian Cary Eclipse Fluorescence Spectrophotometer and
a SPECTROD 250-analytikjena spectrophotometer, respec-
tively. The morphology of product was characterized by scan-
ning electron microscope (SEM) on a MIRA3 TESCAN HV:
20.0 KV from Czech Republic, transmission electron micro-
scope (TEM) and the Fourier transform infrared (FTIR) spec-
trum was recorded on a Vector-22 BRUKER spectrophotom-
eter (Switzerland). All images were acquired using the HTC
(ONE SV) from Apple (unless otherwise specified) mounted
in designed device.

Synthesis of fluorescent BCNP

The carbon nanoparticles prepared from phenylbronic acid, rho-
damine B and OPD as the monomer. In a typical procedure,
14 mg OPDwas dissolved in 10 mLNaOH (0.05M) and stirred
for 30 min. Afterward, 10 mL of 4-carboxyphenylboronic acid
(0.08 mM) was added to above solution with continuous stirring
for 2 h at room temperature. Then, 5 mL of rhodamine B was
poured into the solution. After 30 min stirring, the mixture was
transferred to the 50 mL Teflon-lined stainless-steel autoclave
and heated hydrothermally at 150 °C for 5 h. After cooled down
to room temperature, the product was centrifuged, and the resid-
ual precipitate was removed and then the supernatant was kept at
4 °C for further use.

Quantum yields

The quantum yield (Q) of BCNP was determined by using
fluorescein in 0.1 M NaOH as the standard sample and calcu-
lated according to the following equation:

Q ¼ QR* Grad=GradRð Þ* n2=n2R
� �

Where Q is the quantum yield, Grad is gradient from the
plot of integrated fluorescence intensity vs absorbance, n is the
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refractive index of the solvent (1.33 for water). The subscript
R refers to the reference with a known quantum yield.

Procedures for glucose sensing

The mobile phone-based system for luminescence measure-
ments was designed using rhinoceros 5 and 3D printed com-
mercially (3d print industrial fdm ZBOT i2s). The custom
designed device is comprised of a 3D-printed holder contain-
ing an LED as a light source, two electric batteries as a power
source and a button cell for keeping the sample solution. The
blue LED was selected as the light source to quantify the
glucose level. 300 μL of BCNP were placed in a series of
microtubes. Then, different concentration of glucose was
added. The mixtures were transferred to quartz fluorescent
cuvette. Then fluorescence spectra and images were recorded.
The image analysis was performed through RGB analysis
software installed on smartphone. As the concentration of glu-
cose increased the PL intensity of both peak at 450 and 550
increased. As well as, the variation in brightness corresponds
to increasing concentrations of glucose. Same procedure was
followed for plasma serum samples.

Selectivity of BCNP to glucose determination

GSH, DA, UA, K+, Na+, Mg2+, Ca2+, Ala, Ag, Cys, H-Cys,
Thr, Pro and Ser were selected to evaluate the selectivity of
BCNP toward glucose sensing. Each of BCNP solutions in
1.5 mL tubes, containing various interference were incubated
for 2 h at room temperature, and their fluorescence responses

were measured. The responses to glucose and the interference
on BCNP were compared.

Determination of glucose in serum samples

The fresh human serum samples with different concentration
of glucose were collected from the local hospital. All the
blood samples were obtained through venipuncture and nec-
essary processes were accomplished to remove large mole-
cules and proteins to get the serum samples. The original
serum samples were diluted in order to guarantee the glucose
content in samples was in the range of our established stan-
dard curve. 10 μL of the serum samples was added to 300 μL
of stock solution of BCNP probe. After 30 min, the fluores-
cence images were recorded under excitation of blue LED
lamp using smartphone. The obtained results were compared
with clinical laboratory analysis as the standard method using
local hospital-used instrument (Biotecnica BT 4500).

Results and discussion

Characterizations of BCNP

The BCNP was synthesized by a one step and facile hydro-
thermal method. The morphology and size of BCNP was
characterized by taking of SEM and TEM images
(Fig. 1a, b). It shows that BCNP are spherical with an average
size of about 30 nm. The molecular structure of OPD, 4-
CPBA and BCNP was also investigated by FT-IR spectra.

Glucose

Weak PL Strong  PL
3D-printed holder 

Smartphone 

Cuvette 

Battery

Aggregation-induced emission (AIE)BCNPs  probe

LED

Scheme 1 Schematic illustration of fluorometric determination of glucose based on Aggregation-Induced Emission (AIE)
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As shown in Fig. 1c, the peaks at 3378 cm−1 and 3364 cm−1 in
the spectrum of OPD can be assigned to asymmetrical and
symmetrical N–H stretching vibrations. The two peaks at
1457 cm−1 and 1497 cm−1 are the characteristic bands of the
C=C stretching vibrations for benzenoid rings, while the peaks
at 1057 cm−1, 1150 cm−1 and 1271 cm−1 are due to C–N
stretching vibrations (curve a) [21]. In the FT-IR spectrum of
4-CPBA the broad absorption band in the range of 3000 and
3300 cm−1 and the peak at 1679 cm−1 was attributed to O–H
and C=O stretching of carboxylic acid group, respectively.
The absorption band in 1600–1400 cm−1 region was assigned
to C=C framework vibration of benzene ring; the peak at
1333 cm−1 is due to the B–O stretching vibration of boroxol
bond in the 4-CPBA. Also, the band in the 1300–1000 cm−1

region was attributed to C–O stretching of alkoxy bond (curve
b) [22]. The peak at 1591 cm−1 is assigned to C=O carboxyl
group from the rhodamine B molecule (curve c) [23]. The IR

spectrum of synthesized BCNP is different from the mono-
mers, in which a new absorption at 1417 cm−1 was observed
corresponding to the stretching vibration of C–N amide group
and the broad peak at 1008 cm−1 is related to the C–B
stretching vibration (curve d). Furthermore, the disappearance
or decrease of other absorption peaks mean that the carbon
was formed successfully.

The XPS measurement was conducted to investigate the
elemental composition and chemical bonding state. The XPS
survey spectrum of BCNP comprises the peaks corresponding
to carbon (59.6.5%), oxygen (24.8%), nitrogen (1.0%) and
boron (0.4%) elements (Fig. 2a). The high resolution spectrum
of B 1 s demonstrated two peaks with binding energies of
192.07 and 192.77 eV, corresponding to B–C and B–O (Fig.
2b) [24]. The high resolution C 1 s spectrum (Fig. 2c) shows
the presence of carboxylic groups at 288.17 as well as C–O/
C–N and C=C bonds at 285.27 and 284.47, respectively. The
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Fig. 1 (A, B) SEM and TEM
images of BCNP, (C) FTIR
spectrum of (a) OPD, (b) 4-
CPBA, (c) Rh B, (d) BCNP
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N 1 s spectrum shows two obvious peaks at 399.27 and
400.07 eV, giving two components for N–(C)3 and N–H
(Fig. 2d) [25].

The optical properties of BCNP

As shown in the UV-Vis spectrum in Fig. 3a, the BCNP show
the obvious absorption bands at 427 nm. While, the absorp-
tion spectrum of RhB features a typical band at 554 nm char-
acteristic to the S0-S1 transitions in the xanthene ring [26]
(Fig. 3b). In comparison to RhB organic dye the absorption
spectrum of BCNPwas broader and exhibited the 127 nm blue
shift, that is, from λ = 554 to 427 nm. As well as, Fig. 3b
displays the recorded PL spectra of RhB and BCNP under
the same excitation. Furthermore, as illustrated about 7 nm
blue shift (from λ = 580 to 573 nm) have observed in the PL
spectrum of BCNP compared to the RhB alone. This is anoth-
er evidence of the successful formation of the carbon nano-
particle. The BCNP solution was bright orange under visible
light, but exhibits bright yellow luminescence under blue LED
lamp irradiation (the inset in Fig. 3a). Figure 3a shows the PL

emission spectra of the BCNP with different excitation wave-
lengths from 370 to 450 nm. It can be seen that the PL emis-
sion wavelength firstly red-shift with varying excitation wave-
lengths from 370 to 410 nm and then blue-shift from 430 to
450 nm, which indicates the excitation-dependent fluores-
cence behavior of BCNP. The effect of pH on fluorescence
response of the nanocomposite was investigated. As shown in
Fig. 3c, the fluorescence intensities of BCNP remained nearly
constant at a pH range of 6–12.

Analytical performance of nanoprobe for detection
of glucose

Prior to the evaluation of the assay sensitivity, the effect of
reaction time between glucose and BCNP probe on the fluo-
rescence response of the nanoprobe was investigated. In the
presence of 0.05mMglucose, the fluorescence intensities, I540
and I640, increased with increasing of reaction time and then
reached constant when the reaction time was up to 30 min,
indicating that it was a suitable reaction time for the fluores-
cence enhancing of the BCNP probe by glucose (Fig. 3d). So,
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Fig. 2 XPS spectrum of boron-
doped CNPs: (a) survey XPS
spectrum with atomic content. (b)
High-resolution B 1 s spectrum.
(c) High-resolution C 1 s spec-
trum. (d) High resolution N 1 s
spectrum
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the reaction time 30 min is used as the optimized detection
time throughout the following works. Figure 4b and inserted
calibration plot shows the fluorescent spectra of the BCNP
probe in the presence of different concentration of glucose.
Upon the addition of glucose, the fluorescence intensities of
the probe was gradually increased. The fluorometric signal
acquired at excitation/emission wavelengths of 450/
540,640 nm. Then, we evaluated the analytical performance
of nano-based fluorescent assay under blue LED lamp irradi-
ation after reacted with various concentration of glucose on
designed smartphone based-device. As shown in Fig. 4c, the
corresponding fluorescence emission increased with the in-
creasing glucose, and a good linear correlation between green
color intensity and glucose concentration was obtained within
the dynamic range from 32 μM to 2 mM with a correlation
coefficient (r) of 0.9931 (Fig. 4d). A limit of detection (LOD)
of 8 μM is achieved for glucose detection, which, is much
lower than the normal glucose level in human blood (3.6–
6.6 mM) [27]. The analytical properties of this assay was

compared with other fluorescence based glucose sensing
methods. As shown in Table 1 the detection limit and linear
concentration range of the presented method is comparable or
better than reported values in literature.

Selectivity and stability of BCNP probe
toward glucose detection

Selectivity is a very important factor to be considered for devel-
oping and applications of detection method in biomedical sam-
ples. Accordingly, we tested the selectivity of fluorescence strat-
egy with various interference substances. Figure 4a, presents the
interference effect of some biological molecules, saccharides,
common inorganic ions and amino acids including GSH, DA,
UA, catechol, fructose, maltose, K+, Na+, Mg2+, Ca2+, Ala, Ag,
Cys, H-Cys, Thr, Pro and Ser on the nanoprobe response. An
obvious selective response was observed for glucose and no
interference was found for all tested compounds at reasonable
concentrations. Based on these results, our sensing strategy based
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14 Page 6 of 10 Microchim Acta (2020) 187: 14



on BCNP probe can be applied as a selective assay for glucose
determination without significant interference. In order to exam-
ine the stability of the glucose BCNP probe, the fluorescent
spectra were checked after the probe was stored for 10, 20, and
30 days. The results indicated that 94.9% of the fluorescent in-
tensity was maintained after 10 days, and 93.7%was maintained
after a 20 days. Yet, after a month, 90.8% of the fluorescent
intensity was maintained, indicating the excellent stability of
the nanoprobe.

Glucose analysis in real samples

To evaluate the practical application of the sensing strategy,
the detection of glucose in blood serum samples was per-
formed. As shown in Table 2, the concentrations of glucose
in human serum samples are lot of matching with the results
measured by a blood sugar analyzer in hospital. As can be
seen the recoveries based on our method in the real samples
are between 95.00 and 102.66%, as well as, the relative
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Fig. 4 (A) Selectivity of sensing
system towards glucose and other
biological relevant reactive
species. Experimental conditions:
100 μM of glucose and other
interference including (a)
dopamine (DA), (b) glutathione
(Reduced) (GSH), (c) AA, (d)
urine acid (UA), (e) catechol (f)
fructose (g) maltose (h) homo-
cysteine, (i) arginine, (j) cysteine,
(k) proline, (l) creatinine, (m)
serine; (n) alanine, (o) L-
therionine, (p) Hg2+, (q)Mg2+, (r)
K+, (s) Ca2+, (t) Na+, (u) glucose.
(F0 and F are the fluorescence
intensities of PNF in the absence
and presence of ascorbic acid, re-
spectively). (B) Fluorescence re-
sponses of PNF upon addition of
various concentrations of glucose
0, 0.032, 0.05, 0.072, 0.162,
0.364, 0.82, and 2 mM (from 1 to
7). (C) Fluorescence response of
the BCNP probe to various con-
centrations of glucose analyzed
by the smartphone, and (D) The
linear calibration plot of green
color intensity versus the concen-
tration of glucose

Table 1 Comparison of
analytical properties of different
fluorescent systems for glucose
sensing

Probes Linear range (mM) Detection limit (μM) Reference

CdTe/ZnTe/ZnS QDs 0.4–20 300 [28]

graphene QDs 0.1–10 5.0 [20]

CdS/polymer QDs 1–25 – [29]

PNIPAM microgels 5–100 – [30]

AuNCs 0.5–10 100 [31]

RGO-PBA 2–75 – [32]

COP-1 and COP-2 0–20 600 and 2000 [33]

BCNP probe 0.032–2 8 this work
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standard deviations (RSD) are not higher than 4.84%. The
aforementioned results confirmed applicability of the detec-
tion system for glucose sensing in biological samples.

Fluorescence sensing mechanism of the BCNP probe
toward glucose detection

On the basis of the previous studies and our above experimental
data, boronic acid has a high affinity to reaction with compounds

containing 1,2-diols or 1,3-diols through a reversible ester forma-
tion [31]. So, the fluorescent compound containing boronic acid
derivatives can construct the fluorescent probe for sensing sac-
charides.We employed TEM characterization to investigate fluo-
rescent mechanism of glucose sensing. As shown in Fig. 5a, b
upon interaction of BCNPwith 1mMglucose, the aggregation of
BCNP was observed, suggesting aggregation-induced emission
(AIE) mechanism. Since the discovery of AIE phenomenon in
2001, tetraphenylethylene (TPE) and its derivatives featuring typ-
ical AIE characteristics have been widely used tomake up highly
emissive fluorescent materials for optical sensing applications
[34]. AIE is an abnormal phenomenon, in which, the organic
luminophores with freely-rotating groups consume energy and
promote radiation-less decay after excitation in solution, howev-
er, when these luminophores aggregate, the free rotation of those
groups is restricted and cause to the enhancement of the
photoluminescence efficiency [35]. In our study, the linkage of
glucose to bronic acid moieties of BCNP, led to blocks the

Table 2 Detection of glucose in human serum samples

Sample Content Found Recovery RSD (n = 3)
(mmol/L) (mmol/L) (%) (%)

1 0.05 0.048 96 3.61

2 0.15 0.154 103 4.84

3 0.25 0.256 103 2.49

4 0.50 0.475 95 3.92

Fig. 5 TEM image of the BCNP
(a) before and (b) after treatment
with 1 mM glucose, AFM image
of the BCNP (c) before and (d)
after treatment with 1 mM
glucose
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nonradiative relaxation channels andmake the luminescence cen-
ter highly emissive. AFM images also gave direct information on
the aggregation of the BCNP, after addition of glucose (1 mM)
the topographic heights of BCNP increased (Fig. 5c, d),
confirming the working mechanism shown in Scheme 1.

Conclusion

We have demonstrated a novel fluorescence carbon nanopar-
ticle with high quantum yield integrated with smartphone for
detection of glucose with the advantages of high sensitivity
and selectivity. The probe was based on the combination of 4-
CPBA, OPD and rhodamine B, and the green fluorescence of
BCNP probe can be enhanced by increasing of glucose con-
centration. We further developed a cost-effective, portable
POC device to detect the luminescence of BCNP probe and
estimate glucose concentration. The method was used for se-
lective glucose sensing at concentration range 32μM to 2mM
with detection limit of 8 μM. Furthermore, the application of
the assay for glucose measuring in serum samples was evalu-
ated and the results were compared to standard method. The
presence of two cis-diol units in glucose with the boronic acid
groups on the BCNP surfaces created structurally rigid
BCNP-glucose aggregates, resulting in a great boost in the
fluorescent intensity. The smartphone based POC device func-
tions through image analysis based methods to carry detection
of glucose using RGB software analysis. In addition, the novel
smartphone-based method meets the requirement of rapid and
convenient to achieve glucose detection in serum sample and
avoid complicated operations and expensive instruments. The
current fluorescent strategies may be extended to apply the
portable analysis in the biological, chemical and environmen-
tal fields and might hold great promise in nanomedicine.
However, the irreversibility of fluorescence response is a chal-
lenge which limits the wider applicability of this method for
online monitoring.
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