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Hollow Prussian Blue nanocubes as peroxidase mimetic and enzyme
carriers for colorimetric determination of ethanol
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Abstract
The peroxidase-like activity of hollow Prussian Blue nanocubes (hPBNCs) is used, in combination with the enzyme alcohol
oxidase (AOx), in a colorimetric ethanol assay. Different from other nanozymes, the large cavity structure of the hPBNCs
provides a larger surface and more binding sites for AOx to be bound on their surface or in the pores. This extremely enhances
the sensitivity of the assay system. In the presence of ethanol, AOx is capable of catalyzing the oxidation of alcohols to aldehydes,
accompanied by the generation of hydrogen peroxide (H2O2). The hPBNCs act as peroxidase mimics and then can catalyze the
oxidation of 3,3′5,5′-tetramethylbenzidine (TMB) by H2O2, resulting in a color change of the solution from colorless to blue with
a strong absorption at 652 nm. The lower detection limit for ethanol is 1.41 μg∙mL−1. Due to the high catalytic activity of
hPBNCs in weakly acidic and neutral solutions, the system was successfully applied to the determination of ethanol in mice
blood. This is critically important for studying the alcohol consumption and monitoring the ethanol toxicokinetics.
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Introduction

Alcohol over-consumption has been reported to lead to variety of
diseases, disorders and many types of injury, which would result
in approximately 2.5 million deaths each year [1–3]. Owing to
the significance of its toxicokinetics, the accurate and sensitive
determination of alcohol level in vivo is of particular interest,
especially its concentration dynamics. To measure alcohol con-
sumption, different methods for detection of the concentration of
alcohol in blood, urine, breath, sweat, saliva or other body fluids
have been demonstrated [4–7], in which blood alcohol concen-
tration is recognized as the most widely used indicator of alcohol

intoxication. Thus, sensitive detection and quantification of
alcohol in blood has important significance for diagnostic
and therapeutic implications. For this purpose, a series of
methods and techniques for accurate and precise determi-
nation of alcohol level in blood have been employed,
including gas chromatography [8], liquid chromatography
[9], spectroscopy [10–14], and electrochemical analysis
[15, 16].

Among these methods, ethanol conversion enzymes based
biosensors for detection of alcohol concentration in blood are
widely developed due to their simplicity, low cost, rapidity,
high sensitivity and selectivity [17]. With this motivation,
ethanol-sensitive biosensors [18] were constructed using alco-
hol oxidase (AOx) or alcohol dehydrogenase (ADH) as the
bio-recognition components of the biosensors. Compared
with the commonly used ADH, AOx can irreversibly oxidize
primary alcohol and contains the flavin-based co-factor which
is avidly associated with the redox center of the enzyme, mak-
ing it more pertinent for biosensor design [18, 19]. In this way,
hydrogen peroxide (H2O2) generated in situ from the AOx
catalysed oxidation of alcohol in the presence of oxygen.
With the development of H2O2 sensors, various electrochem-
ical methods as well as fluorescent or colorimetic approaches
based on synthetic probes and enzymes have been developed
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to monitor the alcohol concentration in blood via the detection
of the produced H2O2 [18, 20–22].

Nanomaterials as peroxidase mimics used to detect H2O2

have received abundant attention [23] since the first
peroxidase-like activity of Fe3O4 nanoparticles was reported
[24]. Various nanomaterials, including carbon-based
nanomaterials [25], metal organic frameworks [26] as well
as metallic nanocomposites [27] have been demonstrated to
exhibit peroxidase-like activity. Prussian Blue based
nanomaterials (PBNMs), as a prototype for transition metal
hexacyanoferrates, have also been shown to possess the intrin-
sic peroxidase-like activity and been employed as the
electron-transfer mediators in electrochemical sensors for
H2O2 detection [28]. Although PBNMs provide a high stabil-
ity and an excellent peroxidase-like activity, colorimetric ap-
proaches based on PBNMs are still rare [29, 30].

Herein, utilizing the peroxidase-like activity of hollow
Prussian Blue nanocubes (hPBNCs) [30] and AOx, a novel
colorimetric assay for sensitively and accurately monitoring
ethanol concentration in blood is developed (Fig. 1). In the
presence of alcohols, AOx is capable of catalyzing the oxida-
tion of alcohols to aldehydes, accompanied by the generation
of H2O2. With the peroxidase-like activity, hPBNCs then can
catalyze the oxidation of 3,3′5,5′-tetramethylbenzidine (TMB)
by the produced H2O2, resulting in a color change of the
solution from colorless to blue. Critically, different from other

PBNMs, the large cavity structure of the hPBNCs provides a
higher surface area and more binding sites for AOx to be
bound on the surface of hPBNCs or encapsulated in the pores
of hPBNCs. This makes hPBNCs as suitable carriers for AOx.
With the sensitivity of AOx to alcohols and high catalytic
activity of hPBNCs in physiological conditions, our assay
can differentiate well between alcohols and other biomole-
cules. And the assay is appropriate for continuous ethanol
monitoring in blood. To the best of our knowledge, this is
the first report that hPBNC is used as both enzyme carrier
and peroxidase-mimic for colorimetric sensing of ethanol.

Experimental

Chemicals and materials

Polyvinylpyrrolidone (PVP, MW 58000) and ascorbic acid
(99%) were bought from J&K Chemical Ltd. (http://www.
jkchemical.com). Potassium ferricyanide (K3[Fe(CN6)], ≥99.
5%) was supplied by Tianjin Bodi Chemical Co., Ltd.
(Tianjin, China, http://bdhg.company.lookchem.cn).
Hydrochloric acid (HCl, 36%–38%), ethanol (≥99.7%),
Isopropyl alcohol (≥99.7%), butanol (≥99.5%) and methanol
(≥99.5%) were obtained from Sinopharm Chemical Reagent
Co., Ltd. (China, http://www.reagent.com.cn). Alcohol
oxidase from Pichia pastoris (AOx, 26 U∙mg−1 protein) and
glucose (≥99.5%) were bought from Sigma-Aldrich (St.
Louis, MO, USA, https://www.sigmaaldrich.com). 3,3′,5,5′-
tetramethylbenzidine (TMB, >98%) and α-lactose
monohydrate (>99%) were supplied by Adamas-beta
(Shanghai, China, http://www.adamas-beta.com). Dopamine
hydrochloride and Peroxidase from horseradish (HRP,
>200 U∙mg−1) were purchased from Aladdin Ltd. (Shanghai,
China, http://www.aladdin-e.com). Hydrogen peroxide
(H2O2, ≥30%) was obtained from Beijing Chemicals
(Beijing, China, http://www.crc-bj.com). All the reagents in
our study were not further purified and used as received.

Instruments

Powder X-ray diffraction (XRD) patterns were recorded with
a Bruker AXS D8 Advance diffractometer (Cu-Kα radiation,
λ = 1.5406 Å) (Germany, https://www.bruker.com/). The TU-
1950 (Beijing Purkinje General Instrument Co., Ltd., http://
www.pgeneral.com/) spectrophotometer was employed to
monitor the UV-Vis absorption spectra. Transmission electron
microscopy (TEM) images were taken using a Hitachi H-
7650B microscope operating at 200 kV (Japan, https://www.
hitachi-hightech.com/global/). Fourier transform infrared
spectroscopy (FTIR) analysis was performed on a BRUKER
Vertex 70 FTIR sp7ectrometer (Germany, https://www.bruker.
com/).

Fig. 1 a Schematic illustration of colorimetric assay for tracking ethanol
concentrations by using peroxidase-like activity of hPBNCs and the ethanol
conversion enzyme, AOx. b The principle of the assay for ethanol detection.
In the presence of ethanol, AOx is capable of catalyzing the oxidation of
ethanol to aldehyde, accompanied by the generation of H2O2. hPBNCs then
can oxidize TMB to the oxidized TMB by the produced H2O2 to induce a
color change of the solution from colorless to blue>

Microchim Acta (2019) 186: 738738 Page 2 of 8

http://www.jkchemical.com
http://www.jkchemical.com
http://bdhg.company.lookchem.cn
http://www.reagent.com.cn
https://www.sigmaaldrich.com
http://www.adamas-beta.com
http://www.aladdin-e.com
http://www.crc-bj.com
https://www.bruker.com/
http://www.pgeneral.com/
http://www.pgeneral.com/
https://www.hitachi-hightech.com/global/
https://www.hitachi-hightech.com/global/
https://www.bruker.com/
https://www.bruker.com/


Synthesis of hollow Prussian blue nanocubes
(hPBNCs)

Firstly, 132 mg of K3[Fe(CN)6] and 3.0 g of PVP were
added to the HCl solution (0.01 M, 40 mL) under stirring.
After the solution became clear, the solution was heated at
80 °C for 24 h in a stainless autoclave. The precipitates (the
mesoporous Prussian Blue nanoparticles, MPBs) were col-
lected by centrifugation (12,000 rpm, 8 min) and washed
twice with distilled water. Then, the MPBs solution
(1 mg∙mL−1) was mixed with 5 mg∙mL−1 of PVP under
magnetic stirring. Following stirring for 3 h, the mixture
was put into the stainless autoclave and heated at 140 °C
for 4 h. After centrifugation (12,000 rpm, 8 min), the pre-
cipitates were washed repeatedly with distilled water.

Characterization of interaction of hPBNCs with AOx

A 500 μL amount of AOx solution (1.2 mg∙mL−1,
31.2 U∙mL−1) was mixed with 125 μg of hPBNCs, and
then incubated for 60 min at 37 °C. After that, the mixture
was centrifuged and washed by the phosphate buffered
saline (PBS) buffer. The supernatant was all collected
and used for UV/vis absorbance detection. The AOx
bound efficiency was calculated from the different absor-
bance intensities at 276 nm between the original AOx
solution and the supernatant, which was determined to
be 3.0 mg∙mg−1 hPBNCs (77.7 U∙mg−1 hPBNCs).

Determination of ethanol

For the detection of ethanol, 4 μL TMB (42 mM), 4 μL
hPBNCs-AOx (the concentration of hPBNCs was
500 μg∙mL−1), and 4 μL different concentrations of ethanol
were successively added into 388 μL PBS buffer (pH 7.0).
The mixture solution was allowed to be incubated at room
temperature for 20 min to enable complete oxidation of alco-
hols by AOx, followed by the spectral measurements. To de-
tect the ethanol in the presence of serum, the mice serum was
diluted 1:125 in PBS (pH 7.0) and used in one day after col-
lection. Then the same experiments were carried out using the
diluted serum instead of PBS.

Animal experiment

Adult male C57BL6/J mice, weighing between 20 g and
25 g, were purchased from the Experimental Animal
Center of the Chinese Academy of Medical Sciences.
The animal handing procedures were carried out accor-
dance with the guidelines of the Hebei committee for care
and use of laboratory animals, and were approved by the
Animal Experimentation Ethics Committee of the Hebei
Medical University. The mice were raised in a germ-free

environment with free access to food and water. The mice,
6 per group, were treated intragastrically with different
concentrations of ethanol (2 μL∙g−1 B.W., 4 μL∙g−1

B.W., 8 μL∙g−1 B.W., 16 μL∙g−1 B.W.). Blood was col-
lected at different time points after intragastric adminis-
tration and centrifuged to obtain plasma for the detection
of ethanol concentration. When detected, the mice serum
was diluted 1:125 in PBS (pH 7.0).

Results and discussion

Synthesis and characterization of the hPBNCs
and hPBNCs-AOx

To demonstrate the feasibility of our approach, hPBNC was
first synthesized via a hydrothermal method on the basis of
MPB, followed by a PVP protected hydrochloric acid-
etching process [30, 31]. As exhibited in the XRD patterns
(Fig. 2a), hPBNCs reveals the well-defined PB crystal
structure (JCPDS no. 73–0687) [31]. In addition, no other
peaks can be detected, indicating that no other phases occur
during the hydrothermal reaction process. FTIR spectros-
copy is also employed to further characterize the chemical
composition of hPBNCs. The peak at 2082 cm−1 is assigned
to the -CN- stretching in the Fe-CN-Fe bond of hPBNCs,
and the C=O stretching in the PVP amide unit appears at
1650 cm−1 (Fig. 2b) [31]. The monodisperse hPBNCs are
cube in morphology with an average particle diameter of
80 nm, which is demonstrated by TEM image (Fig. 2c). In
addition, sufficiently large numbers of particles (at least
200) are counted in TEM measurement to give access to
the information on representative size distribution and mor-
phology. Furthermore, a characteristic PB peak at approxi-
mately 708 nm is observed in the UV-vis-NIR absorbance
spectrum of hPBNCs, which is consistent with the previous
reports [30, 31] (Fig. S1). To show whether AOx can be
adsorbed by hPBNCs, we incubated AOx with hPBNCs in
advance. As shown in Fig. S2, AOx can associate with
hPBNCs with an efficiency of 3.0 mg∙mg−1 hPBNCs
(77.7 U∙mg−1 hPBNCs) which is calculated from the differ-
ence of the absorbance intensity at 276 nm between the
AOx solution before and after incubation with hPBNCs.
TEM images indicate that after binding or loading with
AOx, no clear difference in shape and average diameter of
the hPBNCs, but a protein corona is formed on the surface
of hPBNCs, which suggests that AOx can not disturb the
structure of hPBNCs (Fig. 2d). To verify the stability of
hPBNCs-AOx, we maintained hPBNCs-AOx in buffered
solutions for at least 7 days. As shown in Fig. S2 and Fig.
S3, the supernatant of hPBNCs-AOx solution exhibits no
absorbance at 276 nm and hPBNCs-AOx retain their
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protein corona structure, indicating the high stability of
hPBNCs-AOx in buffered solutions.

The peroxidase-like activity of hPBNCs-AOx

Having demonstrated the successful synthesis of
hPBNCs-AOx, the peroxidase-like activity of this novel
nanocomposites that is directly impacted on the feasibility
of the biosensor is subsequently investigated. The catalyt-
ic ability of hPBNCs toward TMB, the most commonly
used peroxidase substrate, is firstly evaluated. As shown
in Fig. 3, after incubation of hPBNCs with TMB in the
presence of H2O2 for 10 min at room temperature, the
solution exhibits an obvious blue color change, with a
strong absorption at 652 nm. Furthermore, the catalytic
activity of hPBNCs is increased in a concentration-
dependent manner (Fig. S4). All these results indicate that
the hPBNCs possess an intrinsic peroxidase-like activity
which is quite similar to horseradish peroxidase (HRP)
[30, 32]. The hPBNCs with the hollow structure can also
increase the diffusion of small active molecules in and out
of the nanomaterials, leading to the enhanced catalytic
activity of hPBNCs. Furthermore, the vibration of free
electrons between Fe2+ and Fe3+ and the superior stability
in physiological conditions endow the hPBNCs with high
peroxidase-like activity in vivo. The optimal concentra-
tion of hPBNCs is chosen as 5 μg∙mL−1 for our

subsequent experiment. Importantly, after binding with
AOx, the catalytic activity of hPBNCs exhibits almost
unchanged (Fig. 3). In contract, neither AOx nor H2O2

with TMB system can induce any color change (Fig. 3),
indicating that addition of AOx into the system can not

Fig. 2 The characterization of
hPBNCs and hPBNCs-AOx. a
The Wide-angle powder XRD
pattern of hPBNCs. b FTIR
spectra of hPBNCs. c TEM image
of hPBNCs. d TEM image of
hPBNCs-AOx. TEM image
showed that a AOx corona
(arrows) was formed on the
surface of hPBNCs

Fig. 3 The peroxidase mimetic properties of hPBNCs and hPBNCs-
AOx. The absorbance spectra of TMB in different reaction systems: (1)
H2O2 + TMB, (2) hPBNCs + TMB +H2O2, (3) AOx + TMB +H2O2, (4)
hPBNCs-AOx + TMB +H2O2 in PBS (pH 7.0) at room temperature after
10 min incubation. Above were the visual color changes of TMB in the
corresponding solutions
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affect the catalytic ability of hPBNCs. On the other hand,
the influence of hPBNCs on the activity of AOx to cata-
lyze the oxidation of ethanol is also investigated. As il-
lustrated in Fig. S5, there is no obvious difference be-
tween the catalytic activity of AOx and hPBNCs-AOx.
All these results demonstrate that hPBNCs-AOx can be
used as an effective probe for colorimetric sensing of al-
cohol. Like other nanomaterial-based peroxidase mimics,
the hPBNCs exhibit a temperature and pH value-
dependent catalytic activity. The activities of both
hPBNCs and hPBNC-AOx decrease with the increase of
temperature (Fig. S6). Considering the practical operabil-
ity and the sensitivity of this assay, room temperature is
chosen as the optimal temperature for our subsequent ex-
periment. Most notably, a relatively high catalytic activity
for both hPBNCs and hPBNCs-AOx is observed over a
broad range of pH values, especially in weakly acidic and

neutral solutions, making them suitable for applications
under physiological conditions (Fig. S7).

Quantitative detection of ethanol by hPBNCs-AOx

Due to the high sensitivity of AOx toward alcohol and the
excellent catalytic activity of hPBNCs-AOx for H2O2, the
possibility of hPBNCs-AOx to be used for alcohol sensing
is subsequently evaluated. As exhibited in Fig. 4a, as the con-
centration of ethanol increases, the absorbance at 652 nm
which indicates the amount of the oxidized TMB is intensi-
fied. The absorbance intensity increases obviously with the
low concentrations of ethanol but becomes gently when the
concentration exceeds 500 μg∙mL−1. Critically, the plot dis-
plays a linear relationship in the low concentration region (c =
2–25 μg∙mL−1) (Fig. 4b). The limit of detection is calculated
to be 1.41 μg∙mL−1, which is comparable to the previous

Fig. 4 Determination of
ethanol by hPBNCs-AOx. a A
dose-response curve for ethanol
detection at 652 nm under the
optimum conditions. b The linear
plots of absorbance measured at
652 nm as a function of the
ethanol concentration. cDetection
of ethanol in the presence of
serum. d The linear plots of
absorbance measured at 652 nm
as a function of the ethanol
concentration in serum.
Inset were the visual color
changes of TMB in the
corresponding solutions.
(Mean ± SD, n = 3 for each
sample)

Table 1 The comparison of the
analytical performance of this
method for ethanol detection with
previous colorimetric methods

Probe LOD Detection range References

copper(II) complexes 0.8% 1–40% [11]

SWCNTwrapped fiber < 50 ppm 0–500 ppm [12]

GO-coated and tapered fiber 1.330% 5–40% in water [14]

MnO2-ADH 5.0 μM 0.01–10 mM [15]

HRP-AOx 2.1 × 10−3 g∙L−1 0.005–0.1 g∙L−1 [21]

Fe3O4-AOx 25 μM 100–500 μM [22]

hPBNCs-AOx 1.41 μg∙mL−1 2–500 μg∙mL−1 This work
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reported colorimetric methods for ethanol detection (Table 1).
It is well known that alcohol concentration in blood especially
in serum is a diagnostic and therapeutic target for alcoholism
[2, 3, 33]. Based on this, it is of great importance to perform
the experiment with serum samples to determine whether the
hPBNCs-AOx can be used to monitor alcohol in biological
matrix. As depicted in Fig. 4c and d, addition of serum con-
taining different concentrations of ethanol into the mixture of
TMB and hPBNCs-AOx induces different degree of oxidation
of TMB, which is quite similar with the pure ethanol samples.

Selectivity

To evaluate the specificity of our system for alcohol detection,
we next measured the effects of other biomolecules that are
found abundantly in blood on the detection system. As
displayed in Fig. 5, due to the high affinity of AOx toward
shorter chain primary alcohols, only a distinct change of the
absorbance intensity at 652 nm is found after the addition of
primer aliphatic alcohols, especially for methanol and ethanol.
While no noticeable absorbance change is observed from the

initial solution containing glucose, α-lactose, dopamine or
other non-alcohol biomolecule, which indicates that the assay
exhibits a high selectivity for alcohol detection.

Determination of ethanol in blood

Inspired by the excellent performance of the synthesized
hPBNCs-AOx in sensing ethanol in serum, we extend our
work to real-time track the concentration of ethanol in blood
serum after intragastric administration of mice with ethanol.
Following a single 8 μL∙g−1 injection of ethanol, the amount
easily to induce alcohol intoxication [2, 3], the ethanol con-
centration rises quickly within 30 min, and reaches a peak at
60 min, which is calculated to 427 mg∙dL−1 based on the
standard curves. The ethanol concentration remains above
124 mg∙dL−1 by 8 h after injection (Fig. 6a and Fig. S8a).
Even reducing the amount of ethanol injected into the mice,
the plasma ethanol concentrations are still high. Only the
doses are lower than 1 μL∙g−1 B.W., the plasma ethanol con-
centrations of animals are undetectable eight hours after injec-
tion (Fig. 6b and Fig. S8b). Critically, to verify the precision
and the accuracy of our assay, gas chromatography [34] and
HRP-AOx based assay [35] are also employed to carry out the
same experiment. As shown in Fig. S9, S10, S11 and S12, the
blood ethanol concentration presents by our assay is consis-
tent with those obtained from the two different methods. All
these results demonstrate the practicality of our method to be
used for determining blood ethanol levels in real time, indi-
cating its possibility to monitor alcohol consumption and
study the ethanol toxicokinetics.

In the determination of ethanol, due to the ability of AOx to
catalytic the primer aliphatic alcohols, our assay can only be
used to monitor the concentrations of all alcohols in the sam-
ples, and the distinction between ethanol and other primer
alcohols cannot be determined by the assay. Therefore, further
effort is needed to explore other nanozyme-based assays for
evaluation of different alcohols more comprehensively.

Fig. 5 Selectivity of the ethanol sensor. The absorption at 652 nm of the
reaction solution after the introduction of different biomolecules. The
final concentration of each compound was 5 mg∙mL−1. (Mean ± SD, n
= 3 for each sample)

Fig. 5 Analysis of ethanol in real blood samples. a The blood ethanol
concentration as a function of time after intragastric administration of
mice with ethanol. The concentration of ethanol injected was 8 μL∙g−1

B.W.. b The blood alcohol concentration as a function of ethanol
concentration after injection of mice with different concentrations of
ethanol for 8 h. (Mean ± SD, n = 6 for each group)
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Conclusions

A colorimetric assay is described for sensitively and accurate-
ly monitoring ethanol utilizing the peroxidase-like activity of
hPBNCs and the ethanol conversion enzyme, AOx. This col-
orimetric assay, with a low detection limit (1.41 μg∙mL−1),
was successfully used for the determination of the ethanol
levels in blood, which was critically important for monitoring
the alcohol consumption and studying the ethanol
toxicokinetics. The method correlates well with data obtained
by gas chromatography and HRP-AOx based assay. Crucially,
when change AOx to other oxidase such as glucose oxidase,
our system can also be used as glucose detector. The present
method can be developed for high-throughput screening
of alcohol consumption inhibitors and be of great use for
designing multifunctional materials for a wide range of
applications in biocatalysis, bioanalysis and nano-
biomedicine.
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