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Abstract
Great endeavors are undertaken to find effective nanoparticles to replace organic matrices for the analysis of small molecules
using laser desorption ionization mass spectrometry (LDI-MS). Nanoparticles offer high sensitivity and better selectivity com-
pared to conventional organic matrices. Surface assisted LDI-MS (SALDI-MS), and surface enhanced LDI-MS (SELDI-MS)
provide clear background spectra without observable interferences peaks, and cause no fragmentation (soft ionization) of thermal
and acidity labile molecules. This review article (with 460 references) summarizes the recent applications of nanoparticles
including metallic, metal oxides, silicon, quantum dots, metal-organic frameworks and covalent organic frameworks, for the
analysis of small molecules. Nanoparticles serve not only as surface for LDI-MS, but they can be also used as probe or pseudo-
stationary phase for separation, enrichment, and microextraction. Hopefully, the knowledge and learning points gained from this
review will deepen the understanding of nanoparticles applications for LDI-MS.

Keywords MOF .Nanoparticles . Smallmolecules .Matrix assisted laser desorption ionizationmass spectrometry . SALDI-MS .

SELDI-MS .Metal-organic frameworks

Introduction

Soft ionization mass spectrometry (MS), including matrix a-
ssisted laser desorption ionization (MALDI-MS) [1–4], and
electrospray ionization (ESI-MS) [5–9], have advanced the
analysis of thermal labile and nonvolatile analytes. An organic
compound, defined as matrices, is usually used to assist the
process of LDI-MS [10–16]. The organic matrices undergo
self-ionization using the laser energy and consequently cause
a proton transfer with the investigated analyte. Most of the
organic matrices offer soft ionization with low degree of frag-
mentation. MALDI-MS offers high tolerance to salts, deter-
gents, and buffers. It offers high sensitivity, rapid analysis, and
requires simple sample preparation. Thus, MALDI-MS was
reported for biological analysis [17], proteomics [18, 19], gly-
can [20], lipid profiling of mammalian cells [21], environmen-
tal species [22], chemical and biomedical applications [23].
However, the analysis of small molecules (molecular weight<
1000 Da) is still a challenge [24]. Conventional organic

matrices usually show interferences peaks in the low mass
range (<1000 Da) [11]. They can also produce overlapped
peaks with the investigated analytes, create cluster ions spe-
cies, and cause fragmentation of thermal labile molecules.
Thus, organic matrix salts, are defined also as ionic liquids
matrices (ILMs), were applied as alternative to organic matri-
ces [14, 25–28].

Nanoparticles (NPs) have advanced several applications
[29–38] including drug delivery [39], mass spectrometry
[12, 40]. They have been used as an alternative to organic
matrices. Cobalt NPs (30 nm) was the first example of a nano-
particle for the analysis of lysozyme using LDI-MS [41]. A
plethora of NPs [42–45] were used as surface to assist LDI-
MS process [46]. Nanoparticles including 1) metallic nano-
particles: silver (Ag NPs) [47], gold (Au NPs) [48–52], palla-
dium (Pd NPs) [53], and platinum nanoflowers [54]; 2) metal
oxides: porous alumina [55], titanium dioxide (TiO2) [56, 57],
manganese oxides (MnO2 and Mn2O3 cores) [58], ZnO nano-
wire [59], ZrO2 NPs and ZrO2-SiO2 nanorods (NRs) [60], iron
oxide NPs (Fe3O4) [61], and Fe3O4-TiO2 core-shell NPs [62];
3) silicon-based NPs: titanium silicon oxide-barium strontium
titanium oxide [63], nanostructure silicon substrates [64–68],
and silicon nitride NPs [69]; 4) quantum dots (QDs): germa-
nium nanodots (Ge NDs) [70], HgTe nanostructure [71], zinc
sulfide (ZnS QDs) [72], cadmium selenide (CdSe QDs),
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FePtCu NPs [47], and GaP NPs [73]; 5) carbon-based
nanomaterials: diamond [74, 75], carbon nanotube [76, 77],
and 6) porous materials, were investigated as surface for
MALDI-MS [78, 79].

MALDI-MS offers high throughput analysis, high sensitiv-
ity, high tolerance towards salts, fast analysis ability, small
sample consumption, and simple sample preparation, and no
or little fragmentations. Several techniques including surface
assisted laser desorption ionization mass spectrometry
(SALDI-MS), surface enhanced LDI-MS (SELDI-MS), g-
raphite assisted LDI-MS [80], nanoparticle assisted LDI
[81], nanostructure-assisted LDI [82], matrix-enhanced nano-
structure initiator mass spectrometry [83], desorption ioniza-
tion on silicon (DIOS) [84], nanostructure initiator mass
spectrometry (NIMS) [85], material enhanced LDI [86], sili-
con nanoparticle assisted LDI [87], nanowire assisted LDI-
MS [59], desorption ionization on mesoporous silicate [88],
and cationic gold nanoparticle-enhanced target [89], were re-
ported. These techniques offer clear background spectra with
very few interference peaks.

This review article summarizes the applications of NPs and
key parameters govern their efficiency for the analysis of
small molecules using LDI-MS [90–92]. In this review, appli-
cations, mechanism, pros and cons for each NPs, are
discussed. Finally, perspectives on the future applications
of nanoparticles for LDI-MS are given. NPs show clear back-
ground and improve the limit of detection (LOD). NPs offer
large surface area and can be used for separation, enrichment
and microextraction.

Applications of nanoparticles for LDI-MS

Nanoparticles can be used as surface, probe, and substrate for
the analysis of small molecules using LDI-MS. They can be
used for qualitative and quantitative analysis of small thera-
peutic and diagnostic molecules [93]. They can also be used as
extracting probes for the analysis of hydrophobic peptides,
and proteins in aqueous solutions [94], microextraction and
preconcentration [95–97], and for forensic applications [98].

NPs offered many advantages that make it suitable as sur-
face for SALDI-MS. They have high molar absorption coef-
ficients of laser radiation and can be used to promote analyte
ionization [99]. Applications of nanoparticles require no ho-
mogeneous sample spots [100]. Nanoparticles can be used
with or without internal calibration [100], and for imaging
[101]. They have large surface area, and offers high analyte
loading capacities (e.g., > 1000 small molecules per NP) [99].
They show high tolerance for salts that can suppress ioniza-
tion. They can be used for preconcentration or separation of
the analyte from the solutions through centrifugation or mag-
netic separation [102]. The sample spotting using nanoparti-
cles is easy, and requires simple mixing of the target analyte

with the nanoparticles before the spotting in the MALDI sub-
strate. Nanoparticle can be used as a probe, and stationary
phase for separation, enrichment, and extraction. Magnetic
nanoparticles offer simple separation for target analyte using
simple external magnet. The sample after separation, enrich-
ment, or extraction can be directly spotted in MALDI plate.
Most of nanoparticle can be served as surface for the desorp-
tion ionization process of small molecules. Compared to con-
ventional organic matrices, LDI-MS using NPs produce high-
ly reproducible spectra [103], with high sensitivity [104], and
minimal sample preparation [105].

Several nanoparticles were used for the analysis of small
molecules (Fig. 1). These nanoparticles can be classified to:-
1) metallic nanoparticles (Table 1); 2) metal oxide nanoparti-
cles (Table 2); 3) silicon based nanostructure (Table 3); 4)
carbon nanomaterials (Table 4); 5) quantum dots; 6) metal-
organic frameworks (MOFs) [168], and 7) covalent organic
frameworks (COFs, Table 5). Nanoparticles can be used as a
dispersion, thin film, chips, or microarrays (Fig. 1). These
nanostructures offer simple sample preparation (Fig. 2).
Analyte from organs, tissues or animal can be analyzed using
direct method or after separation using common separation
methods (Fig. 2). Nanoparticles provide high sensitive detec-
tion, wide applications, clear background spectra, low frag-
mentation, and can be used for preconcentration or separation
of analytes with low concentrations.

Metallic nanoparticles assisted LDI-MS

SALDI-MS using Au NPs was reported [181, 182]. Au NPs
assisted LDI-MS has been used for wide range of small mol-
ecules (Table 1) [106, 109, 183–187]. Au NPs were used for
the analysis of metals [167], monosaccharides, and disaccha-
rides (glucose, sorbitol, and sucrose) [50], amino acids, syn-
thetic polymers [188], aminothiols [99], polymer dots [189],
over-the-counter (OTC) drugs, and Chinese herbal medicine
granules [190], drugs (desipramine and enrofloxacin),
alkanethiolates [191], peptides (valinomycin and gramicidin
D), and phosphopeptides from casein proteins (α-, β-casein
and nonfat milk) [192].

Au NPs offer low LOD. They show high selectivity gluta-
thione (GSH) [193]. N-2-mercaptopropionyl glycine@Au
NPs can be used as internal standard calibrant for quantitative
analysis of GSH in the lysates of human red blood cells and
MCF-7 cancer breast cells [194]. Au nanobowls was used
quantitative detection of oligonucleotides and polypeptides
[107]. Au NPs can be used in the presence and absence of
the anti-inflammatory drug sulfasalazine [194]. Inkjet-printing
of Au NPs was applied for the detection of amino acids such
as arginine, and histidine at levels as low as 25 fmol [111]. Au
NPs can be applied as dispersant in solvent, thin films, and
chips. It was possible to amplify the mass spectral signals and
analyze macromolecules with minimum errors via monitoring
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surface capping agents, and Au cluster ions [195]. Au NPs can
be used as surface for the quantitative analysis of five targeted
metabolites; glycine (Gly), alanine (Ala), phosphocholine
(PCho), glucose (Glu), and GSH, in breast cancer cells
(MCF7, MDA-MB-231) and the nontumoral counterpart
(MCF10A) [196]. Thin film based on Au NPs is used for
the analysis of bone biomarker, hydroxyproline (HYP) for
osteoporosis with only 9.3% relative signal variation [108].

LDI-MS imaging using Au NPs was used for tumor
markers on cell membrane [197], anti-counterfeiting applica-
tions [198], analysis of metabolites [199], metabolomics
[200], and banknotes and checks [201]. Imaging using Au
NPs offer minimum destructive and show high sensitivity
[201]. Au NPs enhance the spatial resolution imaging up to
the cellular level [126], offer solvent-free LDI-MS [201], re-
quire simple sample preparation, form homogenous coverage
of the sample section or tissue, offer sensitive detection of low
concentration, selective detection of species such as thiols,
and require tiny sample amount [202].

Ag NPs were used for the analysis of wide range of differ-
ent small molecules analytes (Table 1) [203]. Ag NPs assisted
LDI-MS was applied for folic acid and amphotericin B [119],
peptides [204, 205], cysteine containing peptides [206], small
carbohydrates (sucrose and fructans) [63], estrogens, (E1, E2,

and E3) [207], olefins [208], and aminoglycoside antibiotics
[116]. Fluorosilane-coated silica (Ag NPs/SHC) loaded on a
cover glass was used as SALDI-MS substrate for the analysis
of dye, amino acid, peptides, fatty acid, and polymer [121].

Ag NPs assisted LDI-MS was used for imaging of lipids in
rat brain tissue [209], galactoceramides, diacylglycerols,
ceramides, phosphatidylcholines, cholesteryl ester, and choles-
terol, in positive mode and phosphatidyl ethanolamides,
sulfatides, phosphatidyl inositol, and sphingomyelins in nega-
tive ion mode [209]. Ag NPs were applied for both modes e.g.
positive and negative modes. Thus, it can be used for imaging
of lipids in heart tissue [118], normal rat kidney [210], brain
tissue [209], and on the surface of Arabidopsis thaliana [211].
Imaging of fatty acids, including stearic, oleic, linoleic, arachi-
donic, and eicosapentaenoic acids, as well as palmitic acid,
were reported in mouse liver sections [114]. They were also
reported for visualization of ibuprofen, anticancer 5-
fluorouracil on the finger [212], cholesterol, and other olefinic
compounds [213]. Polyvinylpyrrolidone (PVP) capped Ag
NPs offered imaging of 10 classes of lipids from the brain
simultaneously (Fig. 3) [214]. PVP@Ag NPs enhanced ioniza-
tion of poor ionized compounds such as unsaturated fatty acid
(FAs) and sterols [214]. The method showed successful appli-
cations for the analysis of brain stroke using middle cerebral
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artery occlusion (MCAO) model (Fig. 3) [214]. Authors ob-
served downregulation for unsaturated fatty acids (FAs), prosta-
glandins, cyclic lysophosphatidic acids (CPAs), vitamin A,
neuraminic acid, 5-OH-tryptophan and the K+ adducts of most
p h o s p h o l i p i d s ( p h o s p h a t i d i c a c i d s ( PA s ) ,
lysophosphatidylethanolamine (LPE) , phatidylethanolamines
(PEs), phosphatidylcholines (PCs), phsopatidylserine (PS)) and
sphingomyelins (SMs) in the ischemic region (Fig. 3) [214]. In
other side, they observed highly expression for saturated FAs,
ceramids (Cers), hexanoylcarnitine, stearaldehyde, the Na+ ad-
duct of phospholipids (lysophosphatidic acid (LPA), phospha-
tidic acids (PAs), LPE, PEs, lysophospatidylcholines (LPCs),
patidylcholines (PCs)) and SMs in the damaged section (Fig.
3) [214].

Silicon nanowires (Si NWs) modified Ag nanoparticles
(Ag NPs-Si NWs) was used for the analysis of unsaturated
food components (e.g. squalene, oleic acid) oil extracts (e.g.
extra virgin olive oil, peanut oil) [215]. Ag NPs@zeolite was
used for the analysis of acetylsalicylic acid, L-histidine, glu-
cose, urea, and cholesterol in human serum [216]. Zeolite
improved the stability of Ag NPs, and prevent their destruc-
tion via photoexcitation [216]. Nanocomposites of Ag with
reduced graphene oxide (rGO) [123], MoS2 [217], Au [218],
and polished steel target/acid etched targets [117], were also
reported for the analysis of small molecules.

Metallic nanoparticles including Pt NPs was reported for
analysis of amino acids, peptides, proteins, and microwave
digested proteins (lysozyme and bovine serum albumin)
[219]. Pt nanostructure showed high ionizability for high mo-
lecular weight protein 25 kDa [193], phosphatidylcholines
and glycerolipids [220], and imaging [221]. Pt NPs can be
applied for imaging inkjet ink on printed paper as well as for
various other analytes (saccharides, pigments, and drugs) sep-
arated by thin-layer chromatography (TLC), without the need
for extraction or concentration processes [221]. Pd NPs were
reported for fatty acids, triglycerides, carbohydrates, and anti-
biotics [222]. Pd NPs was synthesized as thin film using gal-
vanic electrochemical deposition. It offers simple sample
preparation and provides background free spectra. Pd NPs
can be used for the analysis of wide number of analytes
[124]. Two-dimensional tellurium nanosheets were used to
small molecules including nucleobases, fatty acids and amino
acids [125]. The materials display good UV light absorption,
minimal interference peaks in the low molecule-mass region,
and high LDI in negative ion mode [125].

Advantages and disadvantages of metallic nanoparticles

Nobel metals Ag, Au, and Pt, showed higher LDI efficiency
compared to transition metals and organic matrices (Fig. 4)
[223]. Nobel metals offered clear imaging for most small me-
tabolites including neutral lipids, such as triacylglycerols and
diacylglycerols (Fig. 4) [223]. Ag NPs improved theTa
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ionization of long chain hydrocarbons [224]. Silver ions can
form adducts species (Ag107, or Ag109) with the investigated
analytes and thus improve the analyte ionization. The large
surface area of nanoparticle offer high ionization efficiency
and ensure the analysis of an analyte from a complex mixture
[120]. Ag NPs offered also a solvent free method for small
molecules analysis [225]. Au NPs offered excellent reproduc-
ibility with very low relative signal variation equal to 9.3% for
HPY [108], and 15% for amino acids, carbohydrates, and
peptides [158]. Metallic nanoparticles such as Ag and Au
NPs can be modified with antibody for the analysis of viruses
Enterovirus 71 (EV71), Japanese encephalitis virus (JEV),
and Zika virus (ZIKV) in human serum samples [115].

Metallic nanoparticles including Ag NPs can be used for
both negative and positive modes. This property offer selec-
tive analysis of galactoceramides, diacylglycerols, ceramides,
phosphatidylcholines, cholesteryl ester, and cholesterol in
positive mode, and the detection of phosphatidyl
ethanolamides, sulfatides, phosphatidyl inositol, and
sphingomyelins in negative ion mode [184].

Metallic nanoparticles can be used as probe and stationary
phase. Ag NPs was used as a probe for single drop
microextraction (SDME) of peptides [122]. The separation
using metallic nanoparticles offer simple preconcentration
method for low concentration before the analysis using LDI-
MS [226]. Metallic nanoparticles offer matrix-free LDI-MS
and provide low LOD (Table 1) [116]. They can be applied
simultaneously for other analytical methods. For instance, Ag
NPs functionalized glass fiber (Ag-GF) substrate can be used
for the anlaysis of sulfur compounds using surface-enhanced
Raman scattering spectroscopy (SERS) [227] and SALDI-MS
[228]. The combination of different analytical methods offers
quantitative and qualitative analysis [229, 230]. Analysis of
structural isomers of pyridine compounds ( para-, meta-, and
ortho-pyridine carboxylic acid) using Au-decorated titania

nanotube arrays (Au-TNA substrate) for SERS and SALDI-
MS provide an useful methods for the discrimination of these
isomers [231]. Au NPs can be used for solid-phase
microextraction (SPME) for the analysis of estrogens [112].

Metallic nanoparticles are expensive. They tend to ag-
gregate in the absence of stabilizing agents that sometime
cause interference in the mass range < 500 Da. Ag NPs
show toxicity and requires careful usage for biological
sample applications. Metallic nanoparticles such as Au
NPs produces peaks at m/z 197, 394, 591 representing
Aun

− ions (n = 1–3) [232]. However, these ions can react
with CN- and produce peak at m/z 249, indicating an
abundant generation of gaseous [Au(CN)2]

− ions upon
irradiation. Thus, it can be used to analysis CN- ions spe-
cies using LDI-MS [232]. Au NPs may cause also frag-
mentation of species such as diphenhydramine [233].

Oxides and chalcogenides nanoparticles assisted
LDI-MS

Oxide and chalcogenides nanoparticles (Table 2) including
mesoporous WO3–TiO2 [234], Fe3O4-TiO2 core-shell
nanoparticles [62], magnetic sil ica nanoparticles
(MSNPs) [130], molecularly imprinted TiO2 [235], TiO2

nanowires [236], CeO2 [237], mesoporous nanocrystalline
titania sol–gel thin films [238], silver oxide (Ag2O) [239],
AgFeO2 [131, 240, 241], CuFeO2 [34, 242], ZnO NPs
[243, 244], ZnO nanowire [59], Ag NPs-ZnO NRs [137],
MoS2 nanoflakes [138], ReO3, and WO3 in microparticle
(μP) powder forms [245], MoS2-Ag [217], indium tin ox-
ide (ITO) [246], lithium-rich composite metal oxide
(MnO2, NiO and Co3O4) [247], and mesoporous silicate
[88], were used as surface for SALDI-MS (Table 2).

Nylon nanoweb with TiO2 particles enhances signal and
offers low background spectra for amino acids [136].

Fig. 2 Overview of the process for analysis using nanoparticles

Page 8 of 35 Microchim Acta (2019) 186: 682682



Fig. 3 In situ MALDI MS imaging of lipids and metabolites in the
tissue section of rat brain using PVP@Ag NPs. Acronyms FA,
CPAs, PAs, LPE, PEs, PCs, PS, SMs, Cers, LPA, PAs, LPCs, and
PCs stand for fatty acids, cyclic lysophosphatidic acids, phosphatidic
acids, lysophosphatidylethanolamine, phatidylethanolamines,

phosphatidylcholines, phsopatidylserine, sphingomyelins, ceramids,
lysophosphatidic acid, phosphatidic acids, lysophospatidylcholines,
and patidylcholines, respectively. Figure reprinted with permission
from Ref. [214]. Copyrights belong to Elsevier
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Fe3O4@Au-B(OH)2@mTiO2 cores-shells microspheres was
applied for the enrichment of phosphopeptides and glycopep-
tides after tryptic digestion [248]. TiO2-based thin film was
prepared on aMALDI plate by atomic layer deposition (ALD)
technique and then modified with –NH2 group [249]. The
obtained TiO2-NH2 modified plate was applied for on-plate
simultaneous enrichment of phosphopeptides and glycopep-
tides [249]. The surface of TiO2 nanoparticles can bemodified
with pyridoxal 5′-phosphate (PLP) which can be used to im-
mobilize Ti4+ (Fe3O4@SiO2-PLP-Ti

4+) that can be applied for
metal affinity chromatography (IMAC) for the enrichment of

phosphopeptides. The core-shell Fe3O4@SiO2-PLP-Ti
4+ of-

fered high efficiency for phosphopeptides enrichment with
superior selectivity towards phosphopeptides with >1000-
fold interferences of non-phosphopeptides [142]. Simple
preparation of porous carbon (PCs)@(Ti-Zr)O4 using calcina-
tion was reported [134]. PCs@(Ti-Zr)O4 was applied for met-
al oxide affinity chromatography (MOAC) that offered effec-
tive and selective adsorption for β-casein [134]. The use of
PCs@(Ti-Zr)O4 offered selective analysis of BSA for mass
ratio of 1:1500 (β-casein:bovine serum albumin (BSA)).
The large surface area of the material offered low LOD (0.1
fmol) , and can be appl icable for enr ichment of
phosphopeptides from nonfat milk, human serum, and mice
liver [134]. Nanoporous two-dimensional TiO2 nanoflakes of-
fered one-step enrichment and analysis of small molecules in
real samples such as fish blood, fish-tissue extracts, and inks
[250]. The materials showed high enrichment efficiency, and
low background noise. The large surface area of the materials
offered low LOD at ppt or even sub-ppt concentrations [250].

The surface of TiO2 was intensively used for selective en-
richment of phosphopeptides. TiO2 modified with
polyacrylate (PAA-Ti-TiO2) was used for molar ratio of
phosphopeptides:nonphosphopeptides (1:1000) [135]. PAA-
Ti-TiO2 showed high sensitivity and high recovery of
phosphopeptides > 78% [135]. TiO2-ZrO2 was used for in-
verse opal film-based microfluidic devices for on-chip phos-
phopeptide enrichment using MALDI-MS [251]. Several
modification of TiO2 including DOTA (1,4,7,10-
tetraazacyclododecane N, N′, N′′, N′′′-tetra-acetic acid) and
Zr4+(TiO2@DOTA-Zr) [252], phytic acid (PA) [132],
titanoniobate nanosheets embedded with Fe3O4 nanocrystals
(Fe3O4–TiNb) [253], [Ti(IV)@poly(VPA-co-EDMA), poly
(vinylphosphonic acid-co-ethylene dimethacrylate)] [254],
MagSiO2@SiO2@PDA@Ti(IV) [255], magnetite-ceria-
codecorated titanoniobate nanosheet (MC-TiNb) [256], poly-
ethylene glycol (PEG)-Ce-CeO2-Fe3O4, and nanosolid
superacid (Ce-CeO2-SO4-Fe2O3) [257]. CuFeMnO4 showed
selective capture of phosphopeptides from A549 cells [258].
Other metal oxide nanoparticles including MoO3 [160],
MnFe2O4 [259], and zirconia incorporated ordered mesopo-
rous carbon (OMC) composites [260] were also reported.
These nanomaterials offered effective separation of
phosphopeptides from non-phosphopeptides. They differenti-
ate selectively between mono- and multi-phosphopeptides.

Iron oxide (Fe3O4) or magnetic nanoparticles (MNPs)
[261] was used for the analysis of small molecules, such as
pesticides and plant hormones, peptides [262], surfactants
[263], mercury [129], glycans [126], glycolipids [127], bio-
molecules in cultured cells [264], carbohydrate [265], and
endotoxin from urine sample [266]. Polydopamine-coated
Fe3O4 nanoparticles (PDA@Fe3O4 NPs) were applied as ma-
trix for the detection of eleven small molecule pollutants, in-
cluding benzo(a)pyrene (BaP), three perfluorinated

Fig. 4 a MALDI MSI of B73 maize root cross-sections showing locali-
zations of various metabolites with each metal matrix, and (b)
Morphology of maize root. Scale bar 200 μm. Figure reprinted from
Ref. [223] with permission. Copyrights belong to Springer Nature.
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compounds (PFCs), and seven antibiotics [267]. The ioniza-
tion of these species in either positive or negative reflection
mode was reported. Surface functionalized graphene-coated
cobalt nanoparticles with benzylamine groups (CoC–NH2

nanomagnets) was applied for enrichment of pentachlorophe-
nol, bisphenol A, and PFCs [162].

Advantages and disadvantages of metal oxide nanoparticles

Metal oxides such as TiO2 offered sensitive analysis of
peptide mixture (Mix1) without any observable ion sup-
pression [268]. TiO2 assisted LDI-MS provided a LOD of
10 fmol for neurotensin peptide sutent, a small tyrosine
kinase inhibitor, and 50 fmol for verapamil. There was no
observation of ion suppression for the analysis of mixture
analytes. It was reported that TiO2 ionizes signals of 179
mo l e cu l e s , wh i l e a conven t i o n a l ma t r i x 2 , 5 -
dihydroxybenzoic acid (DHB) ionize only 4 molecules
[133]. It was also used for imaging of endogenous low
molecular weight metabolites (LMWM) in mouse brain
(80–500 Da) [133]. Metal oxide such as mesoporous silica
generates low energetic ions compared to the use of carbon
nanotubes or graphene-assisted LDI MS [130]. Thus, it
causes low fragmentation of thermal labile analytes.

Metal oxide nanoparticles including magnetic silica mi-
crospheres offered separation and can be used as a surface
for LDI-MS i.e. dual functions [269]. Fe3+@magnetic sil-
ica microspheres enriched phosphopeptide specifically
and improve their analysis using MALDI-MS [269].
Modification of Fe3O4 NPs using chitosan was used for
separation and detection of endotoxin from urine sample
[266]. PDA@Fe3O4 NPs can be as a adsorbent for the
separation of BaP in tap water and lake water samples
using magnetic solid-phase extraction (MSPE) [267]. Au
NPs coated magnetic beads was applied for amino acid
analysis [270]. Magnetic graphene and carbon nanotube
(graphene-CNT) was applied as matrix and adsorbent for
the analysis and enrichment of small molecule compounds
[271]. The surface of MNPs can be modified using sev-
eral molecules including humic acids (HAs) that can be
used an adsorbent of MSPE [128]. HA@MNPs offered
fast separation of rhodamine B in chili oil with recoveries
73.8-81.5%, and relative standard deviations (RSDs) less
than 21.3% (intraday), and 20.3% (interday) [128]. MNPs
improved the sensitivity for the analysis of metal ions (>
20-100 fold) [272]. The presence of metal ions such as
Fe3+, and Mn2+ in MnFe2O4 showed highly selective en-
richment for phosphopeptides because of the strong coor-
dination interaction between metal ions (Fe3+, and Mn2+)
and phosphate groups of phosphopeptdies [259].

The presence of many function groups on the surface
of metal oxide nanoparticles can be easily modified with
metal ions that offered selective interactions with small

molecules. Fe3O4@PDA-Mn+ modified with eight metal
ions (Mn+), including Nb5+, Ti4+, Zr4+, Ga3+, Y3+, In3+,
Ce4+, Fe3+, were applied for selective enrichment of
phosphopeptides [273]. The presence of the hydroxyl
and amino group of PDA provided anchoring groups of
the investigated metal ions. Fe3O4@TCPP-DOTA-Ms,
TCPP denoted tetrakis(4-carboxylphenyl) porphyrin) and
DOTA for 1,4,7,10-tetraazacyclododecane N, N′, N′′, N′′′-
tetraacetic acid, was modified with metal ions Ti4+, Zr4+,
Fe3+, Tb3+, Tm3+, Ho3+, and applied for the analysis of α-
casein tryptic digest [274]. Fe3O4@TCPP-DOTA-Tb-Ti
showed excellent enrichment efficiency and stronger ad-
sorption for multiple phosphorylated peptides compared
to other species.

Metal oxide nanoparticles are inexpensive, and can be used
as affinity probe for selective separation, enrichment, or ioni-
zation of specific analyte. They can be used efficiently to
isolate phosphopeptides from standard phosphoprotein, and
real samples [275].

Silicon-based assisted LDI-MS

In 1999, desorption ionization on silicon (DIOS) was re-
ported for the first time for the analysis of small molecules
[84]. Silicon-based NPs including Stöber silica NPs [276],
C18 -S iO2 [139] , S iO2 modi f i ed graphene [78] ,
Fe3O4@SiO2 [277], silicon nanowires (Si NWs) [68, 82],
silicon nanowire arrays [278], silicon nanopost arrays
(NAPA) [279, 280], Si pillar [145], silicon nanopillar ar-
rays [144], silicon microcolumn arrays [67], silicon nano-
cones array [281], silicon microtips [282], silicon
nanofilaments [283], silicon films [284], amorphous sili-
con [285], p+ type-derived porous silicon (PSi) [140],
phosphate-imprinted mesoporous silica nanoparticles
(MSNs) [286], gold nanoparticles grafted onto a nanostruc-
ture silicon (Au NPs-nSi) [113], and Pd NPs-PSi [146],
were applied for the analysis of small molecules (Table 3).

Silicon-based nanoparticles showed low LOD, and can be
used for both positive and negative modes [68]. Silicon nano-
wire required 5−8 times less laser fluence for ion production
than either MALDI or DIOS [287]. Silicon nanomaterials can
be easily shaped into arrays, films, and nanospots which have
the potential for laboratory on a chip devices. Surface of sili-
con nanomaterials can be tailored and that showed low degree
of ion fragmentation [279]. As prepared PS (PS-H) was ther-
mally oxidized at 300 °C (PS-OX), and then chemically
grafted with cation-exchanging alkyl sulfonic acid (PS-
SO3H) , and anion-exchanging propyl -octadecyl
dimethylammonium chloride (PS-ODMA+Cl-) groups [140].
These chemical modification allowed the detection of only
low fragmented ions (methylene blue, MB+) and methyl or-
ange (MO-), respectively [140]. Silicon nanowire arrays
showed high performance, and required low laser energy
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[278]. The morphologies, and thicknesses of Si nanomaterials
can be controlled using self-assembly of silane molecules
[288]. Surface modification offered low fragmentation, and
can produce spectra with no or minimal interferences peaks
[288]. Silicon can be easily etched using several method in-
cluding electrochemical method [146]. The porosity of Si can
be easily modified with nanoparticle such as Pd which en-
hance the laser energy absorption due to localized surface
plasmon resonance (LSPR) [146].

Th e s u r f a c e mod i f i c a t i o n o f s i l i c on - b a s ed
nanomaterials may offer selective detection for species
such as phosphopeptides. Ti4+ immobilized SiO2

graphene-like multilayer nanosheets [141], and magnetic
nanoparticles (Fe3O4@mSiO2-Ti

4+) offered ultrasensitive
enrichment of phosphopeptides [289]. They can be ap-
plied for identifying endogenous phosphopeptides in
healthy human serum and saliva.

The use of porous silicon nanoparticles offered detec-
tion of small molecules without the need of extraction, or
separation [276]. Hydrophobic porous silicon array of-
fered direct analysis of methamphetamine, cocaine, and
3,4-methylenedioxy methamphetamine in oral fluids
300-times faster compared to conventional method
[290]. Silica can be easily modified with ionic liquids
and organic matrix CHCA without change of the chromo-
phore group of CHCA molecule [291]. Silicon substrate
can be used for selective enrichment, self-desalting, and
matrix-free analysis of peptides in a single step [292].

The upper mass limit for analytes using DIOS is only re-
stricted to small molecules below 2500 Da [143]. The nature
of the porous silicon platform and the sample composition
influence the performance of the technique. The reproducibil-
ity between different DIOS chips is low. However, Si pillar
with suitable size offered simple sample spotting and improve
the reproducibility and sensitivity for the quantitative analysis
[145]. Further efforts to improve the chips reproducibility and
the mass limits should be carried out.

Carbon-based nanomaterials assisted LDI-MS

Carbon nanomaterials including activated carbon [293],
fullerenes, carbon nanotubes, nanodiamond, nanofibers,
nanohorns [294], graphene (G) [295], graphene oxide
(GO), carbon dots (C dots), N-doped graphene [155],
sinapinic acid–GO [296], CuCoO–GO [161], N-doped
carbon dots [297], activated carbon [147], single-walled
carbon nanohorns (SWNHs) [298], and graphitic carbon
nitride (g-C3N4) nanosheets [159], were used as surface
for LDI-MS [299] (Table 4). They were applied for the
analysis of small molecules including amino acids, poly-
amines, peptides, steroids, nucleosides, nucleotides and
metallodrugs [151–153, 296, 300–308].

The first application of fullerene C60 as surface for
LDI-MS was in 1994 [309, 310]. C70 fullerene was ap-
plied as a surface for the analysis of steroids [311].
Reagent hexa(sulfonbutyl)fullerene (C60[(CH2)4SO3-]6)
was used as precipitating reagent for selective detection
of charged species in aqueous solutions [312]. Fullerene
derivatives including dioctadecyl methanoC60, C60oacetic
acid, and iminodiacetic acid-C60 [313], and C60-fullerene-
bound silica [314], were also reported. Fullerene deriva-
tives were applied for several analytes including uranium
[315], peptides [316], and organometallic [317].

C60-fullerene silica was applied as stationary phase for
solid-phase extraction (SPE) of selected flavonoids with re-
coveries of ∼99% [314]. A study showed that fullerene–silica
with a pore size of 30 nm showed better recoveries at low
peptide concentrations compared to C18- and C30-modified
silica as stationary phase [316]. Modified C60 using magnetic
silica nanoparticles (C60-f-MS) offered very fast (< 5 min)
separation method for small molecules [318].

In 1995, graphite with particle size 2–150 μm was dis-
persed in glycerol and applied for LDI-MS for the analysis
of small molecules [319, 320]. Graphite plate was used for the
analysis of polypropylene glycol and polystyrene [321].
Graphite combined “Parallel Fragmentation Monitoring”
(PFM) offered high-throughput quantification of citrulline
with a correlation coefficient ≥ 0.997 and within- and
between-day coefficient of variation (CV) of 3.1–8.7%, and
3.5–10.6%, respectively [150]. Pencil lead, is a form of graph-
ite mixed with other components such as clay and wax, was
used as a surface for the analysis of uranium in a standard
materials [148]. It offered quantitative analysis for the isotope
ratio analysis of actinide metals [148]. Thus, graphite assisted
LDI-MS identified the presence of low micron-sized uranium
oxide particles and established their distribution across a sub-
strate surface [149].

Graphene, is an allotrope of carbon in the form of a two-
dimensional, was reported as surface for the analysis of small
molecules [300]. Graphene-based nanomaterials were applied
for the analysis of antibiotic [161], metabolite [322], flavo-
noids and phenylpropanoids [323], metallodrugs [151], sur-
factants [78], mercury [152], peptides [296], lipids [153],
nitropolycyclic aromatic hydrocarbons (nitro-PAHs) in
PM2.5 samples [154], amino acids, fatty acids, as well as nu-
cleosides and nucleotides [324], polymers [325], and Chinese
medicine herbs [305]. Graphene oxide nanoribbons (GONRs)
showed higher signals of the investigated analytes compared
to conventional organic matrix [326]. The analysis of PAHs
using graphene showed average recoveries of 69.2% to
119.4%, and the inter-day precisions of less than 12.3% with
intra-day precisions less than 20.7% [154]. N-doped graphene
improved the analysis and offered a direct monitor method of
drugs in human serum [155]. Core–shell structured
gold@graphitized mesoporous silica nanocomposite
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(Au@GMSN)was applied for small molecules including ami-
no acids, neutral saccharides, peptides, and traditional Chinese
medicine [327]. Au@GMSN showed high ionization efficien-
cy, offered low fragmentation, free interference spectra, and
good reproducibility [327]. Other derivatives of graphene in-
cluding fluorographene (FG) [328], and graphene coated po-
rous amorphous carbon with P–O surface group and co-doped
phosphorus and nitrogen (O–P, N-C/G) [329], were also re-
ported. Graphene and their derivatives are effective adsor-
bents, and good surface for LDI-MS [330].

Carbon nanotube (CNT) was reported as a surface for LDI-
MS for the analysis of small molecules including peptides,
organic compounds, and β-cyclodextrin [76]. Dispersion of
multi-wall carbon nanotubes (MWCNT) using polyaniline
( PAN I@MWCNTs ) [ 3 31 ] , a n d p o l y d o p am i n e
(PDA@MWCNTs) [332] were reported to improve the sam-
ple homogeneity. CNT was used as film (consisting of GO-
MWCNT double layer) [333], nanofibers (polyacrylonitrile-
Nafion®-carbon nanotube, PAN-Nafion®-CNT) [334], or
membrane [335] for the analysis of small molecules including
peptides, and small drugs.

Carbon dots (C dots) were applied for a wide range of small
molecules including amino acids, peptides, fatty acids, β-ag-
onists, and neutral oligosaccharides [165]. C dots assist ioni-
zation of a target analyte in both positive and negative ion
modes with relative error of 2.76-4.31% [165]. Nitrogen-
doped carbon dots (N-CDs) ionize analytes such as glucose,
sucrose, amino acids, nilotinib, and polyethylene glycols
[166]. Carbon dots nanocomposite (Au NPs@C dots) com-
bining chelating agent such as mefenamic acid was used for
the detection of metal ions in cancer cell [167]. PAN-
Nafion®-CNT was tested for the analysis of small drug mol-
ecules [188]. Data show improvement for the analysis for the
small molecules. C dots such as N,S-co-doped CDs can be
sprayed and applied for bisphenol S (BPS) mapping in mouse
tissues [336]. N,S co-doped CDs offered quantitative analysis
with very low LOD as low as the pmol level for BPS. The
method can be also applied for different tissues of mouse
including liver, kidney, spleen, and heart [336].

Carbon-based materials are ideal material for the anal-
ysis of small molecules using LDI-MS. They exhibit UV
absorption in the wavelength range of 250-350 nm [164,
337, 338]. Thus, they can be applied for several laser types
including N2 laser (337 nm), and Nd:YAG laser (355 nm
and 266 nm). Application of G-MNPs for LDI-MS offered
simple separation method for small molecules [339].
Polystyrene-oxidized carbon nanotubes (PS-OCNTs) can
be used as adsorbent and matrix for MALDI-MS [340].
Composite consists of MNPs, GO, and chitosan anchored
Ti4+ offered selective enrichment of phosphopeptides from
the tryptic digest of β-casein (phosphopeptides to non-
phosphopeptides at a molar ratio of 1: 400). The material
showed high sensitivity (0.5 fmol), large enrichment

capacity (66.6 mg·g−1), and recovery 93.11% [341].
Magnetic mesoporous carbon composites was reported
for selective enrichment of phosphopeptides [342]. High
throughput detection of tetracycline residues in milk was
achieved using G or GO as matrix [343]. Highly ordered
mesoporous carbon (OMC) called CMK-8 showed the best
performance for the analysis of small molecules compared
to other porous materials such as CMK-3, SBA-15, and
MCM-41 [344]. The material served as adsorbent and ma-
trix for screening and identification of toxic compounds in
a single drop of human whole blood [344]. Octadecyl-
modified CMK-8 (C18-CMK-8) provided simultaneous
analysis, and simple extraction of multiple small mole-
cules using SPE in single-drop human whole blood sam-
ples [156]. The porosity of highly OMC as well as the
characteristic hydrophobicity of carbon offered simple
analysis of 3402 different endogenous peptides from only
20 μL of human serum [157]. Some carbon nanomaterials
such as G can be easily fabricated as substrate using 3D
printed technique [345]. O–P, N-C@G can be used for
dual-ion mode i.e. positive and negative-ion modes for
detecting small molecules including amino acids, small
peptides, saccharides, drugs, and pollutants (Fig. 5)
[329]. Nanocomposite of CeO2-carbon black enhances
the detection sensitivity of drug molecules and requires
no sample pretreatment or extraction [163].

Carbon nanomaterials have low water dispersion [346].
Thus, they have limitations to form homogenous spots.
This requires the use of organic solvents or modification
with polymers to improve the spot homogeneity. The
presence of species such as oxidative debris on the sur-
face of carbon nanomaterials such as GO depress LDI-MS
efficiency [347]. Removing these species from the surface
enhances the materials performance.

Quantum dots assisted LDI-MS

Quantum dots (QDs) a re smal l semiconduc to r
nanocrystals with particle size < 10 nm. Heavy metal
based QDs including CdTe [348], HgTe [349], CdSe-
ZnS [350], [71], and ZnS [72], were applied for SALDI-
MS [351–353]. QDs were used for proteomics [352, 354],
peptides [355], metallodrugs [351, 356], carbohydrates
[357], and others [42].

QDs showed no interferences peaks at mass range be-
low 500 m/z with high ionization efficiency [10, 11, 358].
QDs offered higher signals of the target analyte compared
to conventional organic matrices [359]. They improved
the signal-to-noise ratio, spectrum quality, and increases
the number of detected peptides and the overall sequence
coverage [350]. However, most of QDs, especially Cd-
containing QDs are toxic [360].
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Metal-organic frameworks (MOFs) assisted LDI-MS

Metal-organic frameworks (MOFs) are self-assembly porous
material consisting of metal as connector and an organic li-
gand as linkers [361–371]. These combinations offer many
number of MOFs (>70,000 structure in Cambridge
Crystallographic Data Centre (CCDC)) [372]. However, few
MOFs were reported as surface for LDI-MS [168] (Table 5).
Materials Institute Lavoisier (MILs) MIL-101(Cr) [169],
MIL-100(Fe) [177], University of Oslo (UiO) UiO-66-PDC
and UiO-66-(OH)2 [373], Zn2(bim)4 nanosheets [374],
Fe3O4@SiO2@UiO-66 core–shell magnetic microspheres
[ 1 7 5 ] , M I L - 1 0 1 (C r ) -NH 2 g r a f t e d d e n d r im e r
poly(amidoamine) (PAMAM) [375], PDA@Fe3O4@Zr-
SO3H [376], and Fe3O4-C@MIL-100 [377] (Table 5).

MOFs were applied for the analysis of monosaccharides
[176], and disaccharides, peptides and starch [378], glycopep-
tides [379], N-glycopeptide [375], quercetin analysis [169],
saccharides, amino acids, nucleosides, peptides, alkaline
drugs, and natural products [373], domoic acid (DA) in shell-
fish samples [175], and BaP [380].

Zeolitic imidazolate frameworks (ZIFs) [371], are subclass
of MOFs, coated magnetic nanocomposites (Fe3O4@ZIF-8)
was applied as both matrix and absorbent for the separation
and analysis of peptides and amino acids [171], and
nitropolycyclic aromatic hydrocarbons (nitro-PAHs) [172].
ZIF-7, ZIF-8 and ZIF-90 were used as sorbent and matrix
for the enrichment and analysis of bisphenols such as
bisphenol A (BPA), bisphenol B (BPB), bisphenol S (BPS),
bisphenol F (BPF) and bisphenol AF (BPAF) [170]. Magnetic
ZIF-90 was modified with DOTA prior to immobilize enzyme
trypsin (Fe3O4@DOTA-ZIF-90-trypsin). Fe3O4@DOTA-
ZIF-90-trypsin showed satisfactory digestion efficiency with-
in only 1 min with the sequence coverage (80%) that is com-
parable or even better than that (70%) of the traditional 12 h
free trypsin digestion [381].

MOFs can be used as precursor for the synthesis of
porous carbons (Table 5). Nanoporous carbon derived
from MOFs MIL-53 and cCYCU-3 was reported [382].
Carbonization of MIL-101(Cr) leads to the formation of

nanoporous carbon that can be used for the analysis of N-
linked glycans from standard glycoprotein or complex hu-
man serum proteins [383]. The pore size of the material
showed size exclusion effect and offered the analysis of
N-linked glycans from standard glycoprotein or complex
human serum proteins. ZrO2 nanoporous carbons were
applied for the analysis of several neurotransmitters [384].

Hierarchical porous anatase TiO2 can be synthesized using
MIL-125 (Ti) as precursor through hydrolysis and thermal
decomposition [385]. The prepared material offered direct
and in situ enrichment of phosphopeptides from undigested
phosphorylated proteins. The analysis procedure is fast (40
min) and can be accomplished using a one-pot single step
[385]. Fe3O4@SiO2@(Zr-Ti-PTA)15 showed also highly se-
lective enrichment of phosphopeptides [386].

The surface of MOFs can be easily modified for separa-
tion and extraction. Polydopamine (PDA)-coated magnetic
microspheres with surface modification of zirconium-based
MOF (Fe3O4@PDA@Zr-MOF) were synthesized and ap-
pl ied for enr ichment of phosphopept ides [387] .
Polydopamine-modified hydrophilic magnetic ZIFs
(Fe3O4@PDA@ZIF-8) were applied for the extraction of
low-abundance peptides [173]. The presence of low-
coordinated Zn2+ ions offered strong affinity towards low
abundance peptides, especially those with histidine resi-
dues. Thus, the materials provided a simple and fast extrac-
tion procedure. The large surface area of the materials in-
creases the tryptic digestion for the sequence coverage of
BSA, and human serum albumin (HSA). The presence of
free carboxylic groups in UiO-66 (denoted as UiO-66-
COOH) offered a hydrophilic MOF for selective enrich-
ment of glycopeptides from tryptic digests of standard gly-
coproteins and biological samples [388].

MOFs are good adsorbent due to their large surface area
and pore tunability. Magnetic ZIFs nanocomposite was used
to exclude large protein [173]. The materials were used for the
analysis of low concentration peptide even under 200-fold
dilution with BSA protein solution [173]. Fe3O4@MIL-100
(Fe)) [174], or magnetic graphene@MOF [389] showed se-
lective capture of phosphopeptides. The materials offered

Fig. 5 Small molecules analysis for dual mode using O–P,N-C@G. Image reprinted with permission from Ref. [329]. Copyrights belong to ACS
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highly selective enrichment of phosphopeptide from the hu-
man serum (both the healthy and unhealthy) and nonfat milk
[174]. Several MOFs such as UiO-66-(OH)2 [373],
Fe3O4@ZnBLD composites [390], UiO-66 incorporated
poly(MAA-co-PEGDA) monolithic column [391],
poly(UiO-66-NH-Met-co-PEGDA) monolithic [392], UiO-
66, and UiO-67 [393], Fe3O4@PDA@Er(btc) [394],
[Er2(PDA)3(H2O)]·2H2O, 1,4-phenylenediacetate (PDA)
[395], Fe3O4@PDA@UiO-66-NH2 [396], MIL-101(Cr)
modified with urea (MIL-101(Cr)-UR2) [397] were reported
for selective enrichment of phosphopeptides. The materials
were applied for standard protein digest (α-casein, β-casein
and ovalbumin) as well as digested egg white proteins glyco-
peptides from complex biosamples. Authors recovered 14 and
4 phosphopeptides from the peptide mixture and digested egg-
white, respectively [395]. MOFs have the potential to sever
for solid phase microextraction (SPME) [398], immobilized
metal ion affinity chromatography (IMAC), and metal oxide
affinity chromatography (MOAC) [399]. Magnetic
zirconium-based MOF offered rapid separation (within 5 s)
using external magnetic field, high binding capacity (100
mg·g–1), good enrichment recovery (84.8%), high sensitivity
(5 fmol) and good selectivity for phosphopeptides from real
samples (human serum and nonfat milk) [399].

Advantages and disadvantages of MOFs

MOFs offer more than 70 000 structures [372]. Thus,
they provide chemists with a rich library for the best
material selection. MOFs showed background-free spec-
tra in both positive and negative ion modes [374] with
high signal-to-noise ratio [169]. They have large surface
area and thus, prevent ion suppression of analyte with
poor ionization efficiency. Compared to Au NPs (14
nm) and SBA-15, MIL-100(Fe) showed higher intensities
[177]. MOFs such as MIL-53(Al), MIL-100(Cr), and
MIL-101(Cr) offered the analysis of low-abundance pep-
tides while simultaneously effectively excluding high-
abundance proteins [400].

MOF showed sensitive, and specific enrichment of an-
alyte such as phosphopeptides [373]. The pore size and
the type of the metals can be tuned to offer selective
ionization or separation of a target analytes. MOFs pro-
vided dual-metal centers; the inherent Zr—O clusters and
also the immobilized Zr(IV) center [401]. They can be
used as adsorbent, surface and probe for separation or
extraction. Surface properties can be tuned to offer high
hydrophilicity, and unique size-exclusion effect [402].
MOFs can be also used as precursor for nanocomposite
with magnetic properties offering selective and efficient
extraction of endogenous peptides from human serum
[403]. The materials can be easily processed and hold
promising future for real products [363, 404].

There are over than 70 000MOFs in the structure database,
however few MOFs were reported. The lacks of stability for
several MOFs render their applications in aqueous solution
difficult [405]. The costs of the material still high and further
efforts to reduce their price are interested.

Covalent organic frameworks (COFs) assisted LDI-MS

Covalent organic frameworks (COFs) are organic solids in
which organic building blocks are linked by covalent
bonds (Table 6). COFs-based IMAC material (denoted
TpPa-2-Ti4+) was applied for selective enrichment of
phosphorpeptides from β-casein with limit of detection
4 fmol and high selectivity (β-casein:BSA ratio 1:100)
[178]. The material was applied for enrichment of
phosphopeptides from non-fat milk and HeLa cells with
high sensitivity and selectivity [178]. The use of COFs is
in the infancy stage and requires further efforts.
Fe3O4@COFs has applied as an adsorbent for enrichment
and as a surface for SALDI-TOF-MS analysis of polycy-
clic aromatic hydrocarbons (PAHs) and their derivatives
in PM2.5 [179]. COFs can be also used as surface for the
analysis of amino acids, fatty acids, and environmental
pollutants like bisphenol S (BPS) and pyrene [180].

Others substrates

Substrates such as unmodified mixed cellulose ester membrane
(MCEM) [415], and disposable paper-array plate [416] were
also reported. MCEM was reported as a simple, and efficient
substrate LDI-MS for the detection of lead ions (Pb2+) in water
urine samples and drinking straws [415]. MCEM assisted LDI
substrate offered LODof 0.05 nM [415]. Themethod offer high
tolerance at least 1000-fold relative to other metal ions for the
detection of Pb2+ ions in aqueous solutions [415]. These new
substrates are cheap and show higher sensitivity compared to
conventional stainless steel plates [416].

Mechanism of laser ionization/desorption
using nanoparticles

Reasonable mechanism of ionization using organic matrices
or nanoparticles is under debate [1, 417]. It is hard to find
single and general mechanisms that explain the ions formation
for all cases. First, most of the measurements conditions aren't
identical. Second, the ionization depends on several parame-
ters including analyte properties (molecular weight,
ionizability, function groups, polarity, hydrophilicity, and hy-
drophobicity), nanoparticles characters (size, types, surface
area, capping agents, and porosity), and experimental/
instrumentals conditions. Third, it is hard to characterize the
ternary interactions of analyte-nanoparticles-laser.
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After sample spotting, the laser ablates the target analyte
and desorbs/ionize before the detection. The hot plumes
produced due to the laser ablation have many species in-
cluding neutral, ionized, and non-ionized species. The
laser-spot (contain nanoparticles and target analyte) inter-
action is very complicated and difficult to be investigated
due to the high vacuum. Thus, it is very hard to find suit-
able explanation of what is going on the hot plume.
However, the ion formation using matrices could be caused
due to primary [418, 419], or secondary [1] ionization pro-
cess. Primary ionization process can be due to multiphoton
ionization (MPI), disproportionation, thermal proton trans-
fer [420], excited-state proton transfer (ESPT), and spall-
ation [418, 419]. While, secondary ionization process can
be due to H+ transfer, cationization, e- capture and H+

transfer, e- transfer, and ejection. A model called “Lucky
Survivor” hypothesis that the analyte may ionize in the
solution and retain their solution-state charge within the
solid state matrix [421]. Another mechanisms postulate
that the ionization is due to electronic excitation [422].
Matrix-assisted ionization (MAI) or matrix assisted ioniza-
tion vacuum (MAIV) using only matrix, and vacuum with-
out the need of laser energy or voltage for ionization was
also reported [423]. The ionization takes place simply after
exposing the spot (matrix with analyte) to the vacuum. A
study showed also that hot electron transfer in LSPR plays
a key role in ionizing molecules during LDI process [424].

It is very hard to find a suitable single mechanism for all
nanoparticles due to several reasons [425]. Most of the pro-
posed mechanisms are mainly investigated for organic matri-
ces. The organic matrix absorb the laser energy prior to the
self-ionization. Thus, it was proposed that the organic matrix

undergo proton transfer with the target analyte. The mecha-
nism may be suitable for nanoparticles that have absorbance
match the wavelength of the laser. A few studies investigate
the mechanism of NPs assisted LDI-MS [103]. However, sev-
eral mechanisms including proton transfer from the capping
agent [426], thermal-driven desorption [427], vaporization, or
phase explosion [428], heat confinement [429], and
cationization [213], were proposed. The mechanism of LDI
depends on several parameters, including laser properties
(wavelength, photon energy, energy density, pulse width, in-
cident angle of the beam), nanoparticles properties (size, sur-
face properties, capping agents), nanoparticle-analyte interac-
tions, laser-nanostructure interactions [430], sample prepara-
tion, and additives. For instance, the use of hypophosphite as
reducing agent during the synthesis of Pd NPs decreases their
melting points and subsequently decreases laser fluence re-
quirements for LDI-MS [124].

Analysis of key parameters affecting
nanoparticles performance

There are several key parameters that affecting the analysis of
small molecules using nanoparticles (Fig. 6). These parame-
ters should be investigated to achieve high sensitivity and
better selectivity.

Compositions of nanoparticles

The chemical composition of nanoparticles affects their
performance. A comparison among metallic nanoparticles
of Ag, Au, Cu and Pt showed that protonated molecules

Table 6 An overview of
nanomaterial-based methods for
enrichment of phosphopeptides
enrichment.

Materials Technique LOD Selectivity Ref.

ZrO2-MNPs-MPC MOAC 1.5 fmol 1:500 [342]
Bi0.15Fe0.15TiO2 2 nmol·L-1 1:1200 [406]
Ti4+-PDA-G IMAC 1:200 [407]
ZnMMs 250 fmol 1:100 [408]
Ti4+-PA-MNPs 0.8 nmol·L-1 1:2000 [132]
Ti4+-4μ-PEO 2 fmol 1:1000 [409]
Ti4+-ATP-MNPs 3 amol 1:5000 [410]
Ti4+@poly(VPA-co-EDMA) 10 fmol 1:1000 [254]
Fe3O4@PDA-Ti/Nb 2 fmol [411]
Fe3O4@nSiO2@mSiO2-TiO2–Ti

4+ 4 pmol 1:50 [412]
MagSiO2@SiO2@PDA@Ti4+ 50 fmol 1:500 [255]
MIL-101 Cr-Urea MOFs 0.1 nmol·L-1 [397]
Fe3O4@PDA@Er(btc) 0.02 fmol·μL−1 [394]
Fe3O4@MIL-100(Fe) 0.01 fmol·μL−1 [174]
Fe3O4@PDA@Zr-MOF [387]
Fe3O4@MIL-101(Fe) 0.08 fmol·μL−1 1:1000 [413]
UiO-66 and UiO-67 0.1 fmol·μL−1 1:200 [393]
Ti-based MOF nanosheets 1:10000 [414]
Mesoporous magnetic material MOFs-derived NPs 0.2 fmol·μL−1 1:1000 [403]

4μ-PEO, 4-armed Poly(ethylene oxide); ATP, Adenosine triphosphate; G, graphene; MPC, mesoporous carbon;
PDA, Polydopamine; VPA-co-EDMA, poly(vinylphosphonic acid-co-ethylene dimethacrylate); ZMMs, Zinc
immomoblized magnetic microspheres
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of analytes were predominated in the mass spectra when
Au and Pt nanoparticles were used [426]. Pt nanoparticles
showed the highest performance due to their smaller heat
conductivity and higher melting temperature [426].
Adjusting the Ag–Au ratio tunes the surface plasmonic
resonance absorption and hence influences the contrast
imaging of latent fingerprints (LFPs) [431].

The chemical structure of carbon-based materials offers
UV absorption in the wavelength range of 250-350 nm
[164, 337, 338]. Thus, they can work for the analysis of
small molecules using different lasers. The absorption of
MOFs can be tuned using metal clusters or organic linker
with the suitable chromophores. MIL-101(Cr) showed
stronger absorption in the UV region of ~272 nm than
MIL101(Fe) for the same concentration [169]. Thus,
MIL-101(Cr) offered stronger absorption of laser energy
and energy transfer to analytes. The properties of MOFs
can be tuned using metal clusters, pore structure, organic
linker, and their function groups.

Oxidized carbon nanotubes showed higher solubility in
water compared to non-oxidized carbon nanotubes [164].
The presence of oxygen function groups in oxidized car-
bon nanotubes offered high dispersion, and better perfor-
mance for the analysis of small molecules. Suitable func-
tional groups facilitate the material modification and of-
fered tunable properties.

Particle size and morphology of nanoparticles

It is shown that the size and shape of nanocrystals influenced
the way of packing carbohydrates onto plate, and thus influ-
ences homogeneity and reproducibility of mass spectrometry
analysis [432]. It was reported that large GO sheets (> 0.5 μm)
have high tendency toward fragmentation under LDI than that
of small GO sheets (< 0.5 μm) [433]. Therefore, nanosized
GO showed high performance compared to large GO [433].

Several morphology of silicon, including nanowire [278],
nanopost [279], nanopillar [144], microcolumn [67],
nanofilaments [283], films [284], amorphous silicon [285],
p+ type-derived PSi [140], were reported. The morphology
plays a role in the materials performance. The relation of the
nanoparticles morphology and their performance should be
correlated for the same analyte under identical conditions.

Surface properties of nanoparticles

Surface of NPs plays a leading role in the performance for
LDI-MS [348]. Laser radiation interacts first with the sur-
face or capping agents of NPs. Surface of NPs can be tuned
the materials absorbance of laser energy [348]. It can be
used also for selective trap and ionization for the aromatic
molecular targets due to π-π interactions [434]. Laser a-
blation of Au in solution offered chemical-free size s-
elected Au NPs (LASiS) [435]. LASiS showed very low
background in the low mass region (<500 Da) compared to
ci t ra te s tabi l ized Au NPs (ci t ra te-Au NPs) , and
dihydroxyacetophenone (DHAP) [435]. It was reported
that the analyte ablation from the substrate plays trivial role
for SALDI efficiency compared to the chemical properties
of the surface [436]. The efficiency of LDI can be en-
hanced via modifying surfaces of the substrates with a
plasmonic hot-electron transfer effect [437]. Magnetic
nanoparticle modified with gluconic acid, citric acid,
lactobionic acid, or glutathione reveals that the best cap-
ping agent for glycan, and peptide is gluconic acid and
citric acid, respectively [438]. Another study showed that
the chemical modification of graphene (e.g., oxidation,
fluorination, amination, and carboxylation) affect the anal-
ysis of chemical contaminates in both modes, negative and
positive [439]. However, the materials performance de-
pend also on the analyte and incubation time [439].

Surface

Concentration

Composition

Pore size 

Additives

Thickness

MALDI

Crystalinity

Area

Fig. 6 Analysis of key
parameters affecting
nanoparticles performance
including composition, surface,
concentration, thickness,
additives, surface area, pore size,
and MALDI-MS instrument
parameters
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Surface-based techniques such as silicon arrays, chips, thin
films, and influenced by the surface properties. Silicon-based
techniques require a clean surface with certain physicochem-
ical properties [440]. A study showed a correlation between
the substrate physicochemical properties and the LDI perfor-
mance [440]. Results indicated that thick nanostructure layer
was effective for LDI-MS compared to thinner nanostructure.
The surface cleaning using plasma etching can effectively
remove the surface contamination and increased the thickness
of the oxide's layer. It was reported that the presence of fluo-
rine and hydroxyl termination in silicon nanostructure en-
hanced the material performance [440]. Amorphous silicon
showed higher ionization efficiencies >1% compared to
hydrogen-passivated amorphous silicon [285]. The surface
of NPs can be tuned for laser absorption [353].

The surface of Au NPs can be modified with conven-
tional matrix CHCA for the analysis of peptides [42, 441].
The modification of NPs surface with conventional matrix
offer higher mass signals compared to the corresponding
conventional CHCA matrix [442]. The surface of Au NPs
can be tuned to achieve a matrix-free method [443]. The
encapsulation of Au NPs into strong acidic material such
as zeolite showed high ionization of amino acids regard-
less of their isoelectric points [110]. LSPR properties of
plasmonic metallic nanoparticle is also a key parameter
during the LDI process [424]. The high density of surface
ligands such as smaller nucleolin-binding aptamer
(AS1411) of Au NPs may enhance multivalent binding
with nucleolin molecules on tumor cell membranes [197].

Chemical engineering of the nanoparticles surface is
useful for applications such as microextraction and sepa-
ration. The surface of Fe3O4@PDA-Mn+ can be easily
modified with eight metal ions, including Nb5+, Ti4+,
Zr4+, Ga3+, Y3+, In3+, Ce4+, Fe3+, for selective enrichment
of phosphopeptides [273]. The hydroxyl and amino group
of PDA offer anchoring groups for these metals and create
new functions for the synthesized materials.

Additives

Additives influence the performance of nanoparticles for
LDI-MS. The presence of perfluorinated surfactants
perfluorooctanesulfonic acid enhanced the signal-to-noise
ratio of tryptic digests for DIOS [444]. These additives
showed 3-fold improvements in the number of peptides
identification. Lithium-rich metal oxide (MnO2, NiO and
Co3O4) ionize small molecules due to lithium adducts
[247]. Conjugation nanoparticles with organic matrix im-
prove their performance without ionization suppression
for high salt concentrations spots [445]. Effect of addi-
tives (NH4OH, NaOH, LiOH, NaCl, or trifluoroacetic ac-
id) on the performance of magnetic nanoparticle reveals
that both cation and anion have effect on LDI efficiency

[438]. However, Na+ and OH- ions were the most effec-
tive in promoting cross-ring fragmentation, compared
with NH4

+, Li+, or Cl- ions [438].

Concentration of nanoparticles

Concentration of nanoparticles influences the analysis perfor-
mance for LDI-MS. The analysis of carbohydrates using low
concentration of organic matrix modified MNPs offer soft
ionization [265]. In other hand, the high concentration in-
creases the fragmentation for carbohydrate [265].

Thickness of thin films or coating

The analysis of small molecules using thin films, chips
and substrate modified nanoparticles depends on the
thickness of these thin film technologies [333].
Optimization of the thickness is critical and should be
considered during analysis. There are several methods to
control the thickness of films including layer-by-layer
(LBL) assembly cycles [333]. The thickness of GO-
MWCNT-NH2 multilayer-coated substrates influences
the analysis of small molecules as shown in Fig. 7. The
optimal number of LBL is varied based on the properties
of the investigated analyte. The optimum number of GO
film layers for LDI-MS analysis shows dependence on the
chemical structures of small molecules, and the laser en-
ergy threshold needed for LDI of small molecules on GO-
MWCNT films could be lowered as the number of LBL
assembled GO films increased underneath the MWCNT
layer [446]. The thickness of NPs on the tissue or the
investigated organs is critical for imaging. The sputtered
silver coating thickness was optimized for mouse and rat
tissues including brain, kidney, liver, and testis [213]. The
optimized thickness for mouse brain tissue section was 23
± 2 nm and 16 ± 2 nm for the other tissues. Optimal
thickness is very important to avoid ion suppression.
The LDI efficiency depends on the thickness, assembly
sequence and surface roughness of the hybrid films [447].

Pore size and surface area for porous materials

Porous nanostructures offered tunable properties for high
performance of separation and microextraction. The pore
structure of silicon-based materials retain the small analyte
and enhances LDI process [143, 285]. The porosity of
silicon can be tuned using etching solution, current densi-
ty, or etching time [143]. Silicon substrate with highly
disordered structure and high concentration of “dangling
bonds” or deep gap states showed high ion generation
[285].

The pore size and surface area for fullerene–silica ma-
terials influence the performance of LDI process. Data
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showed that the large pores facilitate the analytes desorp-
tion. The high surface area of fullerenes offered high ef-
ficiency for the laser energy transfer to the analytes. Thus,
the material offers high sensitivity with low LOD
(picomol level ) [448] . The mater ia ls produced
interference-free spectra.

The crystallinity of nanoparticles

The crystal orientation on silicon showed low effect on
the substrate performance [143]. The crystal orientation
affect the pore shape and directionality but not pore size
[143]. A few studies are available in the literature focus-
ing on the materials crystallinity and their effect on LDI
efficiency.

Instrumental parameters

Instrumental parameters, including type of analyzer; time-of-
flight tube (TOF) or Fourier-transform ion cyclotron reso-
nance (FTICR) [214], length of TOF tube, laser wavelength,
mode of ionization [137], affect the results of nanoparticles.
The mode of ionization affect the performance of nanoparti-
cles [438]. For instance, there is no ionization performance of
magnetic nanoparticle using different capping agents and ad-
ditives in negative mode [438]. In contrast, the nanoparticle
showed good performance in positive mode.

Other parameters

Other parameters such as the analyte and incubation time
[439], surface disorders, thermal conductivity and physically

Fig. 7 Effect of the number of LBL assembly cycle of GO/MWCNT-NH2 multilayer-coated substrates for the analysis of various small molecules,
cellobiose, Leu-enkephalin, glucose, lysine, leucine and phenylalanine. Figure reprinted with permission from Ref. [333]
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or chemically adsorbed water [449], surface contamination
[450], phase-transition properties of NPs [202], and melting
properties of the nanoparticles during laser irradiation [124],
affect the signal intensities of analyte ions. LDI efficiency is
significantly affected by small changes in the analyte attaching
to the target [451].

Conclusions and Outlooks

The use of nanoparticles for the analysis of small molecules
using LDI-MS is promising. Nanoparticles offer high sensi-
tivity and better selectivity compared to conventional organic
matrices. The material sensitivity can be increased using the
suitable nanoparticles and signal amplification [452]. The key
parameters of nanoparticles including composition, size, po-
rosity, surface, and crystallinity influence the material perfor-
mance. Sensitive nanoparticles are varied from analyte to an-
alyte. Thus, each nanoparticle class can be suitable for certain
type of analytes.

The surface properties of nanoparticles influence the mate-
rial performance. The surface modification can be tuned to
achieve high selectivity for separation or extraction applica-
tions. The surface of nanoparticles can be also tuned to im-
prove the materials absorbance for laser energy and thus the
material performance.

The analysis of small molecules using nanoparticles offer
free background spectra. They show no peak overlap and can
ionize almost the entire analytes in a mixture without observ-
able ion suppression. The ionization efficiency of nanoparti-
cles is high due to their large surface area. Thus, they can be
used for the poor ionization analytes via direct ionization or
the formation of adducts with the investigated analyte.

The modification of nanoparticle surface with organic ma-
trices is attractive. Organic matrices could serve as capping or
stabilizing agents and at the same time as binary matrix for
LDI-MS. The combination of two or more diverse kinds of
inorganic materials offers a better performance because of the
synergic effect of the composite. They also offer several tasks
including matrix, separation, enrichment, extraction, and se-
lective ionization.

The preparation of inorganic nanomaterials in some cases
is complicated and requires expensive reagents. Further efforts
for simple and cheap methods are necessary. The method
should be simple and easy for further modification. Thus, they
can serve as selective probe or adsorbent for separation and
extraction prior to the analysis.

Analysis of small molecules using thin film or chip-based
technology is simple, direct and requires no matrix. However,
they lack high reproducibility. Extract efforts to raise the mass
ceiling and improve the reproducibility of the porous silicon
material is necessary. In general, factors affecting the repro-
ducibility should be also investigated [453].

A few materials were used for quantification analysis using
LDI-MS compared to other techniques [454, 455] (Tables 1,
2, 3, 4, 5 and 6). The high standard deviation of the signals
limits the application of nanoparticles for quantification anal-
ysis. Compared to several types of nanomaterials, MOFs are
promising (Tables 1, 2, 3, 4, 5 and 6). The large surface area
and the presence of tunable pore size improve the signals and
reduce the signal fluctuation. Thus, they offer high regression
coefficient (R2> 95%).

Nanopart ic les show promising appl icat ion for
preconcentration of low concentration of analytes such as
phosphopeptides (Table7) [174,397,406–414].The large surface
area of nanoparticle offers high ionization efficiency of the target
species in the presence of other interference analytes.
Nanoparticles canbe easilymodifiedwithmagnetic nanoparticles
for easy separation or preconcentration with very low LOD and
high selectivity (phosphopeptides:nonphsophopeptides, Table 7).

Nanoparticles advanced LDI-MS. There are several chal-
lenges facing the applications of nanoparticles for LD-MS.
However, these challenges can be circumvented. Searching of
good spots is also a challenge. Thus, materials such as
superhydrophobic silicon structure with hydrophilic copper
particles to make His-tagged model peptide molecules is re-
ported to capture analytes and offer simple searching method
[456]. The analyte can be also confined on a surface of Si pillar
[145]. This can be also achieved using very small sample spot
with size smaller than the laser spots [453]. Biological activity
of nanoparticles is important and has to be taken into account
during applications [18, 29, 301, 308, 457–459]. Synergetic
effect of nanocomposite should be also considered [460].

Compliance with ethical standards The author(s) declare that
they have no competing interests.
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min; Au NPET, cationic gold nanoparticle enhanced target; CLs,
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cetyltrimethyl ammonium chloride; CV, coefficient of variation; DIOS,
Desorption ionization on silicon; DIOM, desorption ionization on meso-
porous silicate;DDAB, didodecyldimethyl ammonium bromide; ESI-MS,
Electrospray ionization mass spectrometry; GSH, glutathione; GALDI-
MS, Graphite assisted LDI-MS; MILs, Materials Institute Lavoisier;
MALDI-MS,Matrix assisted laser desorption ionization mass spectrome-
try; ME-NIMS, matrix-enhanced nanostructure initiator mass spectrome-
try;MELDI, material enhanced laser desorption ionization; IMAC,Metal
affinity chromatography; nano-PALDI, nanoparticle assisted LDI; NIMS,
nanostructure initiator mass spectrometry;NALDI, nanostructure-assisted
laser desorption/ionization; TOAB, tetraoctylammonium bromide;
TMAOH, tetramethyl ammonium hydroxide pentahydrate; 4-MPBA,
mercaptophenylboronic acid; NALDI-MS, nanowire assisted LDI-MS;
NSAIDs, non-steroidal anti-inflammatory drugs; PEG 200, polyethylene
glycol; PCs, 4- phosphatidylcholines; Pes, phosphatidylethanolamines;
PIs, phosphatidylinositols; PGs, phosphatidylglycerols; QA, Quaternary
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