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Abstract
This review (with 168 refs) summarizes the progress that has been made on the field of microextraction of heavy metal ions using
carbonaceous materials. Following an introduction into the features of such materials, we discuss the various kinds of sorption-
based microextraction techniques (like solid phase extraction, micro solid phase extraction, solid phase microextraction, mag-
netic solid phase extraction, and dispersive solid phase extraction). The next section covers specific methods based on the use of
carbon-based adsorbents (with subsections on uses of carbon nanotubes, graphene, fullerenes, activated carbon, carbon
nanohorns, carbon nanofibers, graphitic carbon nitride, and their composites). The concluding section addresses current chal-
lenges, and gives an outlook on potential future trends.
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Abbreviations/acronyms

AFS Hydride generation-atomic
fluorescence spectrometer

AMP 2-((2-aminoethylamino)methyl)phenol
ANS 1-amino-2-naphthol-4-sulfonate
APDC Ammonium pyrrolidine dithiocarbamate
ASV Anodic stripping voltammetry
AuNPs Gold nanoparticles
BMSAPD Bis(4-methoxy salicylaldehyde)-

1,2-phenylenediamine
CRM Certified reference material
DCC N,N-dicyclohexylcarbodiimide
DI-SPME Direct immersion-solid

phase microextraction
DMG Dimethylglyoxime
DPASV Differential pulse anodic

stripping voltammetry

EAAS Electrothermal atomic
absorption spectrometry

EBB Eriochrome blue black
EDA Ethylenediamine
EDXRF Energy-dispersive X-ray

fluorescence spectrometry
ES Emeraldine salt
EB Emeraldine base
FI-CV-AAS Flow injection-cold vapor-atomic

absorption spectrometry
FI-SCGD-AES Solution-cathode

glow discharge-atomic
emission spectrometry

g-C3N4 Graphitic carbon nitride
GFAAS Graphite furnace atomic

absorption spectrometry
GO-SBA-15 Silica-grafted graphene oxide
HF-SPME Hollow fiber-solid phase microextraction
HG-AMPES Hydride generation-microwave

plasma atomic emission spectrometry
HG-DC-AFS Hydride generation-double channel atomic

fluorescence spectrometry
HPLC High performance liquid chromatography
HQAB 4-(8-hydroxyquinoline-azo)benzamidine
ICP-AES Inductively coupled plasma-atomic emission

spectroscopy
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IL Ionic liquid
LIF Laser-induced fluorescence
MPANI@GO Fe3O4@SiO2@polyaniline–graphene oxide
MSPE Magnetic dispersive solid phase extraction
MS-FAAS Micro sampling flame atomic absorption

spectrometry
NaDDTC Sodium diethyldithiocarbamate
PAN 1-(2-pyridylazo)-2-naphthol
PAN-imp-ACC 1-(2-Pyridylazo)-2-naphthol

impregnated activated carbon cloth
PANI Polyaniline
PEI Polyethylenimine
Phen@GO 5-amino-1,10-phenanthroline
PPy Polypyrrole
2-PTSC Pyridinecarboxaldehyde thiosemicarbazone
REEs Rare earth elements
SA-D-μSPE Syringe-assisted dispersivemicro solid phase

extraction
SEP Soluble eggshell membrane protein
TEOS Tetraethoxysilane
TETA Triethylenetetramine
TPED N-[3-(trimethoxysilyl)

propyl] ethylenediamine
TXRF Total-reflection X-ray

fluorescence spectrometry
USA-IL-
LDMME

Ultrasound-assisted, ionic
liquid linked, dual-magnetic
multiwall carbon nanotube
microextraction

WDXRF Wavelength-dispersive X-ray
fluorescence analysis

XRF X-ray fluorescence spectrometry

Introduction

Heavy metal ions are released into the environment through dif-
ferent sources mainly including agricultural and industrial activ-
ities [1]. Some metal ions such as copper, zinc, and iron are vital
for a healthy life at trace amounts; however, some other (e.g. Cd,
Hg, As, and Pb) are considered very toxic and harmful even at
trace levels of concentration [2]. Consequently, the development
of promising techniques for the analysis of heavymetal ions is of
great concern.

Various methods have been introduced and applied for the
extraction of heavy metals from real matrices [3–6]. As con-
ventional pretreatment techniques are time, reagents, and sam-
ple consuming, it has been tried to develop miniaturized ana-
lytical methods to minimize the consumption of reagents and
energy. For instance, automation of pretreatment process, de-
velopment of greener microextraction methods, and use of
microwave and ultrasound radiation can be helpful to achieve
this goal. Sorptive-based extraction methods are among the

most successfull-employed methods for the enrichment of
heavy metals from different complicated matrices.

As the type or nature of the sorbent is considered among
the most critical factors that can influence the efficiency of the
extraction procedure, it is important to use an appropriate ma-
terial for the enrichment of the target metal ion [7, 8]. Lately,
carbonaceous adsorbents and their hybrids with other nano-
particles have aroused considerable attraction in sorptive-
based pre-concentration methods for the determination and
analysis of hazardous metal ions. These sorbents show several
notable properties including high sorption capacity, ease of
surface modification, outstanding electrical/chemical and
thermal properties [9, 10].

This review presents and highlights the recent applications
(since 2010) of various classes of carbon-based compounds
(namely activated carbon (AC), carbon nanotubes (CNTs),
graphene (G), graphene oxide (GO), reduced graphene oxide
(rGO), carbon nanohorns (CNHs), carbon nanofibers (CNFs),
graphitic carbon nitride, and fullerenes) for the separation and
pre-concentration of various heavy metals in the environmen-
tal, food, and biological samples. This review also emphasizes
the current trends and developments in the synthesis and mod-
ification process of these sorbents in the sorptive-based
techniques.

Different sorptive-based extraction
techniques

Although a tremendous improvement has been occurred in
modern analytical instruments, pretreatment methods are
still commonly used to improve limits of detection
(LODs) and reduce the matrix effect in the determination
of heavy metals [11]. Normally, several factors like the type
of analyte, the extraction procedure, and the extracting
phase (either solvent or sorbent) should be taken into ac-
count before choosing a pretreatment technique [11].
Among numerous sampling methods, extraction and pre-
concentration of analytes using sorptive-based enrichment
techniques have been widely utilized for the potential anal-
ysis of various chemicals from several complicated matri-
ces [12, 13]. The general principle in sorptive-based pre-
treatment techniques is that analytes are interacted with the
extraction phase or sorbent and separated from the sample
media. Then the sorbent is isolated (using centrifugation,
filtration or external magnet) from the sample solution and
the retained analytes are eluted from the sorptive phase for
further instrumental analysis (Fig. 1).

Solid phase extraction (SPE) was first introduced in the
1970s to lessen the consumption of a large amount of toxic
organic solvents in liquid-liquid extraction (LLE). SPE is still
utilized as one of the most profitable choices for analyte pre-
concentration in analytical chemistry [14]. In SPE, the solutes
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Fig. 1 Schematic of different
sorptive-based extraction
techniques
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are adsorbed onto the solid sorbent, isolated from the interfer-
ences and enriched. The type of the adsorbent depends on not
only the analyte of interest but also the interaction of the sor-
bent and the analyte. Accordingly, an appropriate sorbent can
enormously enhance the efficiency of the extraction process.
Various benefits involving low-cost, simplicity, small volume
of organic solvents, and compatibility with many analytical
instruments are associated with the SPE [12, 14].

In 1990, the miniaturization in solid phase extraction re-
sulted in the development of solid phase microextraction
(SPME) [15] and it has continued to date. The fundamental
aims of miniaturization include reduction of the consumption
of samples, chemicals, solvents, sorbents, as well as the ex-
traction and sampling tools [11]. In SPME, the analytes of
interest are extracted into the sorptive phase, which is coated
on the surface of fused silica fiber (and/or stainless steel wire)
or placed inside the needle-like device [16, 17]. It is worth
mentioning that the stability, nature as well as the thickness
of the coating sorbent can affect the efficiency of the pre-
concentration procedure in SPME. The enriched target
chemicals can be analyzed by either gas chromatography
(GC) or liquid chromatography (LC) after thermal and solvent
desorption, respectively. SPME is a cost-effective, and envi-
ronmentally friendly pretreatment method.

In 1999, stir bar sorptive extraction (SBSE) was first applied
as a new generation of miniaturized sorptive-based extraction
technique [18]. An SBSE device is composed of a coated mag-
netic stir bar with a suitable sorbent (typically polydimethylsilox-
ane (PDMS)) which is placed inside the glass jacket. The mag-
netic bar is then exposed to the solution containing the analytes
(either in the direct or headspace modes) for a certain duration.
Afterward, the adsorbate is back-extracted from the sorptive
phase using thermal desorption (TD) or solvent elution [19].
Depending on the nature of the target analyte and the sample
matrix, different sorptive materials can be utilized in SBSE. For
instance, metal-organic frameworks (MOFs), moleulary-
imprinted polymers (MIPs), and carbonaceous material are
among the most common sorptive phases in SBSE [20–22]. In
comparison with SPME, the larger quantity of the sorptive phase
in SBSE leads to lower limits of detection (LODs) and higher
extraction recoveries [19].

Dispersive solid phase extraction (DSPE) is another form
of SPE in which the adsorbent is exposed to the analytes via
dispersion process to provide a large surface area and high
sorption capacity. The following analysis of the analytes can
be performed after isolation of the sorbent using centrifuga-
tion process [23]. DSPE possess several benefits including
short equilibrium time, no need for conditioning stage, and
high extraction recovery. Micro solid phase extraction
(μSPE) and dispersive micro solid phase extraction
(D-μSPE) are two other miniaturized forms of sorptive-
based pretreatment methods. In both of these methods, the
smaller quantity of sorbent is used compared to SPE and

DSPE [23]. Until today, carbon-based sorbents have been
continuously applied for the enrichment of heavy metals from
diverse real samples using DSPE and D-μSPE [24–26].

Magnetic solid phase extraction (MSPE) is another alter-
native to general SPE in which an external magnet is used for
the retrieval of the magnetic adsorbent from the aqueous sam-
ple. The extraction procedure can be performed by either func-
tionalized magnetic nanoparticles (MNPs) or their composites
with other materials such as CNTs, G, and GO [27]. The
elimination of centrifugation and/or filtration step is the most
notable superiority of this method that leads to the simplicity
and rapidity of the enrichment process.

Carbon-based adsorbents and their
characterization techniques

Contemporary trends in the development of sorptive-based
enrichment methods have led to the synthesis and application
of diverse range of solid materials (e.g. ion-imprinted poly-
mers (IIPs), MOFs, CNTs, G, GO, metal, and metal oxide
nanoparticles) for the enrichment of hazardous metals
[28–31]. Several remarkable properties of carbonaceous sor-
bents mainly involving high sorption capacity, possibility for
surface modification, reasonable extraction efficiency, and
good conductivity make them be favorable among chemists
and environmentalists for the isolation of harmful contami-
nants [32].

The elemental, structural, and chemical composition of
carbon-based sorbents can be determined using diverse tech-
niques including X-ray diffraction (XRD), scanning electron
microscopy, energy dispersive X-ray spectroscopy (EDX),
and Fourier transfers infrared spectroscopy. SEM allows the
determination of the morphology of the prepared sorbent. In
addition, SEM can confirm structural changes that may hap-
pen on the surface of the sorbent due to some phenomenon
such as functionalization of the surface and adsorption/
desorption of the analyte onto the surface of the adsorbent
[33].

FT-IR is a proper technique to detect the present function-
ality of the prepared solid sorbent. For instance, the IR spectra
can represent the incorporation of the diverse functional
groups such as hydroxyl, amino, carboxyl, and carbonyl onto
the surface of the modified carbonaceous materials.

In addition, the elemental analysis of the synthesized sor-
bent can be performed by EDX. Moreover, X-ray photoelec-
tron spectroscopy (XPS) and XRD can confirm the chemical
composition and crystal structure of the sorbent [33].

Moreover, the specific surface area of the applied sorbent is
usually determined by the adsorption of N2 on the surface of
the sorbent at 77 K [33, 34]. The Brunauer–Emmett–Teller
(BET) and Barrett–Joyner–Halenda (BJH) theories aim to de-
termine the surface area (m2 g−1) and the adsorption
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cumulative pore volumes (cm3 g−1) of the adsorbent, respec-
tively. This section focuses on the several categories of
carbon-based substances, their physicochemical properties,
preparation, and modification methods in sorptive-based pre-
treatment area.

Activated carbon

Activated carbon (AC) is classified as a carbon-based material
composed of graphite crystallites possesses heterogeneous
and irregular surface. Chemical treatment or pyrolysis of ma-
terials like nutshells, wood, and coal leads to the production of
AC. Several factors such as synthesis procedure and the kind
of materials used for synthesis were found to affect the surface
structure of activated carbon. Various functional groups (e.g.
quinone, carboxyl, hydroxyl, and carbonyl) can be attached to
the surface of AC through gas and liquid phase oxidation.
However, oxidation can decrease the surface of AC [35].

The presence of functional acidic molecules in the surface
of activated carbon is beneficial for the extraction and removal
of metal ions. However, the heterogeneous surface of ACmay
reduce the reproducibility of this sorbent. Moreover the hy-
drophobic structure of activated carbon restricts the interaction
of inorganic analytes (metal ions) with this sorbent and results
in the increase of the adsorption time. Therefore, the surface of
AC can bemodified using different chelating agents such as 8-
Hydroxyquinoline, diarylazobisphenol, and pyrocatechol vio-
let (Fig. 2). The modification can enhance not only the selec-
tivity but also the adsorption ability of this sorbent toward
target heavy metal ions [36]. The adsorption efficiency of
AC depends on pH, temperature, salt concentration, as well
as interferences concentration; therefore, these factors should
be controlled to achieve reasonable sorption capacity [37].

In 2010, a column-based SPE was performed using modi-
fied AC with 2-((2-aminoethylamino)methyl)phenol (AMP)
for the enrichment of three metal ions (Fe3+, Cu2+, and Pb2+)
followed by sensitive analysis using ICP-OES [36]. For this
purpose, the adsorbed impurities on the surface of the AC
were removed using HCl solution. Next, the COOH groups
were added to the surface of the sorbent by interacting (at
60 °C for 5 h) with HNO3 solution (5 mol L−1). Then,
4.5 mg AC-COOH was interacted with 100 mL of
ethylenediamine (EDA) under heating and stirring. The sub-
sequent addition of N,N-dicyclohexylcarbodiimide (DCC)
was lead to the production of AC-EDA. The AC-EDA was
subsequently used for the preparation of AC-AMP using
salicylaldehyde and sodium borohydride as the main precur-
sors. Finally, an appropriate quantity of the synthesized sor-
bent was used to pack a polytetrafluoroethylene column. The
influence of different parameters (e.g. pH, elution conditions,
sorbent quantity, and flow rate) was then investigated to reach
an optimum pre-concentration condition. High adsorption ca-
pacities (12.1–67.1 mg g−1) and large pre-concentration

factors (50–100) are obtained for the analysis of the target
metal ions in both water and biological matrices. In the same
research work, modified activated carbon with 4-(8-
hydroxyquinoline-azo)benzamidine (HQAB) was used as a
solid adsorbent for the analysis of lead ions in environmental
water samples [38]. Chemical modification of the AC surface
with HQAB can improve the sorption capacity (53.58 mg g−1)
and selectivity of the sorbent due to the presence of nitrogen
and oxygen atoms in the structure of the ligand. The main
advantages of these two reported methods are the reusability
of the sorbents (up to 10 cycles for both) and large sorption
capacity.

In 2012, a composite of gold nanoparticles (AuNPs) with
AC and b i s ( 4 -me t h oxy s a l i c y l a l d ehyde ) - 1 , 2 -
phenylenediamine (BMSAPD) was reported [39] as a solid
sorbent for the enrichment of Pb2+, Zn2+, Ni2+, Cu2+, Co2+

and Fe2+ from corundum sativa, olive, limon, and onion sam-
ples. The presence of AuNPs on the surface of AC allows the
further modification of AC surface with the complexing agent.
In addition, conjugation of AuNPs with AC leads to the en-
hancement of the sorbent selectivity toward the metal ions.
The composite (AU-NP-AC-BMSAPD) provided trace anal-
ysis of the analytes (LODs: 1.4–2.6 μg L−1) with large sorp-
tion capacity (31.5–37.4 mg g−1) prior to FAAS analysis. The
method combines the advantages of using AC and gold nano-
particles in the extraction procedure. However, desorption of
heavy metals with a large volume of the eluent (6 mL of nitric
acid 4 mol L−1) from the surface of adsorbent can be consid-
ered as a demerit of the procedure.

Lately, Mogolodi Dimpe et al. [34] prepared a novel com-
posite of activated carbon with magnetic nanoparticles and
manganese oxide nanoparticles for the following dispersive
magnetic solid phase extraction of several toxic heavy metals
(e.g. Sn, Ti, Ta, Sb, Mo, Hf, Zr, W, Ge, Nb, Hf, Te). The
presence of MnO2 in the composite structure increases the
affinity of the AC large surface area for the adsorption of
target metals in water samples. The results were fitted into
both Langmuir and Freundlich isotherm models; however,
Langmuir model gave higher r2 value (0.997). The main ob-
jective of miniaturization in separation science is to reduce the
amount of reagents, time, and sample tools. However, adsorp-
tion of analytes with large amount of sorbent (125 mg) com-
pared to the conventional SPE can be considered as a disad-
vantage of this research work. On the other hand, this
microextraction method revealed good analytical figures of
merit. The low LODs (0.0004–0.02 μg L−1), high pre-
concentration factors (PF: 396–920) and reasonable precision
(RSD < 5%) proved the applicability of the sorbent for analy-
sis of metal ions in the environmental water samples. Recent
applications of AC in sorptive-based extraction methods for
the enrichment of heavy metal ions are presented in Table 1.
According to the Table, modified AC with different chelating
agents have been used for the efficient enrichment of a variety
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of metal ions. This sorbent provides low limits of detection
and high sorption capacity. Moreover, among diverse types of
analytical instruments, FAAS and ICP have been the most
common ones for determination of the target metals.
Compared to other carbon-based sorbents, AC is cheap and
more available. However, this adsorbent composed of larger
carbon particles that are irregular in shape.

Graphitized carbon black

Graphitized carbon black (GCB) is a carbonaceous substance
that has been used in SPE procedure for the first time in the
1980s. GCB can be produced by heating of carbon black at
high temperature (about 2700–3000 °C) [40]. According to
Corcia et al., [41] acidic compounds can be strongly adsorbed
on the surface of graphitized carbon black due to the presence
of some oxygenated groups such as quinones. The irreversible
binding of target analytes onto the surface of the GCB can

restrict the application of this sorbent in sorptive-based extrac-
tion techniques. To avoid this phenomenon, the sorbent can be
treated by the solution of ascorbic acid in order to decrease the
number of quinones groups on the surface of the GCB [40,
41].

Porous graphitized carbon (PGC) is another form of graph-
itized carbon possessing extremely homogeneous crystalline
surface. The 2-D structure of PGC consists of sp2-hybridized
carbon atoms. The impregnation of silica with phenol-
formaldehyde mixture followed by polymerization and car-
bonization at 1000 °C leads to the production of PGC. Then,
the silica can be removed by the subsequent treatment in a
concentrated solution of KOH or NaOH [40, 42]. Both GCB
and PGC can be employed as sorbents for the isolation and
enrichment of heavy metals in sorptive-based pretreatment
methods, however, no research article has reported since
2010.

Fig. 2 Structure of general
chelating agents for the
modification of the surface of AC
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Carbon nanotubes

In 1991, Iijima discovered an allotrope of carbon named car-
bon nanotubes [43]. These substances are cylindrical in shape
with a diameter of about several nanometers. Based on the
number of graphene layers in the tubular structure of CNTs,
these materials are classified into two groups: single-walled
carbon nanotubes (SWCNTs) and multi-walled carbon nano-
tubes (MWCNTs) [10].

Chemical vapor deposition, arc-discharge, and laser abla-
tion are among the most typical synthesis procedures for the
preparation of CNTs. Chemical vapor deposition is the most
reliable method that leads to the high-scale production of pure
CNTs. While laser ablation is frequently used for the synthe-
sis of CNTs on a laboratory scale [35, 44].

Generally, non-covalent interactions including π-π inter-
action, van der Waals forces, and hydrophilic interactions are
responsible for the adsorption of analytes onto the surface of
CNTs. Carbon nanotubes can be oxidized through the inter-
action with several oxidizing agents (like sulfuric acid, nitric
acid, and potassium permanganate) [10]. Oxidized CNTs are
polar and can be easily dispersed into the aqueous media. The
oxygenated functional groups on the surface of CNTs can
interact with metal ions and lead to the efficient extraction
of these analytes from complicated matrices [45].

Although SWCNTs have a larger surface area in compar-
ison with MWCNTs, they have found lower applications in
sorptive-based extraction techniques. The more complex syn-
thesis process and resistance to functionalization and oxida-
tion are the most important factors that confine the applica-
tions of SWCNTs in SPE methods [44].

In contrast to graphene-based sorbents, the inter walls of
CNTs are not available for the analytes adsorption. Therefore,
the main adsorption process is taken place on the outer surface
of CNTs. In addition, the synthesis procedure for the prepa-
ration of graphene-based materials is easier than that one for
the CNTs. In other words, no purification stages and complex
instruments are needed for the production of graphene-based
materials [45]. To date many toxic heavy metal ions have
been separated and concentrated from different matrices
(e.g. food, biological, and environmental samples) using
CNTs as sorbent (Table 2).

In 2010, Ozcan et al. [46] packed an SPE column with
MWCNTs for the subsequent enrichment of several heavy
metals (Cu2+, Fe3+, Mn2+, and Pb2+) from the plant, water
and food samples. The packed column was successfully ap-
plied for the extraction of the target metal ions with low LODs
ranged from 3 to 8 μg L−1.

In another example, a composite of MWCNTs and mag-
netic nanoparticles were prepared and employed as an effi-
cient sorbent for the magnetic solid phase extraction ofMn(II)
and Pb(II) after FAAS analysis [47]. To obtain the magnetic
sorbent, an appropriate quantity of MWCNTwas dispersed inTa
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the solution of Fe2+/Fe3+ (1:2) under the inert atmosphere of
argon. Then 20 mL of ammonium hydroxide solution was
added gradually to the mixture and the reaction continued
for 30 min at 50 °C. Finally, the synthesized composite was
isolated using an external magnet and washed thoroughly with
water and ethanol. The Fe3O4/CNT composite was used for
the fast and convenient extraction of trace amounts of target
metals (LODs: 0.6–1.0 μg L−1) in rice, cosmetic, and urine
samples. In addition, the reported results from the analysis of
the certified reference material (CRM) was in good agreement
with the actual values and proved the validity of the reported
method. Compared to the pure CNTs, the magnetic compos-
ites has better dispersion ability that can lead to the easier
isolation of the adsorbent from the sample solution. In addi-
tion, the surface ofMCNTs is prone tomoremodification with
other nanoparticles or functional groups. Moreover, the lower
volume of elution solvent (200 μL) is used for desorption of
metal ions from the surface of the MCNTs. According to the
article, the synthesized composite was regenerated using the
mixture of acid/ethanol and reused in the SPE process eight
times.

A novel sorbent was prepared by the combination of mag-
netic nanoparticles coated with silica shell, MWCNTs, and
1-(2-pyridylazo)-2-naphthol (PAN) for the MSPE of cobalt
and lead ions from water samples before FAAS analysis
[48]. The ease of surface functionalization and stability of
silica makes it be a suitable shell to protect the surface of
MNPs from oxidation and corrosion in the presence of oxygen
and acidic solutions, respectively. To prepare magnetic CNTs,
an appropriate quantity of the synthesized MNPs through co-
precipitation technique was mixed with 1 g of MWCNT and
heated at 60 °C in EtOH solution. Then, a solution of
tetraethoxysilane (TEOS) was added to the prepared magnetic
CNT (at 80 °C) to obtain SiO2@Fe3O4@MWCNTcomposite.
After that, PAN (as chelating agent) was immobilized on the
s u r f a c e o f t h e o b t a i n e d c ompo s i t e t o r e a c h
SiO2@Fe3O4@MWCNT-PAN. This sorbent was then utilized
in the vortex-assisted MSPE procedure. Low LODs (0.55–
1.76 μg L−1) and good precision (RSD%: 2.5–3.3) has proved
the efficiency of this extraction method in the analysis of Pb
and Co ions.

I n one mor e ca se , mod i f i ed MWCNTs w i th
tricaprylmethylammonium chloride (Aliquat 336) was pre-
pared as a solid material for the D-μSPE of Cr(VI) ions from
water samples before total reflection X-ray fluorescence
(TRXF) determination [49]. It is worth mentioning that the
application of D-μSPE followed by TRXF analysis can pro-
vide the determination of the analyte of interest at trace levels
of concentration. First, a solution containing 5% Aliquat 336
in methanol was interacted withMWCNTs (0.025 g) to obtain
the modified CNTs with an anion exchanger. After the opti-
mization of the extraction process, Cr6+ ions were enriched
from the sample solution with high recoveries (101–108%)

and low LOD (3.0 μg L−1). It should be pointed out that lower
amount of the adsorbent (5 mg) and the desorption solvent
(300 μL) were used in the extraction procedure which can
prove the superiority of D-μSPE over the conventional SPE.
In recent research work, the adsorption efficiency of U(VI)
ions using MWCNTs and modified MWCNTs with 2-(5-
Bromo-2-pyridylazo)-5-(diethylamino)phenol (Br-PADAP)
has been compared [50]. According to the results, Br-
PADAP/MWCNTs revealed faster adsorption equilibrium
and high adsorption capacity compared to pure MWCNTs.
This can be attributed to the presence of the chelating agent
on the surface of MWCNTs. In fact, modification of CNTs
surface by metal complexing agents can improve the selectiv-
ity of these sorbents toward the adsorption of metal ions.

Based on the information of Table 2, since 2010, CNTs and
their different composites have been used in diverse solid
phase-based pretreatment methods for the analysis of metal
ions. This group of carbonaceous materials can be easily mod-
ified to facilitate the adsorption process of analytes. However,
the insolubility of CNTs can cause high pressure in column-
based SPE. As CNTs can provide the trace analysis (at μg L−1

and ng L−1 levels) of toxic heavy metals in different complex
matrices, their application can be more extended in separation
science in the future. Therefore, there is still a great room to
develop more convenient modification methods and produce
novel composites from CNTs.

Graphene, graphene oxide, and reduced graphene
oxide

The 2-dimensional structure of graphene is produced from a
single layer arrangement of carbon atoms with sp2 hybridiza-
tion. Unlike other forms of carbonaceous materials (e.g.
CNTs, and fullerenes), both sides of graphene planar sheets
are available for analyte uptake in sample media [32, 51].
Compounds that contain aromatic rings (like pesticides, drugs,
and polycyclic aromatic hydrocarbons) can be efficiently ex-
tracted using G, due to the interaction the π-electron system in
the benzene ring of these substances with that one in graphene
structure [32].

There are some synthesis methods for the production of
graphene in both industrial and research scale. The
micromechanical exfoliation of graphite can produce
graphene. Although this method yields pure graphene, it is
not applicable to large-scale production. Likewise, the exfoli-
ation via ultrasonication process results in low-yield produc-
tion of graphene [45]. The most promising scalable methods
for preparation of G are the thermal decomposition of SiC and
chemical vapor decomposition (CVD) of alcohols and hydro-
carbons [45, 52]. In addition, the chemical reduction of
graphene oxide using an appropriate reducing agent (e.g. hy-
drazine) is another typical method to produce graphene with
high quality [53].
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In 2012, Wang et al. [54] investigated the application of
graphene as a sorbent in column-based SPE for the enrich-
ment of the trace quantities of Pb2+ ions in different water
(sea, tap, and river water) and vegetable (cucumber and
tomato) samples. For this purpose, GO was synthesized
through the Hummers method and then it was reduced with
hydrazine to obtain graphene. An appropriate quantity of the
synthesized sorbent (30 mg) was placed in an SPE column
and utilized for the following enrichment of lead ions. The
packed column was stable in more than 50 extraction/
elution cycles and showed large sorption capacity
(16.6 mg g−1). The π-π interaction between graphene and
the benzene rings in the structure of the chelating agent
(dithizone) can enhance the affinity of the sorbent toward
the adsorption of lead ions.

The hybrid of graphene and other nanomaterials can re-
duce the aggregation of this sorbent in aqueous samples and
improve the efficiency of the extraction procedure in SPE.
For example, Yavuz et al. [55] reported a novel composite of
graphene and cobalt oxide (G@Co3O4) for the pre-
concentration of iron, lead, and copper ions from food and
water samples. This composite showed high sorption capac-
ity (58–78 mg g−1) and low limits of detection
(LODs≤0.81 μg L−1). To prepare the composite, first cobalt
oxide particles are chemically deposited onto the GO and
then GO was reduced to G by adding the solution of sodium
borohydride. This nano composite was applied in both batch
and column-based solid phase extraction. According to the
results, using low amount of G@Co3O4 (100 mg) is consid-
ered as the great advantage of the extraction process.
However, based on the fast equilibrium time and large sur-
face area of the sorbent, this amount of the composite is not
low enough. Therefore, other analytical merits such as rapid
kinetic (10 S), high sorption capacity and pre-concentration
factor are considered among the most important character-
istics of this sorbent.

In another case, Ezzodin et al., [56] found that the disper-
sion of magnetic graphene into the aqueous sample contain-
ing cadmium and lead ions offered an efficient extraction
procedure for the enrichment of these ions prior to analysis
by atomic absorption spectrometer. The conjugation of
graphene with MNPs improved not only the dispersibility
of the solid sorbent but also its sorption capacity. Extraction
of the target analytes using 0.5 mg of magnetic graphene,
which is much smaller than that in conventional SPE, is
considered as the most notable feature of miniaturized SPE
techniques.

Graphene oxide is a popular form of graphene-based
substance among researchers in whichmany functional moi-
eties containing an oxygen atom (hydroxyl, carboxyl, epox-
ide, and carbonyl) are incorporated. The addition of such
groups make this sorbent be more hydrophilic in character
[9]. In addition, the presence of functional groups in GO isT
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responsible for electrical and hydrogen bonding interactions
with metals and organic analytes. Likewise, modification of
the GO surface is more possible due to the presence of polar
oxygenated groups [9]. For instance, the aggregation of GO
particles can be restricted by attachment of different
nanomaterials such as SiO2, MNPs, and TiO2. On the other
hand, the electrical and mechanical properties of GO is less
than graphene due to the existence of many oxygen atoms in
the structure of this sorbent [45, 57, 58].

Themost typical procedure for the synthesis of GO is based
on the oxidation of graphite via Hummers method. In this
method, graphene oxide is produced by the gradual addition
of potassium permanganate to the solution containing graph-
ite, sodium nitrite, and sulfuric acid. The reaction is proceeded
at 308 K for 2 h following the addition of hydrogen peroxide
to produce the yellow product [59]. Despite the remarkable
properties of graphene and graphene oxide in sorptive-based
extraction methods, the softness of these sorbents can cause
high pressure in column-based SPE and lead to the loss of the
adsorbent [14]. In one case, the combination of GO with
ethylenediamine (EDA) was utilized as a low-cost adsorbent
for the simultaneous enrichment of several toxic heavy metals
from water samples via D-μSPE [60]. Due to the presence of
nitrogen heteroatoms in the structure of GO/EDA, no more
chelating agent was used in the extraction process. According
to the results, GO/EDA sorbent demonstrated the LODs in the
range of 0.06–0.1 μg L−1.

Magnetic graphene oxide is a composite of GO that can be
prepared through co-precipitation procedure [61] and be uti-
lized as an efficient sorbent with high sorption capacity in
MSPE. As an example, Seidi et al., [62] investigated the mag-
netic DSPE through immobilization of polythiophene (PTh)
on the surface of MGO for the determination of Hg in seafood
samples. Similar to other previously published research arti-
cles, magnetic GO was synthesized through co-precipitation
technique and then thiophene was polymerized on the surface
of the MGO. As mercury is considered as a soft acid, it can
interact with the sulfur atoms of PTh and consequently can be
isolated from the sample media. In addition, the presence of
PTh can improve not only the sorption capacity but also the
stability of the sorbent against oxidative reagents. Regarding
the optimum experimental conditions and using the experi-
mental design methodology a concentration range of 1–
85 μg L−1 with LOD and RSD of 0.025 μg L−1 and 4.0%,
respectively, were reported. In the same case, a composite of
MGO with polyaniline (MGO@PANI) was synthesized as a
novel sorbent for the per-concentration of toxic Cr6+ ions at
trace concentration levels [63]. GO was synthesized by the
Hummers method with slight modification. To this end,
graphite was added to the cold mixture of sulfuric and phos-
phoric acids followed by addition of KMnO4 and hydrogen
peroxide solutions. Next, MGO@PANI was prepared using
several precursors including MGO, cetyltrimethylammonium

bromide (CTAB), aniline, and Na2S2O8. The conversion pro-
cess between two forms of polyaniline (emeraldine salt (ES)
and emeraldine base (EB)) and the available forms of chromi-
um ion depend on the pH value. At a pH of 5.6, Cr2O7

2− is the
main form and it can interact with ES form of PANI and
consequently can be extracted from the sample solution.
Therefore, 5.6 was selected as an optimum pH to reach a
maximum extraction efficiency. At more basic and acidic
pHs, there is an adsorption competition between chromium
ions with hydroxyl and anions of acids, respectively. The an-
alytical performance of the extraction method for the analysis
of Cr6+ included a wide linear range (0.015–0.3 μg L−1), low
LOD (0.005 μg L−1), and high PF (40).

Reduced graphene oxide (rGO) is the third form of
graphene, which can be synthesized via different methods
including electrochemical, chemical, and thermal ones.
Among these methods of preparation, chemical reduction of
GO using common reducing agents (like ascorbic acid, lithi-
um aluminum hydride, and hydrazine) is the most applicable
one [52]. Like G and GO, reduced graphene oxide has been
used as an extracting sorbent for the isolation and enrichment
of metal ions in different samples. As an example, rGO was
synthesized by heating the mixture containing GO, N2H4, and
ammonia at 95 °C. Then, rGO was utilized as an adsorbent in
a batch procedure for the determination of zinc ions in onion,
potato, orange, and rock samples after FAAS analysis [64].
rGO was applied in 5 successive adsorption/desorption cycles
by keeping it’s analytical performance. In other example, rGO
was added to the structure of a soluble eggshell membrane
protein (SEP) (rGO-SEP) and used as a new bio sorbent for
the anodic stripping voltammetry (ASV) determination of
Hg2+ in the concentration range of 0.50 to 80 μg L−1 [65].
rGO distributed uniformly into the porous structure of SEP
and provided efficient adsorption and elution of mercury on
the surface of the sorbent. To prove the adsorption ability of
the prepared rGO-SEP in the SPE method, the efficiency of
this composite was compared with SEP and rGO in the same
experimental conditions. According to the reported results, the
recovery of rGO-SEP was more than other two sorbents in the
extraction process. It was attributed to the flexible structure of
SEP that leads to more distribution and less aggregation of
rGO. The column-based SPE revealed large sorption capacity
(77 mg g−1) and low LOD (0.14 μg L−1) for the determination
of mercury in water samples.

Moreover, a solid phase extraction method was reported by
Aghagoli et al., [66] who employed a composite of molybde-
num disulfide (MoS2) and rGO for the separation and enrich-
ment of two heavy metal ions (Ni2+ and Pb2+) from both water
and biological samples. The negatively charged surface of
MoS2 can interact with the π-electron system in the structure
of rGO to form a composite (MoS2@rGO) with high adsorp-
tion capacity. The composite was used in batch SPE and re-
vealed high adsorption capacity (294–322 mg g−1) and low
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LODs (0.21–0.71 μg L−1) in the proposed extraction proce-
dure. These great analytical features can prove the benefit of
modification of rGO with MoS2 to reach an efficient extrac-
tion process. The applications of graphene-based sorbents for
the extraction and enrichment of diverse heavy metals are
covered in Table 3. Several notable merits including ease of
modification, availability of both sides for the adsorption pro-
cess, and simple synthesis process make graphene-based ma-
terials be superior sorbents in solid phase extraction. Low
LODs and high sorption capacity obtained for the analysis
of hazardous metal ions can prove these outstanding features
of G, Go, and rGO. Compared to CNTs and AC, graphene-
basedmaterials are more applicable for metal extraction. It can
be attributed to the larger surface area and the presence of
oxygen containing groups on the surface of this class of
sorbents.

Fullerenes

Fullerenes are buckyball carbon-based materials in which car-
bon atoms are attached to form penta- or hexagonal rings.
Fullerenes consist of different isomers and homologous series
from the most popular ones (e.g. C60 and C70) to the larger
ones (e.g. C240 and C540) [44]. Fullerenes can be produced
using several methods (such as laser ablation of carbon graph-
ite, heating of carbon rods in vacuum and oxidative com-
bustion of the mixture of benzene and argon) in laboratory.
However, formation of some by-products like carbon-rich
sot and poly aromatic hydrocarbons can decrease the purity
of the main product. Therefore, separation techniques such
as liquid chromatography or supercritical fluid chromatog-
raphy should be applied to purify the produced fullerenes
[67].

Fullerenes are known for their hydrophobic structure,
large surface area, as well as ease of modification.
The hydrophobicity of fullerenes makes them useful
sorbents for the extraction of metal complexes with low
polarity [1]. For instance, the low polar complexes of
ammonium pyrolidine dithiocarbamate (APDC) and
diethyldithiocarbamate (DDTC) with some heavy metal
ions like Cd, Co, Cu, and Pb can be adsorbed onto the
surface of fullerenes and be extracted from sample media
[1]. In comparison with C18, C60 provides more selectivity
toward the adsorption of metal ions due to the larger surface
area and higher interstitial volume [67].

Several applications of fullerenes as sorbent for the isola-
tion and pre-concentration of heavy metal ions have been
reported before 2010 [68, 69]. The low aggregation tendency
of fullerenes in both aqueous and organic solvents make them
be potential sorbents in D-μSPE and DSPE. However, the low
solubility of fullerenes can restrict their applications as coating
materials in SPME [70].

Carbon nanofibers

Carbon nanofibers (CNFs) are cylindrical nanomaterials com-
posed of graphene layers with a length of about 100 μm and
diameters of around 600–200 nm [71]. The large surface area
(up to 1877m2 g−1) of CNFs makes them appropriate sorbents
in solid phase-based extraction techniques. In addition, due to
large dimensions, CNFs have lower tendency to aggregate in
comparison to CNTs and G. Different functional moieties
such as COOH, OH, and CO can be attached to the surface
of CNFs to enhance their sorption capacity. CNFs can also be
utilized as efficient coating layers in SPME due to the high
chemical and thermal stability. Furthermore, high surface area
of CNFs (up to 1870 m2 g−1) can provide the efficient enrich-
ment of contaminants from real samples [72]. The fiber coated
CNFs can be reused in several extraction cycles without losing
its efficiency and morphology [73].

Among different techniques, (e.g. phase separation, draw-
ing, and self-assembly) electrospinning is the most common
technique for the fabrication of CNFs. In this method, nano-
fibers are produced from a viscoelastic solution (such as poly-
acrylonitrile (PAN)) via a repulsive electrostatic force [71].
The electrospun nanofibers can be used as a solid sorbent
for the pre-concentration of different analytes from the sample
solution.

Carbon nanohorns

Carbon nanohorns (CNHs) are another group of carbon-based
nano materials that have been applied as a sorbent in sorptive-
based enrichment methods. The carbon cage of these sub-
stances is made up of sp2-hybridized carbon atoms [44, 71].
Compared to CNTs, CNHs can be prepared in large quantity at
room temperature. In addition, no hazardous metal catalysts
and acid treatment are needed for their synthesis process.
Laser ablation, arc discharge, and Joule heating are among
the typical preparation techniques that have been applied for
the production of CNHs. The surface of CNHs can be modi-
fied through chemical modification. As an example, oxygen-
containing groups and organic molecules can be attached
to the surface and sidewalls of CNHs via covalent and
non-covalent interactions. In addition, several functional
moieties such as biomolecules, thiols, amines, and alco-
hols can be added to the oxidized surface of CNHs to
produce more hybrid adsorbents [74]. Then modified
CNHs can be successfully used in solid phase-based treat-
ment procedures.

Although carbon nanohorns have been used less than
graphene-based sorbents and CNTs in sorptive-based enrich-
ment methods, the potential application of this group of car-
bonaceous materials can be enormously exploited in pretreat-
ment methods.

578 Page 12 of 20 Microchim Acta (2019) 186: 578



Ta
bl
e
3

A
pp
lic
at
io
ns

of
gr
ap
he
ne
-b
as
ed

so
rb
en
ts
in

so
rp
tiv

e-
ba
se
d
ex
tr
ac
tio

n
of

he
av
y
m
et
al
s

N
o.

A
na
ly
te

So
rb
en
t

M
et
ho
d

A
na
ly
tic
al
In
st
ru
m
en
t

M
at
ri
x

L
O
D
(μ
g
L
−1
)

S
or
pt
io
n
C
ap
ac
ity

(m
g
g−

1
)

R
ef
.

1
P
b

G
SP

E
FA

A
S

W
at
er

an
d
ve
ge
ta
bl
es

0.
61

16
.6

[5
4]

2
C
r
(I
II
)

G
SP

E
FA

A
S

W
at
er

0.
5

24
.8

[1
33
]

3
S
P
E

4
C
o
an
d
N
i

G
SP

E
FA

A
S

W
at
er

an
d
ve
ge
ta
bl
es

C
o:

0.
36

C
o:

25
.8

[1
34
]

N
i:
0.
51

N
i:
23
.5

5
P
b,
C
u,
an
d
Fe

G
@
C
o 3
O
4

SP
E

FA
A
S

W
at
er

an
d
fo
od

0.
15
–0
.8
1

58
–7
8

[5
5]

6
P
b,
C
d,
C
u,
N
i,
an
d
Z
n

G
SP

E
FA

A
S

W
at
er

an
d
fo
od

0.
03
–0
.2

11
0–
21
0

[1
35
]

7
C
o

G
S
P
E

FA
A
S

W
at
er

0.
36

20
.6

[1
36
]

8
C
d

G
SP

E
FA

A
S

Se
af
oo
d

0.
16

39
2

[1
37
]

9
C
d,
C
o,
N
i,
an
d
P
b

S
P
E

W
D
X
R
F

W
at
er

1.
1–
6.
1

23
.7
–3
9.
4

[1
38
]

10
P
b
an
d
C
d

G
@
Fe

3
O
4

D
SP

E
A
A
S

W
at
er

an
d
da
ir
y
pr
od
uc
ts

Pb
:0

.5
0

–
[5
6]

C
d:

0.
16

11
Pb

an
d
C
d

G
-Z
eo
lit
e
cl
in
op
til
ol
ite

D
S
PE

E
TA

A
S

W
at
er

an
d
se
ru
m

0.
00
4–
0.
07
0

–
[1
39
]

12
Pb

,C
d,
an
d
C
r

G
-S
ili
ca

D
-μ
SP

E
E
TA

A
S

H
um

an
sa
liv

a
an
d
ur
in
e

0.
00
4–
0.
08
9

12
5.
8–
14
6.
3

[1
40
]

13
A
s
(V

)
G

D
-μ
SP

E
A
A
S

W
at
er
,s
er
um

,a
nd

ur
in
e

0.
00
21

–
[1
41
]

14
H
g,
R
-H

g
G

D
-μ
SP

E
FI
-C
V
-A

A
S

W
at
er

an
d
ca
pr
in
e
bl
oo
d
sa
m
pl
es

0.
00
98

10
.7
–1
3.
7

[1
42
]

15
Se

G
O

D
-μ
S
P
E

E
D
X
R
F

W
at
er

an
d
bi
ol
og
ic
al
sa
m
pl
es

0.
03
2

–
[1
43
]

16
Pb

,C
d,
an
d
C
r

G
O

D
-μ
SP

E
E
A
A
S

W
at
er
,h
um

an
si
lv
a,
an
d
ur
in
e

0.
00
5–
0.
03
5

–
[1
44
]

17
C
r

G
O

D
-μ
S
P
E

E
D
X
R
F

W
at
er

0.
06

–
[1
45
]

18
C
u,
N
i,
Fe
,a
nd

Z
n

G
O

SP
E

A
A
S

W
at
er

0.
11
–0
.6
3

6.
0–
6.
7

[1
46
]

19
Pb

an
d
C
d

G
O

SP
E

FA
A
S

W
at
er
,f
is
h,
an
d
he
rb
al
sa
m
pl
es

0.
08
–0
.1
7

15
.3
–1
7.
9

[1
47
]

20
Pb

an
d
C
d

G
O

SP
E

FA
A
S

W
at
er

an
d
ve
ge
ta
bl
es

0.
00
5–
0.
90

17
9–
35
9

[1
48
]

21
R
E
E
s
an
d
he
av
y
m
et
al
s

G
O
-T
iO

2
S
P
E

IC
P-
O
E
S

W
at
er

an
d
se
di
m
en
ts
am

pl
es

0.
21
–2
.6
4

–
[1
49
]

22
Pb

G
O
-S
B
A
-1
5

SP
E

FI
-S
C
G
D
-A

E
S

W
at
er

0.
91

25
5.
10

[1
50
]

23
C
d

G
O

S
P
E

FA
A
S

W
at
er

0.
47

–
[1
51
]

24
A
s

G
O
-P
E
I

SP
E

H
G
-M

PA
E
S

W
at
er

0.
00
13
–0
.0
01
8

12
5

[1
52
]

25
C
o,
C
u,
N
i,
P
b,
an
d
Z
n

G
O

D
-μ
S
P
E

E
D
X
R
F

W
at
er

0.
5–
1.
5

–
[1
53
]

26
C
o
an
d
N
i

G
O

S
P
E

FA
A
S

W
at
er
,b
la
ck

te
a,
an
d
to
m
at
o

0.
18
–0
.2
5

6.
8–
7.
0

[1
54
]

27
A
s
(V

)
G
O

SP
E

H
G
-A

FS
W
at
er

0.
02
9

45
.7

[1
55
]

28
C
u,
C
o,
F
e,
N
i,
Pb

,a
nd

Z
n

G
O
-E
D
A

D
-μ
S
P
E

E
D
X
R
F

W
at
er

0.
06
–1
.0

–
[6
0]

29
C
d,
C
o,
C
u,
N
i,
M
n,
an
d
Pb

G
O
-S
ili
ca

H
F-
SP

M
E

IC
P-
M
S

W
at
er

0.
00
03
9–
0.
02
8

4.
6–
25

[1
56
]

30
R
E
E
s

M
PA

N
I@

G
O

M
SP

E
IC
P-
M
S

W
at
er

an
d
te
a
le
av
es

0.
00
00
4–
0.
00
14
9

7.
7–
16
.3

[1
57
]

31
P
b

Ph
en
@
G
O

D
-μ
SP

E
IC
P-
O
E
S

W
at
er

an
d
fi
sh

0.
00
46

54
8

[1
58
]

32
C
d

M
G
O

M
D
SP

E
FA

A
S

W
at
er
,t
ob
ac
co
,a
nd

ve
ge
ta
bl
es

0.
12

33
.7

[1
59
]

33
C
r(
V
I)

M
G
O
-P
A
N
I

M
D
SP

E
G
FA

A
S

W
at
er

0.
00
5

–
[6
3]

34
Pb

an
d
C
d

M
G
O

M
SP

E
FA

A
S

W
at
er

an
d
ve
ge
ta
bl
es

0.
38
–0
.4
0

59
.8
8–
17
2.
41

[1
60
]

Microchim Acta (2019) 186: 578 Page 13 of 20 578



Graphitic carbon nitride

Graphitic carbon nitride (g-C3N4) is a stable form of carbon
nitride materials with 2D structure composed of tri-s-triazine
units that are linked by amine groups. g-C3N4 has unique
properties including wonderful catalytic activity, chemical sta-
bility, ease of surface modification, and outstanding thermal
and optical properties [75]. Among diverse synthetic methods
(such as solvothermal method, chemical vapor deposition
(CVD), thermal decomposition, and solid-state reaction), ther-
mal decomposition is the most applied one for preparation of
g-C3N4. In this technique, some nitrogen-rich substances (e.g.
urea, cyanimide, thiourea, and melamine) are used in the syn-
thesis process [76–78]. Several factors such as the type of
nitrogen-containing reagents, pH of the sample solution, and
temperature can influence the structure of the produced g-
C3N4 via thermal decomposition technique [75].

The presence of nitrogen-containing groups (including –
NH2, -NH, and = N-) in the structure of g-C3N4 make this
sorbent a suitable candidate for the enrichment of metal ions.
In addition, the delocalized electron system of g-C3N4 can
interact with either organic or inorganic analytes [75]. On
the other hand, the polar carbon-nitrogen bonds in the struc-
ture of g-C3N4 can decrease the aromaticity of this sorbent
compared to graphene. Moreover, the hydrogen bonds that
are responsible for the connection of linear graphitic carbon
nitride molecules are weaker than the covalent bonds in the
structure of graphene. Consequently, g-C3N4 has better
dispersibility in a sample solution. The surface of g-C3N4

can be modified using several techniques like a soft/hard
template, oxidation, and protonation to improve the ad-
sorption efficiency and enhance the surface area of this
sorbent [75].

Lately, Fahimirad et al. [79] reported the application of a
composite of g-C3N4 with MNPs and ethylenediamine in
magnetic D-μSPE of Cd(II) and Pb(II) ions with recoveries
more than 99%. To produce g-C3N4, melamine was heated up
to 520 °C for about 4 h. Next, appropriate quantities of mag-
netic SnFe2O4 particles and g-C3N4 were mixed and calci-
n a t e d a t 4 0 0 ° C . A f t e r t h a t , a s o l u t i o n o f
N-[3-(trimethoxysilyl) propyl] ethylenediamine (TPED) was
added to the g-C3N4- SnFe2O4 in toluene at 110 °C in the
presence of N2 atmosphere. The nano composite was then
characterized using several techniques such as SEM, EDX,
and FT-IR to confirm the structure. It is worth mentioning that
this nano composite was prepared from low-cost and non-
toxic chemicals. The sorbent was applied in the extraction
procedure and the influence of different parameters on the
extraction efficiency was investigated by experimental design.
According to the results the lower quantity of the prepared
adsorbent and less amount of the elution solvent were used
in the enrichment process that made this technique more en-
vironmentally friendly.T
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Conclusions and remarks

Typically, the analysis of metal ions is done using analytical
instruments such as FAAS, GFAAS, ETAAS, and ICP with
different detectors (e.g. ICP-OES, ICP-AES, and ICP-MS).
However, not all these instruments can detect the trace
amounts of toxic metals directly in complex samples.
Consequently, the development of efficient pretreatment tech-
niques for the isolation of these inorganic pollutants from their
matrices is important prior to instrumental analysis. The aim
of this review is to give an overview of several carbonaceous
sorbents and cover the recent applications of these materials in
sorptive-based pretreatment methods (like SPE, SPME,
DSPE, MSPE, and D-μSPE) for the environmental, food,
and bio analysis of these target contaminants.

Carbonaceous sorbents and their composites have several
outstanding features including chemical and thermal stability,
large sorption capacity, the possibility of functionalization,
wonderful optical and electronic properties, and large surface
area. These outstanding characteristics make carbonaceous
materials potential candidates in sorptive-based extraction
methods for the enrichment of toxic metal ions. Among dif-
ferent carbon-based sorbents, graphene and carbon nanotubes
have found more applications in sorptive-based pretreatment
t echn iques due to the ease o f prepa ra t ion and
functionalization. Therefore, since 2010 a great number of
research articles have been published about the applications
of these two class of sorbents in pretreatment of metal ions.

Although the number, of research papers that have used
CNFs, fullerenes, CNHs, g-C3N4, and GCB in sorptive-
based pretreatment methods is lower than graphene-basedma-
terials and CNTs, these sorbents offer some advantages in the
extraction process. As an example, the large dimensions of
CNFs can prevent the aggregation of this sorbent in SPE pro-
cedure and enhance the extraction efficiency without further
modification. In addition, CNFs can be produced in large
quantities via electrospinning. Moreover, the presence of sev-
eral nitrogen-containing groups and the delocalized electron
system in the structure of g-C3N4 make this sorbent be attrac-
tive in the enrichment of both organics and inorganics from
sample solution.

Finally, carbon-based adsorbents have many superiorities
over the conventional sorbents; however, the possible draw-
backs of these adsorbents should not be ignored. For example,
it is still important to develop carbonaceous sorbents with
higher selectivity for the extraction of metal ions prior to an-
alytical detection. Therefore, new modification methods are
still required to diversify the surface of these materials and
consequently enhance the sorption capacity and selectivity
of the sorbenst. In addition, carbonaceous sorbents may cause
some environmental contamination; therefore, recovery of
these materials from sample solution is of great concern.
Furthermore, it is important to develop novel synthesis

procedures in which more environmentally friendly reagents
are used for the preparation of different carbonaceous mate-
rials to reduce the hazardous impacts of toxic chemicals on
both humans and the environment and consequently follow
the rules of green chemistry.

Compliance with ethical standards The author(s) declare
that they have no competing interests.
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