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Perylene diimide-functionalized CeO2 nanocomposite
as a peroxidase mimic for colorimetric determination of hydrogen
peroxide and glutathione
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Abstract
A novel perylene diimide (PDI) functionalized CeO2 nanocomposite (NC) was successfully fabricated via one-pot hydro-
thermal method. Compared with pure CeO2 nanoparticles (CeO2 NPs), the NC catalyst presents more Ce3+ and active
oxygen species and exhibits a higher peroxidase mimicking activity towards the oxidation 3,3′,5,5′-tetramethylbenzidine
by H2O2 to form a blue product with an absorption maximum at 652 nm. The composite catalyst shows high sensitivity and
selectivity toward H2O2 determination in the range of 20 to 80 μMwith a limit of detection (LOD) of 2.59 μM. Based on the
colorimetric method, a sensitive method for detecting the reduced glutathione (GSH) was also established over arrange of
1~4 μM with a LOD of 0.92 μM. Electron spin resonance (ESR) experiments suggest that the active radicals during the
catalytic processes are •OH and •O2

−. A possible synergistic catalytic mechanism is discussed.
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Introduction

Due to the high cost and low stability of natural enzymes
for detecting H2O2 in harsh environments, many artificial
peroxide mimetic enzymes have been exploited. It has
been proved that various materials possess peroxidase-
like activities, such as noble metals [1–3], metal oxides
[4, 5], metal sulfide [6–8] and metal-organic hybrids
[9–11]. Nano-ceria (CeO2) has been attracted significant
interest due to the exposed Ce3+ ions are surface sites for

catalysis and O-vacancies favor to the migration and
transformation of active species [12]. For example, the
superior catalytic performance of 6%Fe3+-doped CeO2

(6Fe/CeO2) NRs are attributed to the abundant surface
defects, high surface area and pore volume [13]. The
Fe3O4@CeO2 yolk-shell nanocomposite can produce
more hydroxyl radicals (•OH) in the presence of H2O2

[14]. The presence of CeO2 uniformly covered on the
oxidized single-walled carbon nano-horns (ox-SWCNHs)
guarantees an efficient electronic communication [15].
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The formation of more Ce3+ ions associated with the ox-
ygen vacancies as well as a strong synergistic interaction
between CeO2 and Co3O4 may be responsible for the en-
hanced peroxidase-like activity [16]. Although the catalyt-
ic activity of such materials is obviously enhanced, it still
remains several obvious shortcomings. For instance, the
metal-based materials give rise to the high cost of noble
metals or toxicity of heavy metals [17]. And the
dispersion/stability is still a problem, because the loading
of high density metals/metal oxides makes the hybrids
easy to agglomerate. Therefore, to overcome these draw-
backs, a novel material should be built to decorate the
CeO2 NPs.

A new type of photosensitive dyes, perylene diimide
(PDI), have been extensively studied and applied in photo-
catalytic and organic solar cells, due to their excellent ad-
sorption, chemical and thermal stabilities, strong electron-
withdrawing ability and high electronmobility [18, 19]. The
charge and hole transfer rates of PDI and its derivatives are
higher than that of the typical electron and hole transport
materials [20]. The PDI/Copper phthalocyanine (CuTcPc)
heterostructure facilitates the electron transfer from PDI to
CuTcPc, thus resulting in the effective separation of
photogenerated electron-hole pairs [21]. And the formation
of the PDI-metal complexes with Pt(II) and Pd(II) lead to
strong intramolecular charge transfer [22]. Therefore, the
combination of PDI and CeO2 NPs can not only retain the
excellent electron transfer properties of PDI but the strong
redox behavior and surface defects of nanoceria. And to the
best of our knowledge, there is no report on the peroxidase-
like activity of PDI decorated CeO2 NPs.

In this paper, the uniform NC was fabricated via a one-
pot hydrothermal route, and performed on the colorimetric
determination of H2O2 and GSH. The NC exhibits high
catalytic activity and excellent stability. The low limits of
detection and high selectivity made NC a promising assay
for H2O2 and GSH detection. The synergistic catalytic
mechanism that NC catalyzed H2O2 to oxidize TMB
was also studied here.

Experimental

Materials

Ce(NO3)3•6H2O and H2O2 (30%, w/w) were purchased
from Sinopharm Chemical Reagent Co. Ltd. (Shanghai,
http://www.sinoreagent.com). Perylene diimide (PDI) with
four carboxyl was synthesized according to the previous
report [23]. TMB was purchased from Macklin (http://

www.macklin.cn/). Horseradish peroxidase (HRP), D-
serine (Ser), Urio acid (UA), L-Arginine (Arg), D-
Histidine (His), D-Leucine (Leu), DL-ISOLeucine (ISO),
DL-Tryptophan (Try) and GSH were obtained from
Aldrich (www.sigmaaldrich.com). The medical GSH pills
(93.34 wt.%) were purchased from Shandong Luye
Pharmaceutical Co., Ltd. (http://www.luye.cn/lvye/). All
reagents were of analytical reagent grade and used without
further purification. Solutions were prepared with ultrapure
water.

Preparation of the nanocomposite (NC)

The NC was prepared by a one-pot hydrothermal method.
Briefly, 1.085 g Ce(NO3)3•6H2O and 2 mL H2O2 (30 wt.%)
were added into 40 mL ultrapure water under vigorously
stirring at room temperature for 60 min. Then 20 mg PDI
powder was well dispersed into 20 mL ultrapure water and
slowly dropped into the mixed system above, and vigorous-
ly stirred for another 60 min. After that the reaction system
was moved into Teflon-lined stainless steel autoclave and
heated at 150 °C for 10 h. After cooling to room tempera-
ture, the sample was centrifuged, washed four times with
ethanol and ultrapure water, and dried at 80 °C for 10 h in a
vacuum drying oven. The product was obtained for subse-
quent studies. Illustration for the preparation is shown in
Scheme S1. For comparison, CeO2 NPs were also prepared
using the similar method without adding PDI.

Characterization

High resolution transmission electron microscopy
(HRTEM) images were obtained by a FEI Tecnai
G2 F20 operated at 200 kV (https://www.fei.com). X-ray
powder diffraction (XRD) was performed on a Rigaku D/
Max-rB X-ray diffractometer with Cu Kα radiation
(40 kV, 20 mA). Data was collected between 2θ = 10–
80° with a step size of 0.02° (https://www.rigaku.com).
Raman measurements were performed using a Raman
spectrometer (Alpha 300 M+, WITEC) with the
excitation light of 480 nm in the range of 100–
2000 cm−1 (https://www.witec.de/). Fourier transform
infrared (FT-IR) spectra were performed using a Thermo
Nicolet 8700 spectrometer in the range of 4000–500 cm−1

(https://www.thermofisher.com). X-ray photoelectron
spectroscopy (XPS) patterns were collected by a Thermo
ESCALAB 250Xi Multifunctional imaging electron spec-
trometer with Al Kα radiation operated at 250 W (https://
www.thermofisher.com). The electron spin resonance
(ESR) spectra were obtained using a Bruker E580 with a
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microwave bridge (receiver gain, 1 × 105; modulation am-
plitude, 2 G; microwave power, 10 mW; modulation fre-
quency, 100 kHz) (https://www.bruker.com). UV-vis dif-
fuse reflection spectra (DRS) were performed on a
HITACHI UH4150 spectrophotometer in the range of
220~800 nm (https://www.hitachi-hightech.com).

Catalytic activity evaluation

The catalytic activity of NC sample was performed on the
oxidation of TMB in the presence of H2O2 on a TU 1810
UV-vis spectrometer (Beijing General Analysis Instrument
Co., Ltd. (http://www.pgeneral.com)). Briefly, 200 μL of
30 mg mL−1 NC suspension, 200 μL of 240 mM H2O2 and
200 μL of 1 mM TMB were carefully injected into 1400 μL
buffer solution (pH 4.0), and reacted for 3 min. The ox-TMB
is a blue product which has the maximum absorption at
652 nm. The buffers are acetate buffer (pH 2.0–5.0), phos-
phate buffer (pH 6.0–8.0) and Tris-HCl buffer (pH 9.0–10),
respectively. The highest activity was defined as the 100%
relative activity.

The GSH detection limit was determined through ab-
sorbance difference (ΔA) responses of NC + H2O2 +
TMB system towards GSH. Illustration of GSH detec-
tion is shown in Scheme S2. After color reaction, GSH

with different concentrations from 0 to 500 μM was
added, and reacted for another 3 min, then immediately
measured the absorbance at 652 nm. As for the deter-
mination of real GSH sample, the GSH tablet was first-
ly dissolved into ultrapure water to make a standard
solution, and then diluted to different concentrations.
The accuracy of this method can be measured by the
recovery and relative standard deviation (RSD) between
the determined concentrat ion and the standard
concentration.

Results and discussion

Catalyst characterization

From Fig. 1a, it can be seen that the irregular CeO2 NPs
with 10~20 nm in size are easy to agglomerate.
Interestingly, NC (Fig. 1b) is found to be the uniform
nanoparticle structure with the size of 3~5 nm, indicating
that the introduction of PDI molecule plays an important
role in the dispersion and morphology of CeO2. As pre-
sented in Fig. 1c and d, the crystalline lattice on the CeO2

NPs and NC fringed at ca. 0.310 nm is assigned to the
(111) plane of fluorite-type CeO2 [24, 25], which is

Fig. 1 HRTEM images of (a), (c)
CeO2 NPs and (b), (d) NC
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consistent with the XRD results (Fig. S1). In addition, the
particle size of NC is obviously reduced which inevitably
led to a large increase in specific surface area, and further
provides more active species. Moreover, the distribution
of Ce element is consistent with that of C and N (Fig. S2),
suggesting the uniform distribution of PDI molecules on
the CeO2 NPs.

The valence states and surface atomic compositions of
the samples were obtained by XPS. The survey spectra in
Fig. 2a display that both CeO2 NPs and NC contain Ce,
N, O and C. In the Ce 3d spectra (Fig. 2b), the peaks
marked as v, v2, v3, u, u2 and u3 correspond to Ce4+

species, while the peaks denoted by v1 (884.9 eV) and
u1 (903.3 eV) are ascribed to Ce3+ with oxygen vacancies
[26, 27]. The relative content of Ce3+ can be calculated by
the ratio of Ce3+ peak area to that of the total Ce3+ and
Ce4+ peak area, and the results are listed in Table S1 [28].
The relative concentration of Ce3+ on the surface of NC is
18.5%, obviously higher than that of CeO2 NPs (13.1%).
The formation of more Ce3+ ions associated with the ox-
ygen vacancies is responsible for the enhanced activity
[16]. Therefore, the loading of PDI increases the relative
content of Ce3+, thus resulting in the formation of more
oxygen vacancies [29].

In the O 1 s spectra (Fig. 2c), adsorbed oxygen species
(Oa) at 533.5 eV are attributed to hydroxyl water and/or
carbonates, surface oxygen (Ob) at 531.8 eV is assigned
to oxide defects, and lattice oxygen (Oc) at 529.8 eV [27,
29]. As can be seen in Table S1, more Ob is formed on the

NC due to the efficient attachment between PDI molecules
and CeO2 NPs, indicating the existence of more surface
active oxygen [30]. In the N 1 s spectra (Fig. 2d), for
CeO2 NPs, only one peak at 407 eV corresponds to the
NO3

− that adsorbed on CeO2 NPs. However, for NC, the
peaks at 401.3 and 399.1 eV can be assigned to the -N-CO-
and -N-C- group [31, 32], verifying the presence of PDI
molecules. The Raman and FT-IR results can also prove
this conclusion (Fig. S3).

Fig. 3 UV-vis absorption spectra of different systems: a. TMB; b.
TMB +H2O2; c. CeO2 + TMB; d. CeO2 + TMB +H2O2; e. NC + TMB;
f. NC + TMB + H2O2. Conditions: pH = 4, RT, CeO2 and NC
30 μg mL−1, H2O2 24 mM, TMB 0.1 mM. The inset represents the
colorimetric photographs (3 min)
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Catalytic activity

To primarily evaluate the peroxidase-like activity of NC, six
different systems were reacted under the same conditions

(Fig. 3). Inset is the corresponding photograph after reacting
for 3 min. No obvious color change can be seen in the ab-
sence (a, c) and presence (b, d) of H2O2 before adding NC.
And the TMB can also not be oxidized by NCwithout H2O2,

Fig. 4 Effect of (a) pH, b
temperature, c H2O2

concentration and (d) catalyst
concentration on the catalytic
activity of HRP and NC. The data
was collected at 652 nm
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indicating the catalyst has no oxidase-like activity (e).
However, the blue color can be quickly observed once NC
is added into the H2O2/TMB system, verifying that the NC
possesses excellent peroxidase-like activity (f).

The comparative studies were conducted to understand
the effect of pH, temperature, H2O2 concentration and
catalyst concentration on the activity of HRP and NC. In
Fig. 4a, the activity of NC reaches the maximum at
pH 4.0 and decreases significantly at more acidic and/or
alkaline pH, similar to some other mimics [14, 16].
However, the HRP shows high activity in a wider pH
range from 3~6, and achieves the best effect at pH 5.
Importantly, the NC exhibits high activity at higher tem-
perature from 35 to 60 °C, while only when the tempera-
ture below 45 °C can HRP achieve the same effect (Fig.
4b). As shown in Fig. 4c and d, the influence of H2O2

concentration and catalyst concentration on the activity of
HRP and NC are similar. The results indicate that NC can
replace HRP to be catalyst for H2O2 determination.
Although HRP is more effective in a wider pH range,
the NC can be used in a higher temperature environment.

The LOD of H2O2 was determined by varying the
H2O2 concentration from 10 to 100 μM and the TMB
concentration was kept 100 μM. As shown in Fig. 5a, a
linear response to H2O2 ranges from 20 to 80 μM with a
LOD of 2.59 μM. The selectivity is evaluated using var-
ious metal ions, maltose, fructose and glucose all at

concentration of 5 mM in place of 1 mM H2O2 under
the same conditions. From Fig. 5b, it is obvious that the
absorbance of these interferences can be negligible, sug-
gesting the method is highly selective for H2O2. Besides,
steady state kinetic tests prove that NC has a higher af-
finity towards TMB substrate in comparison with some
reported mimic enzymes (Fig. S4 and Table S2) [33].
The reusability and durability of NC were also evaluated
(Fig. 5c). After cycling used for six times, the NC still
remains 70% of its initial activity. Considering the mass
loss during centrifugal processes, the reusability of this
NC catalyst is good. Although stored in a shady and dark
place for a month, the activity of NC still keeps 75% (Fig.
5d). The excellent reusability and durability performance
of NC are crucial to its industrial applications.

Based on the excellent activity of NC, a colorimetric
method for detecting reduced glutathione (GSH) is con-
structed. From Fig. 6a, the absorbance difference (ΔA)
exhibits a good linear relationship with the concentration
of GSH ranging from 1 to 4 μM with a LOD of 0.92 μM.
As shown in Fig. 6b, among various metal ions, only Fe3+

strongly promotes the catalytic activity of CeO2, which
has been proved by previous reports [13, 34]. For these
amino acids, only GSH can severely reduce the reaction
system. However, for colorimetric method based on per-
oxidase mimics, it is still a challenge to distinguish GSH
from the materials with similar redox properties such as
ascorbic acid and L-cysteine. When the system to be test-
ed is confirmed has no these substances, this method ex-
hibits good sensitivity and selectivity toward GSH
determination.

The practical application for detecting real GSH sample
was conducted under the optimal conditions based on the
above colorimetric method. Every concentration was per-
formed for three times under the same conditions and the
results are shown in Table 1. The recoveries of GSH with
five different concentrations are in the range from 99.1% to
102.4% and the relative standard deviation (RSD) values
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Table 1 Determination of glutathione (GSH) in the real injection
sample

Standard (μM) Found (μM) Recovery (%) RSD (%)

1 1.02 101.9 1.91

2 1.98 99.1 3.39

3 3.10 103.4 2.26

4 4.06 101.4 3.35

5 5.05 101.1 1.92
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are below 5%, indicating the potential in real sample
analysis.

Possible mechanism

The ESR technique was employed to confirm active rad-
icals using 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) as
the spin trapper [34, 35]. As shown in Fig. 7a and b, for
NC, both DMSO-•OH and DMSO-•O2

− signals can be
clearly observed in the presence of light. However, no
signals can be observed for both of them in dark. The
results suggest that both •OH and •O2

− radicals are the
main active species during the catalytic process of NC
in the presence of H2O2. Importantly, the catalytic reac-
tion is triggered by light. Therefore, the band structures of
PDI and CeO2 were also studied by DRS technique (Fig.
S5).

On the basis of these results, a possible mechanism for
the catalytic oxidation of TMB/H2O2 system over NC
catalyst is described in Scheme 1. On one hand, the con-
duction band (CB) of CeO2 NPs is higher than that of
PDI, so the electrons can be transferred easily from

CeO2 to PDI, and forming an electric field which facili-
tates the separation of electrons. Then the enriched elec-
trons can be captured by dissolved O2 in solution to form
•O2

−. On the other hand, the holes on the value band (VB)
of CeO2 which show strong oxide capability, are injected
into the VB of PDI to oxidize H2O2, producing •OH rad-
icals. The sufficient surface defects (Ce3+ ions and O-va-
cancies) on the surface of nano-CeO2 are also active sites
for catalytic reaction. At last, the colorless TMB is oxi-
dized by •OH, •O2

− and surface defects on the surfaces of
CeO2 NPs to form blue ox-TMB.

Conclusions

In conclusion, PDI functionalized CeO2 nanocomposite (NC)
can be prepared by a one-pot hydrothermal method and tested
for peroxidase-like activity. After decorated by PDI, the sur-
face of CeO2 NPs presents more Ce3+ ions and active oxygen
species. The composite catalyst exhibits superior activity at
weakly acidic pH (4) and a broad temperature range
(35~60 °C) in comparison with HRP. The colorimetric

Scheme 1 Schematic diagram of
electron-hole pair separation and
the possible mechanism of NC.

Fig. 7 DMPO spin-trapping ESR
spectra for NC in (a) aqueous
dispersion for DMPO-•OH and
(b) methanol dispersion for
DMPO-•O2

−
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determination of H2O2 shows a linear range from 20 to 80 μM
with a LOD of 2.59 μM. And the NC presents excellent reus-
ability and durability performance which are critical to its
practical application. Besides, a colorimetric method for de-
tecting GSH can be built which exhibits a linear relationship in
the range from 1 to 4 μM with a LOD of 0.92 μM. The
improved catalytic activity of NC catalyst is probably due to
the high sensitivity of PDI towards visible light, the abundant
surface defects of nano-CeO2, and the easy electron transfer
between PDI and nano-CeO2. Although NC has narrow pH
range with high catalytic activity and relative high limit of
detection, it exhibits high activity at higher temperatures and
can be reused.
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