
ORIGINAL PAPER

A fluorometric turn-on aptasensor for mucin 1 based on signal
amplification via a hybridization chain reaction and the interaction
between a luminescent ruthenium(II) complex and CdZnTeS
quantum dots

Zheng Li1 & Guobin Mao1
& Mingyuan Du1

& Songbai Tian1
& Longqing Niu1

& Xinghu Ji1 & Zhike He1

Received: 28 November 2018 /Accepted: 27 February 2019 /Published online: 9 March 2019
# Springer-Verlag GmbH Austria, part of Springer Nature 2019

Abstract
A fluorometric method is described for the determination of the tumor biomarker mucin 1 (MUC1). It is based on signal
amplification of the hybridization chain reaction (HCR), and the interaction between a luminescent ruthenium(II) complex
and CdZnTeS quantum dots (QDs). If MUC1 bind to the biotin-labeled aptamer, it will initiate HCR with hairpins H1 and H2

to form a long-range dsDNA. The long nucleic acid chains are then linked on the surface of streptavidin-modified magnetic
microparticles (MMPs) through streptavidin-biotin interaction. The luminescent ruthenium(II) complex is then embedded in the
long dsDNA linked to the MMPs. Hence, there is little Ru complex in the supernatant after magnetic separation, and the
fluorescence of the CdZnTeS QDs (best measured at excitation/emission wavelengths of 350/530 nm) is only slightly quenched.
In the absence of target, the fluorescence of the CdZnTeS QDs is strongly quenched. Fluorescence increases linearly in the 0.2–
100 ng·mL−1 MUC1 concentration range, and the LOD is 0.13 ng·mL−1 (at S/N = 3). The method was applied to the determi-
nation of MUC1 in spiked human serum samples.
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Introduction

Mucin 1 (MUC1) serves as an indicator in the early diagnosis
of cancer [1–4]. However, it is still a challenge to detect
MUC1 at the early stage, as the concentration of MUC1 is
usually very low. Therefore, it is critical to develop a novel
method to detect MUC1 sensitively and simply. Various
methods for MUC1 detection have been developed, such as
enzyme-linked immunosorbent assay (ELISA) [5], surface

enhanced Raman scattering (SERS) [6], single molecular
force spectroscopy (SMFS) [7], fluorescence (FL) [8, 9] and
electrochemical techniques [10, 11]. Among the above
methods, the fluorescent technique has attracted great atten-
tion due to the advantages of simpleness, efficiency and
convenience.

Aptamers are oligonucleotides or peptide molecules and
have special affinity with different targets. What’s more,
aptamers have excellent advantages compared with antibod-
ies, such as low cost, easy modification, small size, stability
and lack of immunogenicity. Many successful aptasensors
were reported for MUC1 detection [12–16]. These strategies
were used for efficient and sensitive detection of MUC1 due
to the specific binding of aptamers to MUC1. However, there
were some details to be improved. For example, some of them
need to immobilize DNA on the surface of the material, which
had high spatial hindrance and low combined freedom, lead-
ing to low affinity efficiency between aptamers and proteins.
In addition, most of them required labeling signal molecules
that might result in high background signal. So it is very vital
to establish a solution to solve these problems.
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Quantum dots (QDs) are highlighted fluorescent probes,
and they have attracted widespread attention in various re-
search areas due to their unique advantages of wide excitation
and narrow emission spectra, tunable size and high quantum
yields [17–21]. Ru(bpy)2(dppx)

2+(bpy = 2.2′- bipyridine,
dppx = 7,8-dimethyldipyrido [3.2-a:2′,3′-c]-phenanthroline) is
one of typical DNA molecular Blight switches^, which can
tightly bind toward DNA, especially dsDNA, and it can effi-
ciently quench QDs via the photo induced electron transfer
process. In the presence of dsDNA, Ru(bpy)2(dppx)

2+ is bound
by dsDNA and cannot quench QDs anymore [22, 23].
Magnetic microparticles (MMPs) have been extensively ap-
plied in the detection of DNA, small molecules, proteins, and
cancer cells as a useful tool [16, 24–26], due to their high
surface-to-volume ratio, easy surface modification and separa-
tion characteristics. Hybridization chain reaction (HCR) is an
excellent signal amplification technique and can greatly ampli-
fy signal by DNA cascade hybridization without any nucleases
involvement. H1 and H2 can self-assemble to form long-range
dsDNA in the presence of an initiator [27]. In this experiment,
Ru(bpy)2(dppx)

2+ bound by dsDNA, independent of whether
the HCR occurred or not. This reduces the quenching effect on
QDs and leads to the high background signal. The streptavidin-
modifiedMMPs can reduce the background signal significant-
ly via the good separation performance.

Based on this principle, we developed a novel aptasensor
for the detection of MUC1. In the presence of MUC1, the
initiated sequence of aptamer-H0 triggered the HCR. The
HCR product, long-range dsDNA, had stronger interaction
with Ru complex than single strand DNA or H1 and H2.
Combined Ru complex, QDs and MMPs, which greatly im-
proved the detection sensitivity, selectivity and practicability.

Experimental section

Chemicals and instruments

Trishydroxymethyl aminomethane (Tris), sodium phosphate
dibasic (Na2HPO4), sodium phosphate monobasic
(NaH2PO4), potassium chloride (KCl), sodium chloride
(NaCl), mucin 1 (MUC1), Tween-20, N-acetyl-L-cysteine
(NAC), 4,5-Dimeththyl-o-phenylene-diamine and 2,3-
dimercaptopropane-2,3-dimercaptopropane-1-sulfonate
(DMPS) were purchased from Sigma-Aldrich (USA.; https://
www.sigmaaldrich.com). All above of them were analytical-
reagent grade or better. CdCl2·2.5H2O, ZnCl2, Na2TeO3 and
hydrochloric acid was purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China; http://www.sinoreagent.
com). Meso-2,3-dimercaptosuccinic acid (DMSA) was pur-
chased from Aladdin Chemistry Co., Ltd. (China; http://
www.aladdin-e.com). The streptavidin-modified magnetic

microparticles (MMPs) (1 μm, 10 mg·mL−1) were obtained
from Invitrogen (Norway; https://www.thermofisher.com).

Different sequences of the oligonucleotides were synthe-
sized by Sangon Biotechnology Co. Ltd. (Shanghai, China;
https://www.sangon.com) and purified by high performance
liquid chromatography (HPLC). The sequences of the
oligonucleotides in this experiment were as follows:

Aptamer-H0: 5′-TGA GGT AGT AGG TTG TAT AGT
TGC AGT TGATCC TTT GGATAC CCT GGA ACT
ATA CAA CCTACTACC TCA AAA AA-biotin-3′,
Hairpin H1: 5′-AGT AGG TTG TAT AGT TCA AAG
TAA CTATAC AAC CTA CTA CCT CA-3′,
Hairpin H2: 5’-ACT TTG AAC TAT ACA ACC TAC
TTG AGG TAG TAG GTT GTATAG TT-3′.

Ultrapure water (18.2 MΩ·cm) was produced by a Milli-Q
Academic purification set (Millipore, USA). Fluorescence
emission spectrum was measured with a RF-6000 PC spectro-
photometer (Shimadzu, Japan). The Fluorescence intensity was
measured by exciting the sample at 350 nm. The slits for exci-
tation and emission were set at 10 and 5 nm, respectively. UV–
vis absorption spectrum data was performed on a UV-2550
spectrophotometer (Shimadzu, Japan). Transmission electron
microscopy (TEM) and high-resolution (HR) TEM images
were obtained on a JEM-2100 electron microscope (Japan).

Synthesis of the Ru(II) complex and CdZnTeS QDs

Ru(bpy)2(dppx)
2+ complex and CdZnTeS QDs were synthe-

sized according to our previous reported method [21, 28, 29],
respectively. The experimental procedures were described in
supporting information (SI).

CdZnTeS QDs were dissolved in Tris buffer 1 (Tris
20 mM, pH 7.4) for further use.

MUC1 detection

Firstly, DNA sequence H1, H2 and biotin-labeled aptamer-H0

were heated at 90 °C for 10 min, respectively. Then the solu-
tion was cooled to room temperature for 1 h before use.
Different concentration of MUC1 was mixed with 10 nM
aptamer-H0 in PBS 1 (NaH2PO4 100 mM, Na2HPO4

100 mM, KCl 100 mM, pH 8.0) for 1 h at 37 °C, respectively.
After that, 1 μMH1 and 1 μMH2 in 200 μLTris buffer 2 (Tris
20 mM, NaCl 200 mM, pH 7.5) were added into above solu-
tion for 2 h at 37 °C to proceed the HCR.

Secondly, a certain amount of streptavidin-modified
MMPs were washed three times with 100 μL PBS 2
(NaH2PO4 10 mM, Na2HPO4 10 mM, NaCl 15 mM,
pH 7.4), then they were mixed with the HCR products, re-
spectively. After incubating at 37 °C with gentle shaking for
30 min, the conjugated MMPs were washed three times with
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400 μL washing buffer (Tris 10 mM, NaCl 100 mM, Tween-
20 0.01% (w/v), pH 7.5).

After the redundant DNA that absorbed on the surface of the
MMPswere removed, 20 μL of 0.1 mMRu(bpy)2(dppx)

2+ was
mixed with the MMPs in 360 μLTris buffer 1 for 30 min with
gentle shaking. Finally, 7.5 nM CdZnTeS QDs were added into
the supernatant which had been separated with a magnet. The
fluorescence intensity of the supernatant was implemented by
RF-6000 PC spectrophotometer (measured at excitation/
emission wavelengths of 340/530 nm).

Results and discussion

Working principle

The principle of MUC1 detection is illustrated in
Scheme 1. The detection system includes biotin-labeled
aptamer-H0, hairpins H1 and H2, streptavidin-modified
MMPs, Ru(bpy)2(dppx)

2+ and CdZnTeS QDs. The se-
quence of DNA in this experiment referred the method
of Ma C et al. [8]. The structure of H0 includes stem
and loop, and the sequence of aptamer is in the loop of
H0. In the absence of MUC1, the biotin-labeled aptamer-
H0 kept stable hairpin structure from proceeding HCR
with H1 and H2. When streptavidin-modified MMPs were
mixed with above solution, only biotin-labeled aptamer-
H0 were linked on the surface of streptavidin-modified
MMPs. Subsequently, Ru(bpy)2(dppx)

2+ was mixed with

the above MMPs under stirring. There were a large
amount of Ru(bpy)2(dppx)

2+ in the supernatant after mag-
netic separation due to the failure of embedding in
dsDNA. After CdZnTeS QDs were mixed with the super-
natant, the fluorescence intensity of CdZnTeS QDs was at
a low level, as Ru complex highly quenched CdZnTeS
QDs. When MUC1 is present, it binds with aptamer spe-
cifically, whose structure will be changed [30]. The initi-
ated sequence of aptamer-H0 will proceed HCR with H1

and H2 to form long-range dsDNA structures. After
s t r ep tav id in -modi f i ed MMPs were mixed wi th
the above solution, the long nucleic acid chains were
linked on the surface of streptavidin-modified MMPs
through streptavidin-biotin interaction. Subsequently,
Ru(bpy)2(dppx)

2+ was mixed with the above MMPs under
stirring, then MMPs were separated with a magnet. There
was little Ru(bpy)2(dppx)

2+ in the supernatant, as
Ru(bpy)2(dppx)

2+ was embedded in dsDNA. So the fluo-
rescence intensity of the supernatant was very high after
CdZnTeS QDs were mixed with the supernatant.

Characterization of the CdZnTeS quantum dots (QDs)

The synthesized QDs were characterized by TEM, UV-vis
absorption and fluorescence spectrum. As shown in Fig. 1,
TEM image shows that the QDs have good mono-
dispersion with an average size of 3.40 ± 0.40 nm. The
UV-vis absorption and fluorescence spectra of CdZnTeS
QDs are shown in Fig. 2, respectively. The absorption peak

Scheme 1 Schematic representation of the MUC1 detection based on
fluorescent aptasensor turn-on strategy with interaction between Ru
complex and QDs. The detection system includes biotin-labeled

aptamer-H0, hairpins H1 and H2, streptavidin-modified magnetic
microparticles (MMPs), Ru(bpy)2(dppx)

2+ and CdZnTeS QDs
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is at 500 nm and the emission peak is at 530 nm. According
to the absorption peak intensity, the concentration of QDs
is obtained [31].

Feasibility of the design strategy

The feasibility of this strategy is shown in Fig. 3. In the
absence of MUC1, only biotin-labeled aptamer-H0 was
linked on the streptavidin-modified MMPs surface, leading
a lot of Ru(bpy)2(dppx)

2+ dispersed in the supernatant.
When CdZnTeS QDs were added into the supernatant,
their fluorescence of CdZnTeS QDs was quenched by
Ru(bpy)2(dppx)

2+ that resulted in low fluorescence signal
(Fig. 3b). When MUC1 was present without H1 and H2,
only small amount of Ru complex bound to the MMPs,
leading to a slight peak (Fig. 3a). Only had H1 or H2 in
the system, the fluorescence intensity of QDs was still at
low level as HCR product was formed unsuccessfully (Fig.
3c and d). When MUC1 and HCR products presented

simultaneously, the supernatant with QDs showed high
f l u o r e s c e n c e s i g n a l , a s a l a r g e am o u n t o f
Ru(bpy)2(dppx)

2+ were embedded in dsDNA (Fig. 3e).
The fluorescence of QDs at different conditions is shown
in the inset of Fig. 3.

Optimization of reaction conditions

The effect of Ru(bpy)2(dppx)
2+ concentration on fluorescence

of QDs is explored in Fig. S1. Different concentration of
Ru(bpy)2(dppx)

2+ (0, 1.25, 2.50, 3.75, 5, 6.25, 7.50 μM) was
mixedwith 7.5 nMQDs in Tris buffer 1, respectively. It reveals
that the fluorescence intensity of QDs was decreased with the
increasing concentration of Ru(bpy)2(dppx)

2+, and the QDs
showed fairly low fluorescence intensity with 5 μM
Ru(bpy)2(dppx)

2+. We have obtained the quenching type ac-
cording to the Stern-Volmer plot (Fig. S2). The curve equation
is By = 0.020 x2 – 0.083 x + 1.3^, which is consistent with the
modified Stern-Volmer equation BIo/If = (1 + Kd[Q]) (1 +
Ks[Q])=1 + (Kd + Ks)[Q] + KdKs[Q]2^. So it is indicating
both static and dynamic quenching. The amount of MMPs
used in the detection system was investigated. Fig. S3 shows
that the fluorescence intensity of supernatant had positive cor-
relation with the amount of MMPs from 2 to 10 μL, and the
fluorescence intensity was almost stable when the adding vol-
ume of MMPs was 8 μL. The concentration of aptamer was
optimized, as shown in Fig. S4. The more aptamer was, the
higher efficiency of binding with MUC1 was, and the fluores-
cence intensity of QDs reached to a plateau when the concen-
tration of aptamer was 10 nM. The concentrations of H1 and
H2 were also optimized (Fig. S5). The fluorescent signal in-
creased with the increasing concentration from 0 ~ 1 μM.
However, when the concentration continued to increase, the
binding efficiency between MMP and aptamer-H0 decreased,
as a large amount of DNA in the solution increased the diffi-
culty of recognition between streptavidin-modifiedMMPs and

Fig. 1 TEM image of CdZnTeS QDs (λem = 530 nm), insets: HRTEM
image and size distribution of QDs, respectively

Fig. 2 UV-vis absorption (a) and fluorescence spectrum (b) of CdZnTeS QDs. The absorption peak is at 500 nm and the emission peak is at 530 nm
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biotin-labeled aptamer-H0. So the optimal concentration of H1

and H2 were both 1 μM.

MUC1 detection

In order to investigate the sensitivity of the detection strategy,
different concentration of MUC1 mixed with aptamer-H0 in
optimal conditions was measured, respectively, as shown in
Fig. 4. The fluorescence intensity of QDs was enhanced with
the increasing concentration of MUC1, and the relative fluo-
rescence intensity showed linear relationship with the concen-
tration of MUC1 from 0.2–100 ng·mL−1 (LOD = 0.13 ng·
mL−1, S/N = 3). Compared with the previous method
(Table S1), the sensitive of this fluorescent aptasensor is better
than the most of them. The result shows that this method can
be used to detect MUC1 sensitively.

Specificity of MUC 1 detection

For proving the specificity, MUC1 and other proteins, such as
AFP, CEA and ALP were tested. As shown in Fig. 5, the
fluorescence intensity of QDs was effectively quenched by
introducing other proteins, in spite of their concentrations were
ten times as that of MUC1. So this detection method can be
used for specific detection of MUC1. The reason is attributed
to the unique recognition capability of the aptamer of MUC1.

MUC 1 detection in human serum

For evaluating the function of this method in complex biolog-
ical environment, the fluorescent turn-on aptasensor was per-
formed to detect MUC1 in the 20-fold-diluted human serum
samples. The recovery was carried on four different levels of
MUC1 samples (12.5, 25, 50 and 100 ng·mL−1) with the pro-
posed aptasensor. The recovery is in the range of 92.9–108%,
and the relative standard deviation (RSD) varies from 3.00%
to 6.25%, which is shown in Table 1. Therefore, the
aptasensor is applicable for the determination of MUC1 in
the real sample with satisfied results.
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Fig. 3 Fluorescence spectra at different conditions: (a) taget only; (b) H1 +
H2; (c) target + H2; (d) target + H1; (e) target and H1 + H2; inset:
fluorescence intensity of CdZnTeS QDs at different condition,
respectively. The concentration of MUC1, H1, H2, QDs and Ru(II)
complex was 100 ng·mL−1, 1 μM, 1 μM, 7.5 nM and 5 μM, respectively
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Fig. 4 The calibration plot for the determination of MUC1

Fig. 5 The fluorescent response of this proposed method toward MUC1
and other proteins. The concentration of MUC1 was 100 ng·mL−1 and
other interfering substances were 1 μg·mL−1

Table 1 Determination of MUC1 in 20-fold-diluted human serum
samples with this fluorescence turn-on method

Sample
number

Added
(ng·mL−1)

Found
(ng·mL−1)

Recovery
(%)

RSD (%)
(n = 3)

Serum 12.5 11.6 ± 0.55 92.9 4.70

25 27.1 ± 1.69 108 6.25

50 48.4 ± 2.75 96.8 5.68

100 107 ± 3.20 107 3.00
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Conclusion

In summary, we establish a new method for MUC1 detec-
tion, based on signal amplification via a hybridization
chain reaction and the interaction between a luminescent
ruthenium(II) complex and CdZnTeS quantum dots. This
MUC1 detection method doesn’t require any nucleases or
fluorescent labels and can be used to selectively detect
MUC1 in real sample. Furthermore, this sensitive fluores-
cent MUC1 detection biosensor has great potential in the
area of cancer diagnosis.
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