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Abstract
Magnetic ZnFe2O4 nanotubes (ZFONTs) with numerous pores on their walls were synthesized and characterized. They are
shown to be a viable sorbent for dispersive micro-solid phase extraction of the trivalent ions of rare earth elements (REEs),
specifically of lanthanum, praseodymium, europium, gadolinium, holmium and ytterbium. The specific surface area of ZFONTs
is large (57 m2⋅g−1) and much bigger than that of ZnFeO4 nanoparticles (16 m2⋅g−1). It is shown that REEs are quantitatively
retained on ZFONTs in the pH range of 7.0–9.0. The separation of the sorbent from the aqueous phase was achieved by an
external magnetic field. Following elution with 0.5 mol⋅L−1 HNO3, REEs were quantified by inductively coupled plasma mass
spectrometry. The main parameters influencing preconcentration and determination of the REEs were studied. Under optimum
conditions, detection limits for REEs range from 0.01 (Ho) to 0.75 (La) pg⋅mL−1. Relative standard deviations are less than 6.5%
(for n = 9; at 1.0 ng⋅mL−1). The method was applied to the determination of trace REEs in spiked biological and environmental
samples and gave satisfactory results.
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Introduction

Owing to their unique characteristics, rare earth elements
(REEs) have attracted considerable interest in high-
technology fields, including electronics, superconductors, su-
per-magnets, ceramics, catalysts and laser materials [1–3].
Moreover, because REEs can promote the growth of plants
and animals, they are also widely used as feed additives and
microelement fertilizer in agricultural production [4]. As a
result, more and more REEs are spread in the environment,
and may enter human bodies via food chain. It was reported

that long-term intake of low dose REEs may result in the
aberration of bone structure and tissue, and even bring about
the generation of genetic toxicity in bone marrow cells [5].
REEs can invade the central nervous system because they are
susceptible to cerebral cortex and cause subclinical damage
[6]. Therefore, it is of great importance to develop new
methods for the determination of trace/ultra-trace REEs in
environmental and biological samples.

Various analytical techniques have been used for the deter-
mination of REEs in real samples, such as neutron activation
analysis, X-ray fluorescence, isotopic dilution mass spectrome-
try, inductively coupled plasma atomic emission spectrometry
and inductively coupled plasma mass spectrometry (ICP-MS).
Relatively, ICP-MS is the most favorable choice because of its
advantages, including high sensitivity, wide linear range and
multi-elemental detection capability. However, direct determi-
nation of REEs in environmental and biological samples by
ICP-MS is sometimes restricted due to very low concentration
of REEs and high contents of matrices. This is the reason why
sample pretreatment techniques are often necessary prior to
analysis [7, 8]. Among the preconcentrationmethod, solid phase
extraction (SPE) is a preferred procedure because of its advan-
tages, such as simple operation, low cost, high enrichment factor

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00604-019-3342-8) contains supplementary
material, which is available to authorized users.

* Shizhong Chen
chenshizhong62@163.com

1 College of Food Science and Engineering, Wuhan Polytechnic
University, Wuhan 430023, People’s Republic of China

2 College of Chemical and Environmental Engineering, Wuhan
Polytechnic University, Wuhan 430023, People’s Republic of China

Microchimica Acta (2019) 186: 228
https://doi.org/10.1007/s00604-019-3342-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00604-019-3342-8&domain=pdf
https://doi.org/10.1007/s00604-019-3342-8
mailto:chenshizhong62@163.com


and the ability to combine with other detection techniques
[9–11]. However, this technique suffers from certain shortcom-
ings, including solvent loss, large secondary wastes and a long
procedure [12]. In addition, a liquid sample is passed through a
column containing an adsorbent in conventional SPE. Small-
size adsorbent such as nanoparticles can escape from SPE col-
umn, and can cause high pressure in SPE system.

In order to overcome the above-mentioned drawback of
SPE, many researches have focused on developing simplified
and miniaturized sample pretreatment methods. Among them,
dispersive micro-solid phase extraction (DMSPE) has re-
ceived an increasing attention. Compared with traditional
SPE, DMSPE has many merits of reduced solvent consump-
tion, less adsorbent usage, short extraction time and high ex-
traction efficiency [13–15]. In DMSPE, physicochemical
properties of sorbents are very important to achieve an accu-
rate, sensitive and selective determination of analytes.
Therefore, development of new adsorbent materials has be-
come a focus of interests to analysts.

Due to their unique properties, nanomaterials are attracting
more and more attention in analytical sciences [16–21]. Among
them, magnetic nanoparticles have shown great potential as ad-
sorbent because of their smaller particle size, large surface area,
high adsorption activity and magnetic property. Some magnetic
nanomaterials have been employed for the preconcentration and
separation of inorganic and organic substances in DMSPE
[22–27]. Magnetic ZnFe2O4 nanotubes (ZFONTs) not only pos-
sess tubular structure, but also exhibit many pores on their wall,
which result in their larger specific surface area. These features
reveal that ZFONTsmaybe have a great analytical application as
an adsorbent inDMSPE. To the best of our knowledge, however,
study on this topic has received little attention so far.

In this work, ZFONTs were investigated as adsorbent for
the first time in DMSPE for the preconcentration of REEs
before their determination by ICP-MS. The experimental re-
sults showed that ZFONTs have a strong adsorption capacity
for REEs due to their large specific surface area. DMSPE
using ZFONTs coupled to ICP-MS provides the merits of high
enrichment factor, large dynamic capacity, low detection
limits. In addition, the separation of the sorbent containing
target analytes from aqueous phase was achieved by an exter-
nal magnetic field to avoid time consuming column passing or
filtration/centrifugation process. The accuracy and applicabil-
ity of this were validated by analyzing REEs in environmental
water samples and two certified reference materials.

Experimental

Instrumentation

An X Series 7 ICP-MS system (Thermo Fisher Scientific,
USA, www.thermofisher.com) with a Babington nebulizer

was applied in this work. 1.0 ng⋅mL−1 115In was used as
internal standard to compensate for signal error. The optimal
conditions for ICP-MS are listed in Table S1. A pHmeter with
a combined electrode was used to control the pH values of
solutions (Thermo Fisher Scientific, USA, www.thermofisher.
com). The mixture was sonicated using a KQ-50E ultrasonic
bath (Kunshan Ultrasonic Instrument Co., Ltd., Suzhou,
China, www.kscsyq.com). A strong neodymium-iron-boron
(Nd2Fe12B) magnet was used for phase separation. Sample
digestion was performed by an Ethos T microwave digestion
device (Milestone, Italy, www.milestonesci.com).

Reagents and solutions

Stock standard solutions of REEs (1.0 mg⋅mL−1) were pur-
chased from the National Analysis Center of Iron & Steel
(Beijing, China, www.nacis cn.com). Working solutions were
prepared by stepwise dilution of the above stock solutions just
before use. All reagents used in this experiment were of ana-
lytical grade unless otherwise noted and bought from
Shanghai Reagent Factory (Shanghai, China, www.zardzfp.
cn.gtobal.com). High purity deionized water was obtained
from Milli-Q® A10 service (Millipore Corporation, USA,
www.millipore.com) and used during this work. The
synthesis of ZFONTs was carried out in our laboratory. All
plastic and glass containers in this work were stored in 20% (v/
v) nitric acid over 24 h and rinsed with high purity water prior
to their use.

Dispersive micro-solid phase extraction procedure

Themodel solution of 30mL containing REEs was placed in a
50 mL test tube and adjusted to pH 8.0 with diluted NH3⋅H2O.
Afterwards, 10 mg of ZFONTs was immediately added to the
test tube. The mixture was dispersed by ultra-sonication for
1.5 min at room temperature, followed by a strong magnet
placed at the bottom of the test tube to separate ZFONTs from
the aqueous solution. The aqueous phase was discarded, and
ZFONTs remained in the test tube. To desorb the analytes,
1.0 mL of 0.5 mol⋅L−1 HNO3 solution was added to the test
tube containing ZFONTs, and the test tube was ultra-sonicated
for 1 min. Finally, the eluate was isolated by the magnet again.
The analytes in the eluent was determined by ICP-MS. A
blank solution was also run by the same procedure.

Sample preparation

The water samples, including lake water and wastewater water
(collected from Wuhan, China), were filtered through a
0.45 μm membrane filter, and then acidified to a pH of 5.0
for their storage. Prior to use, the sample solution was adjusted
to a pH 8.0 with 0.1 mol⋅L−1 NH3⋅ H2O.
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Two certified reference materials of tea leaf (GBW 07605,
Institute of Geophysical and Geochemical Exploration,
Langfang, China) and human hair (GBW 09101a, NRCSM,
Beijing, China) were used to validate this method. An accurately
weighed sample portion of 0.1000 g was mixed with 4.0 mL of
HNO3 (65–68%, w/w) and 2.0 mL of H2O2 (30%, w/w) in a
PTFE pressure vessel. The PTFE vessel was closed and left to
stand overnight. Then, the vessels were placed into a microwave
digestion device. After that, the samples were digested at 180 °C
(ramp, 10 °C⋅min−1; hold, 15 min) with a power of 1.0 kW. After
cooling, the vessels were opened and heated to near dryness on a
hot plate at 200 °C. The residueswere dissolvedwith 0.1mol⋅L−1

HNO3, diluted to a required volume with ultrapure water, and
kept in a refrigerator at 4 °C for future analysis. The blanks were
prepared exactly as the samples without addition of target ions.

Results and discussion

Preparation of magnetic magnetic ZnFe2O4

nanotubes (ZFONTs)

Magnetic ZFONTs were fabricated by a facile electrospinning
and direct annealing method. Firstly, a certain amount of
Zn(Ac)2⋅2H2O and Fe(acac)3 with molar ratio of 1:2 were
completely dissolved in 6 mL N, N-dimethylformamide with
vigorous stirring to form homogeneous solution. Then, 1 g
poly(vinyl pyrrolidone) (PVP, Mw~1,300,000) powder was
added into the above solution, followed by stirring for 6 h at
ambient temperature to obtain uniform brown-red precursor
solution. Finally, the mixture precursor was loaded into a sy-
ringe equipped steel needle, a high voltage of 11 kV was
supplied by a direct-current power supply, and the collector
was placed 15 cm away from the tip of steel needle. Magnetic
ZFONTs were fabricated by direct annealing of as-spun
ZnFeO4 precursor nanofibers mat at 550 °C for 3 h with a
heating rate of 1 °C ⋅ min−1. For comparison, ZnFeO4 nano-
particles were prepared by a hydrothermal method [28].

Choice of materials

Among various materials such as RGO, γ-Fe2O3-SiO2, MIPs,
LDH, Ni-doped CoFe2O4, magnetite @MOFs and ZnO,
ZFONTs can stand above due to its remarkable advantages.
Preparation of ZFONTs is facile, and used precursors possess
no drastic toxicity. However, the materials like MIPs are too
complex, and in some cases use toxic precursors such as vinyl
compounds. For magnetite @MOFs, MOFs were activated at
a required temperature under vacuum condition. Thus, their
synthesis is also an extremely tedious work. The separation of
the non-magnetic adsorbents such as RGO, LDH and ZnO
from aqueous phase was achieved using time-consuming fil-
tration or centrifugation process.

Compared with the magnetic γ-Fe2O3-SiO2 and Ni-doped
CoFe2O4 nanoparticle, ZFONTs exhibit hollow tubular struc-
ture and many pores on their wall. This unique structure re-
sults in the great increase of specific surface area and active
sites of ZFONTs, which is beneficial for adsorbing more ions
or molecules. Besides, ZFONTs is polar, unlike some poly-
mers and mesoporous carbon materials, and can highly dis-
perse in water, which leads to more contact between the ad-
sorbent and analytes.

Characterization of ZFONTs

The formation of ZFONTs was evaluated by an X-ray diffrac-
tometer with Cu Kα radiation (XRD 7000, Shimazu, Japan,
https://www.shimadzu.com). It can be seen from Fig. 1a that
the sharp and intense diffraction peaks located at 2 Theta of
29.9o, 35.3o, 42.9o, 53.2o, 56.7o, 62.2o and 73.5°
corresponded to the (220), (311), (400), (420), (511), (440)
and (533) planes of ZFONTs, respectively. It is demonstrated
that ZFONTs possessed standard spinel structure after calci-
nation treatment.

The surface morphology and composition of ZFONTs was
characterized by scanning electron microscopy (SEM) and
energy dispersive X-ray spectrometry (EDS, attached to
SEM) (MAIA 3 LMH, TESCAN, Czech Republic, www.
tescan.com). In Fig. 1b, it is vividly indicated that ZFONTs
possess a mean outer diameter of about 258 nm and many
nanopores on their walls which consist of ZnFeO4

nanoparticles. Moreover, the hollow structure of ZFONTs
with mean inner diameter of approximate 150 nm can be
detected from the transection image (Fig. 1c). Additionally,
ZFONTs maintain the 1D nanotube morphology. The forma-
tion of the nanopores can be attributed to the void space be-
tween the stacking ZnFeO4 nanoparticles during annealing
process. The results of EDS spectrum indicate that ZFONTs
were composed of Zn, Fe and O except for Au from the sam-
ple treatment, which suggests that the pure ZFONTs were
obtained in this work.

Sorption isotherm and pore size distribution of ZFONTs
were measured by a Micromeritics ASAP 2010 analyzer
(Norcross, GA, USA, www.micromeritics.com). Fig. 1d
indicates that the sorption isotherm belongs to the type IV
with a distinct hysteresis loop, illustrating the presence of
mesoporous structures on ZFONTs. In addition, the pore
size distribution of ZFONTs was examined by Barrett-
Joyner-Halenda method (Fig. 1e). The specific surface area
and pore volume of ZFONTs were measured to be 57.
42m2⋅g−1 and 0.16 cm3⋅g−1 by Barrett-Emmett-Teller method,
respectively. It is noting that the specific surface area of
ZFONTs is much bigger than that of ZnFeO4 nanoparticles
(16.09 m2⋅g−1) reported in the literature [28].

The experimental facts mentioned above suggest that
ZFONTs not only possess tubular structure, but also have
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many nanopores on their wall, which result in their large spe-
cific surface area. ZFONTs may be likely to become an excel-
lent adsorbent.

Optimization of experimental conditions

To achieve good analytical results, the following parameters
were optimized: a sample pH of 8.0 (Fig. S1), 10 mg of
ZFONTs as an adsorbent, 1.5 min as an extraction time,
1.0 mL of 0.5 mol⋅L−1 HNO3 as an eluent, and 1.0 min as
an elution time. Relevant experimental steps, respective data,
Tables and Figures were given in the Electronic
Supplementary Material.

Study of memory effect

Memory effect as a significant parameter was investigated in
DMSPE. The results revealed that all analytes retained on
ZFONTs can be completely desorbed under the selected con-
ditions, and no carryover is observed in the next analysis. The
reason for this fact is that DMSPE allow a close contact be-
tween the sorbent and the eluent in the elution step, which
favors the kinetics of elution.

Effect of sample volume

To explore its capability of extracting analytes at very low
content levels from large volume of real sample, the effect of
sample volume on the extraction of the analytes was investi-
gated by different sample volumes ranging from 10 to 150 mL
containing 6.0 ng of REEs. It is found from the results that
120 mL is the largest sample volume at which quantitative
extraction of analytes was achieved. However, the recovery
of analytes slightly decreased with further increase of sample
volume to 150 mL. Thus, an enrichment factor of 120 was
obtained by 1.0 mL of 0.5 mol⋅L−1 HNO3 as the elution
solution.

Influence of diverse ions

In order to investigate the selectivity of ZFONTs for DMSPE
of REEs, the effect of various interfering anions and cations,
most probably present in biological and environmental sam-
ples, on the recoveries of analytes was examined. In this ex-
periment, solutions containing 3.0 ng⋅mL−1 analytes and var-
ious amounts of the interfering ions were treated according to
this procedure. The tolerance limit of coexisting ions is de-
fined as the largest amount making the recovery of the analyte

Fig. 1 XRD pattern of ZFONTs (a). SEM images of ZFONTs with many pores on their walls (b). SEM transection image of ZFONTs (c). Nitrogen
sorption isotherm of ZFONTs at 77 K (d). Pore size distribution of ZFONTs based on Barrette-Joynere-Halenda method (e)
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maintained in the range of 90–110%. It was found that
10,000 mg⋅L−1 Cl− and NO3

−, 8000 mg⋅L−1 SO4
2−, SiO3

2−

and PO4
3−, 10,000 mg⋅L−1 K+ and Na+, 5000 mg⋅L−1 Ca2+

and Mg2+, 10 mg⋅L−1 Al3+ and Fe3+ did not influence on
recoveries of the analytes. Based on the experimental results,
it can be concluded that this method has an excellent selectiv-
ity for the adsorption of REEs, and is suitable for the analysis
of samples with complicated matrix.

Adsorption capacity

Adsorption capacity is an important parameter to evaluate
the performance of sorbent. In this work, the adsorption
capacity of REEs on ZFONTs was measured by the pro-
cedure reported in the literature [29]. 30 mL aliquots of
sample solutions containing the analytes in the concen-
tration range of 10–40 μg⋅mL−1 were preconcentrated
and eluted under the selected conditions. The amount of
the analytes adsorbed on ZFONTs (mg⋅g−1) at each con-
centration level was determined by this method.
Breakthrough curves were plotted by concentration of
analytes versus their amount adsorbed on per gram of
adsorbent. The adsorption capacities for La, Pr, Eu, Gd,
Ho and Yb calculated from the breakthrough curves were
found to be 31.2, 27.6, 28.9, 26.1, 25.9 and 32.7 mg⋅g−1,
respectively.

Analytical performance of method

The analytical performances of DMSPE using ZFONTs
coupled with ICP-MS for the determination of trace REEs
were evaluated under the optimum conditions, including pre-
cision, detection limits, and linear range of calibration. The
detection limits (DLs), defined as the concentration of the
analytes equal to 3 times the standard deviation for nine rep-
licate detections of the blanks, were in the range of 0.01(Ho) -
0.75 (La). The relative standard deviations (RSDs) ranged
from 2.5% (La) to 6.3% (Yb) (n = 9, c = 1.0 ng⋅mL−1). The
linear range (LR) of calibration covered over four orders of
magnitude with correlation coefficient (R2) higher than
0.9986. The relative data were listed in Table 1.

Table 2 gives the data of the analytical performances of this
method and other methods reported in the literatures [30–35].
The results in Table 2 indicate that DLs of this method are
lower than those reported in the literatures. The RSDs, LR and
R2 are superior or similar to other methods. In addition, this
method has a higher enrichment factor.

Validation and application of method

The accuracy and reliability of this method were examined by
the determination of REEs in environmental water samples,
including lake water and wastewater. The results were listed in
Table S2. The recoveries for the spiked samples were in the
range of 93–107%. To further validate this method, two certi-
fied reference materials of tea leaf (GBW 07605) and human
hair (GBW 09101a) were also analyzed by this method
(Table 3). The analytical results in Table 3 showed that the
determined values agreed well with the certified values.

Conclusions

Magnetic ZnFe2O4 nanotubes (ZFONTs) were used as a new
adsorbent for dispersive micro-solid phase extraction

Table 1 Characteristic data for this method

Isotope DL (pg⋅mL−1) RSD (%) LR (pg⋅mL−1)

139La 0.75 2.5 0.65–10,000
141Pr 1.2 3.8 0.25–10,000
151Eu 0.06 4.1 0.35–10,000
157Gd 0.37 5.0 0.20–10,000
165Ho 0.01 5.9 0.10–10,000
172Yb 0.31 6.3 0.15–10,000

Table 2 Comparison of this method with other techniques

Method Element EF LR (pg⋅mL−1) ET (min) R2 DL (pg⋅mL−1) RSD (%) Reference

ETV-ICP-MS Lanthanides – 3MO – – 0.20–0.91 2.5–9.1 [40]

LLE-ICP-MS La, Eu, Gd 8.6 20–10,000 2 >0.993 0.2–3.7 8.1–3.2 [41]

CME-ICP-MS Lanthanides – 4MO 6 >0.99 0.16–0.85 2.7–9.8 [42]

SPE-ICP-MS Lanthanides 25 – – >0.9985 0.31–1.2 <5% [43]

DLLME-ICP-MS Lanthanides 16 50–5000 9 >0.9973 0.085–3.33 – [44]

MSPE-ICP-MS Lanthanides 50 0.3–10,000 – >0.9998 0.04–1.49 1.7–6.5 [45]

DMSPE-ICP-MS Lanthanides 120 0.1–10,000 1.5 >0.9986 0.01–1.2 2.5–6.3 This work

ETV electrothermal vaporization, LLE liquid-liquid extraction, CME capillary microextraction, SPE solid phase extraction, DLLME dispersive liquid-
liquid microextraction, MSPE magnetic solid phase extraction, EF Enrichment factor, MO magnitude orders, ET extraction time
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(DMSPE) of rare earth elements followed by ICP-MS detec-
tion. Compared with traditional SPE, DMSPE allow a close
contact between the sorbent and the analytes in the
preconcentration step, which greatly improves the extraction
efficiency. Moreover, ZFONTs exhibit hollow tubular struc-
ture and many pores on their wall. This unique structure re-
sults in the great increase of specific surface area and adsorp-
tive sites of ZFONTs. The mechanism for extraction of target
ions mainly attributes to the different surface charges of
ZFONTs at different pH values. Thus, ZFONTs have a great
application potential in preconcentration, separation and anal-
ysis of metal ions, speciation of elements, non-metal ions and
polar organic compounds. At the same time, it should be
pointed out here that the structure of ZFONTs may be
destroyed in harsh acidic or basic media. Thus, this material
suffers from limited tolerance for an eluent with a high con-
centration level of strong acid or base.
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