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Abstract
The authors describe a fluorometric method for determination of the activity of alkaline phosphatase (ALP) and its inhibitors. Nitrogen
and boron co-doped carbon dots (C-dots) with excitation/emission peaks at 490/540 nm act as the fluorescent probe. The C-dots were
prepared by hydrothermal carbonization starting from 3-aminophenylboronic acid as the sole precursor. On the basis of the boronic
acid-triggered specific reaction with cis-diols, the boronic acid modified C-dots can bind to ascorbic acid that is generated by ALP-
catalyzed hydrolysis of ascorbic acid 2-phosphate. This results in particle aggregation and quenching of fluorescence. If the ALP
inhibitor Na3VO4 is introduced into the system, the activity of ALP is reduced and the fluorescence of C-dots recovers. This
fluorometric method allows for the determination of ALP activity in the range from 0.2 to 6.0 mU mL−1 with a detection limit of
0.16 mU mL−1. The IC50 value for the inhibitor Na3VO4 is 3.6 μM. The method is convenient and cost-effective. It does not require
complicated operations and in our perception widens the scope of applications of C-dots in bioanalytical sciences.
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Introduction

Alkaline phosphatase (ALP) is a critical enzyme in phosphate
metabolism due to its ability to catalyze the hydrolysis of

phosphoryl esters [1–3]. Moreover, ALP is commonly used
as an important biomarker for clinical diagnosis since its ab-
normal levels is closely associated with many diseases such as
bone diseases, diabetes, prostatic cancer and liver dysfunction
[4]. Therefore, it is of great importance to develop a sensitive
and selective method for ALP detection.

Fluorimety exhibits the advantages of high sensitivity, rapid
response and easy operation [5–9], which shows great potential
for ALP activity detection [10–12]. A number of fluorescent
methods for ALP activity detection have been reported by utili-
zation of organic fluorescent probes [13, 14], semiconductor
quantum dots [15], fluorescent polymers [16] and noble metal
nanoclusters [17, 18]. The poor water solubility for the organic
probes, high toxicity for semiconductor quantum dots, laborious
and complex synthesis procedure for fluorescent polymers, high
cost and poor stability for noble metal nanoclusters have un-
doubtedly limited their further practical applications [19].
Consequently, it is still challenging to develop a fluorescent
probe for ALP activity detection, especially the fluorescent probe
shows the advantages of good water solubility, low toxicity, sim-
ple synthesis procedures, cost-effectiveness and high stability.
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Carbon quantum dots (C-dots), a new class of carbon nano-
particles with size less than 10 nm, have drawn increasing
research attentions due to their outstanding advantages [20].
As a consequent, C-dots have been widely used in many
fields, such as photocatalysis [21, 22], biological imaging
[23, 24], biosensing [25, 26], photovoltaic device [27, 28]
and drug/gene delivery [29, 30]. However, the fluorescent
assays based on C-dots for ALP activity detection have been
rarely reported. Qian et al have proposed a novel fluorescent
method for sensitive detection of ALP activity based on the C-
dots-Cu2+- pyrophosphate ion (PPi) system [31]. The C-dots
were prepared by concentrated acid treatment method, which
was dangerous and not environmental-friendly. Qu et al re-
ported a fluorescent assay for ALP activity detection based on
C-dots-MnO2 nanosheets [32]. Though this assay showed
high sensitivity and selectivity, it was limited by the complex
and time-consuming procedures for the preparation of MnO2

nanosheets. Tang et al reported a fluorescent assay for ALP
activity detection by utilization of the β-cyclodextrin-
modified C-dots through host-guest recognition. But it
showed the disadvantage of complex process of the surface
modification for C-dots. Therefore, it irradiates us to develop
facile, sensitive and selective method for ALP activity detec-
tion using functionalized C-dots with simple and
environmental-friendly preparation method.

In this paper, we present a convenient and highly sensitive
fluorescent assay for ALP activity and its inhibitor detection by

using boron and nitrogen co-doped C-dots as fluorescent probe.
The C-dots were easily prepared by utilization of 3-
aminophenylboronic acid (ABPA) as the sole precursor thorough
one-step hydrothermal method [33]. The C-dots are rich in bo-
ronic acids group, which are reactive to cis-diols structure and
can covalently bind with the ascorbic acid (AA) obtained from
the hydrolysis of ascorbic acid 2-phosphate (2-AAP) by ALP.
This results in aggregation and fluorescence quenching of C-
dots. The introduction of ALP inhibitor can inhibit the generation
of AA to achieve the fluorescence recovery. Therefore, the C-
dots can be employed to fabricate a sensitive and selective fluo-
rescence assay for ALP activity and its inhibitor detection.

Experimental

Reagents and apparatus

ABPA, diethanolamine (DEA), bovine serum albumin (BSA),
trypsin and magnesium chloride hexahydrate (MgCl2•6H2O)
were bought from Aladdin Reagent Company (Shanghai,
China, www.aladdin-e.com). Lysozyme, pepsin and pancreatin
were purchased from Shanghai Macklin Biochemical Co., Ltd.
(Shanghai, China, www.macklin.cn). Glucose oxidase (GOx)
was supplied by Sangon Biotech Co., Ltd. (Shanghai, China,
www.sangon.com). Glucose (Glu), dopamine (DA), ALP, 2-

Fig. 1 TEM images of C-dots
taken at low (a) and high magni-
fications (b). c Size distribution of
the C-dots (collected from 100
particles). d FT-IR spectra of the
ABPA and the C-dots
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AAP and AA were acquired form Sigma-Aldrich (St. Louis,
USA, www.sigmaaldrich.com).

Fluorescence spectra were recorded on a RF-6000 spectro-
fluorometer (Shimadzu, Japan, www. shimadzu.com.cn). The
fluorescence emission spectra were collected in the
wavelength range from 510 nm to 620 nm at the excitation
wavelength of 490 nm. The excitation and emission slits were
set as 5.0 nm and 15.0 nm, respectively. Transmission electron
microscopy (TEM) images were obtained on JEM-1400
(JEOL Ltd., Japan, www.jeol.co.jp). X-ray photoelectron
spectra (XPS) were performed with an ESCALAB 250Xi
spectrometer (Thermo Fisher Scientific, USA, www.thermo.
com). Fourier-transform infrared (FT-IR) spectra were record-
ed on a Nicolet 380 FT-IR spectrophotometer (Thermo Fisher
Scientific, USA, www. thermo.com).

ALP activity and Na3VO4 detection

For ALP activity detection, 380 μL of DEA buffer (1 M,
pH 9.8), 10 μL of 50 mM MgCl2, 100 μL of 40 mM 2-
AAP, 10 μL of ALP with various enzyme activities, 10 μL
of C-dots and 490 μL of ultrapure water were successively
added into a 1.5 mL calibrated test tube. The solutions were
mixed thoroughly and incubated at 37 °C for 2 h. Finally, it
was transferred for fluorescence spectra measurements.

Na3VO4 is used as a model to study the potential applica-
tion of this fluorescent assay for ALP inhibitor screening. In
detail, 370 μL of DEA buffer (pH 9.8), 10 μL of 50 mM
MgCl2, 10 μL of 3 U mL−1 ALP and 10 μL of different
amounts of Na3VO4 were firstly added in 1.5 mL calibrated
test tube and incubated for 30 min at 37 °C. Subsequently,

Scheme 1 Schematic illustration
of synthesis of C-dots and the
working principle for ALP activ-
ity detection

Fig. 2 a Entire XPS scanning
spectrum of C-dots. The XPS
high-resolution survey scan of
C1s (b), N1 s (c) and B1s (d) of
the C-dots
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100 μL of 40 mM 2-AAP and 10 μL of C-dots were added
and diluted to 1 mL with ultrapure water. Finally, the above
solutions were incubated at 37 °C for another 2 h before the
fluorescence spectra measurements.

Detection ALP in real samples

For detection ALP in diluted human serum samples, 380 μL
of DEA buffer (pH 9.8), 10 μL of 50 mM MgCl2, 100 μL of
40 mM 2-AAP, 10 μL of ALP with various activities prepared
by 10% human serum samples, 10 μL of the C-dots and
490 μL of ultrapure water were mixed thoroughly and incu-
bated at 37 °C for 2 h before the fluorescence spectra
measurements.

Results and discussions

Characterization of the C-dots

The morphologies of the C-dots characterized by TEM are
displayed in Fig. 1a and b. The C-dots are mono-dispersed

and show a size distribution ranging from 1.3 to 4.0 nm with
an average diameter of 2.4 nm (Fig. 1c). The surface compo-
sition of the C-dots is confirmed by using FT-IR. As shown in
Fig. 1d, the peak at 3385 cm−1 in the FT-IR curve of C-dots is
assigned to the stretching vibration of N-H, corresponding to
the peaks at 3472 and 3390 cm−1 of the ABPA. In addition, the
asymmetric stretching vibration of B-O at 1356 cm−1, the
bending vibration of B-O-H at 1167 cm−1, C-B stretching
vibration at 1108 cm−1 and B-O-H deformation vibration at
1030 cm−1 are also observed in the FT-IR of C-dots [34].
Furthermore, the composition of the C-dots is characterized
by XPS. As shown in Fig. 2a, the survey spectra of the syn-
thesized C-dots implies the presence of C, N, O as well as B
elements. The high-resolution spectrum of C1s reveals the
presence of C-B (284.1 eV), C-C/C=C (284.8 eV) and C-O/
C-N (285.8) on the surface of C-dots (Fig. 2b). The N1 s
spectrum can be deconvoluted into three peaks centered at
399.4, 400.1 and 401.5 eV, corresponding to pyridinic N, pyr-
rolic N and graphitic N (Fig. 2c). From the high-resolution
B1s spectrum (Fig. 2d), the two peaks at 191.4 and
192.7 eV are attributed to B-C and B-O, respectively. These
results reveal that B and N have been successfully doped in

Fig. 4 a The fluorescence spectra of C-dots before and after the addition
of various activities of ALP. From top to down, the activities of ALP are
0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 30.0
and 50.0 mU mL−1. b The relationship between the (F0-F)/F0 and ALP
activity. Inset shows the linear plot of the (F0-F)/F0 as a function of ALP

activity. F0 and F are the fluorescence intensity of the detection system in
the absence and presence of ALP, respectively. Conditions: 10μL C-dots,
4 mM 2-AAP and 0.5 mM MgCl2, excitation/emission peaks at 490/
540 nm. Error bars represent the standard deviation of three individual
measurements

Fig. 3 a TEM images of the C-
dots after the addition of AA. b
Fluorescence spectra of the C-
dots before and after the intro-
duction of different concentra-
tions of AA. From top to down,
the concentrations of AA are 0.0,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5 and 0.8 mM.
Detection conditions: 10 μL C-
dots, 4 mM 2-AAP, 0.5 mM
MgCl2, excitation/emission peaks
at 490/540 nm
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the C-dots and the C-dots are functionalized with boronic acid
group. The quantum yield (QY) of C-dots is calculated to be
15.4% % using Rhodamine B in ethanol solution as the stan-
dard (detailed information for the measurement of QY are
shown in the electronic supporting material).

Principle of the detection method

The distinguished properties of C-dots make them possible to
detect various important targets. Herein, a novel fluorescent assay
for sensitive detection of ALP activity has been proposed thor-
ough the boronic acid-modified C-dots. As shown in Fig. S1, the
C-dots show largest emission intensity at 540 nmwhen excited at
490 nm.When either 2-AAP or ALP is introduced, the emission
intensity of C-dots keep almost unchanged. However, when 2-
AAP and ALP are simultaneously added, the emission intensity
of C-dots decrease obviously. Therefore, it proves that it is AA

generating from the hydrolysis of 2-AAP by ALP that causes the
fluorescence quench of C-dots. According to the above experi-
mental results and previous reports that the boronic acids can
bind with cis-diols to form stable boronate complexes [35], a
possible detection mechanism is proposed (Scheme 1). As
shown in Fig. 3a, the initial dispersed C-dots aggregates after
the incubation with AA. At the same time, the fluorescence of
C-dots decreases gradually with the increasing concentration of
AA (Fig. 3b). Consequently, it may be the aggregation of C-dots
result in the fluorescence quench. The Fig. S2 shows there is no
overlap between the absorption spectrum AA and the excitation
or emission spectra of C-dots. Therefore, the fluorescence reso-
nance energy transfer and inner filter effect based mechanisms
can be excluded. Based on a previous report [36], the fluores-
cence quench of C-dots may be due to the surface quenching
states induced mechanism.

Optimization of the detection conditions

To obtain better detection performances, several experimental
conditions including the concentration of 2-AAP, the volume of
C-dots and incubation time are optimized.We utilize (F0-F)/F0 as
the criterion to optimize the experimental conditions, where F0
and F are the fluorescence intensity of C-dots at 540 nm in the
absence and presence of ALP, respectively. The optimum detec-
tion conditions should be as follows: (a) the concentration of 2-
AAP is 4.0mM (Fig. S3), (b) the volume ofC-dots is 10μL (Fig.
S4), (c) the incubation time is 120 min (Fig. S5).

Analytical performances for ALP screening

Under the optimal detection conditions, the sensitivity for
ALP activity detection is carefully studied. Figure 4a shows
the fluorescence spectra of the detection system upon the in-
troduction of various activities of ALP ranging from 0.0 to
50.0 mU mL−1. As the activity of ALP increase, the
concentration of AA generated by the ALP-catalyzed hydro-
lysis of 2-AAP increases within certain activity range. As a
consequent, the fluorescence intensity of C-dots decreases
gradually. While, the (F0-F)/F0 increases systematically and

Fig. 5 The fluorescence intensity of the detection solution after the
addition of possible interferences without (black) or with ALP (red). All
the concentrations of these possible interfering substances and ALP are
0.5 μg mL−1. The detection conditions for the selectivity test are the same
as that for ALP detection except that the ALP is replaced by the possible
interference or ALP and interference are simultaneously introduced. Error
bars demonstrate the standard deviation of three independent
measurements

Table 1 Recovery analysis of
ALP activity in serum samples Sample Amount added (mU mL−1) Amount founda

(mU mL−1)

Recovery (%) RSD (%)

1 2.0 2.21 ± 0.18 110 8.14

3.0 2.95 ± 0.12 98.3 4.07

2 2.0 1.95 ± 0.09 97.5 4.61

3.0 2.95 ± 0.18 98.3 6.10

3 0.5 0.58 ± 0.05 116 8.62

1.0 1.07 ± 0.02 107 1.87
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reaches a plateau when the activity of ALP exceeds
10.0 mU mL−1 (Fig. 4b). A good linear behavior between the
(F0-F)/F0 andALP activity in the range from 0.2 to 6.0mUmL−1

is obtained. The linear equation is (F0-F)/F0 = 0.004 + 0.070cALP
(mUmL−1), with a correlation coefficient of 0.994. The detection
limit is estimated to be 0.16 mU mL−1 based on signal-to-noise
ratio of 3. Moreover, we compare the analytical performances of
this method with other methods for ALP activity detection re-
ported elsewhere. As shown in the Table S1, the detection sen-
sitivity is comparable or even higher than other methods.
Additionally, though this method needs longer detection time, it
is more convenient by just mixing C-dots, 2-AAP, ALP and
buffer together. The repeatability of this assay is evaluated by
six repeatedmeasurements of 3.0mUmL−1ALP, and the relative
standard deviation (RSD) is calculated to be 2.0%, indicating the
reliability of this assay.

To validate the specificity of the assay for ALP
activity detection, the effects of BSA, trypsin, pepsin, GOx, pan-
creatin, lysozyme, DA and Glu are explored. Under the same
detection conditions, only these interferences added simulta-
neously with ALP can significantly induce the decrease of the
fluorescence intensity, whereas no obvious fluorescence intensity
change is found after the addition of these possible interferences
without the ALP (Fig. 5). Therefore, this assay shows high se-
lectivity o for ALP detection.

To demonstrate the practical use of this assay, we attempt to
detect ALP in diluted human serum samples (10%). ALP with
activities of 0.5, 1.0, 2.0 and 3.0 mU mL−1 are added and
detected by this assay. As presented in Table 1, the recoveries
are in the range from 97.50% to 116%with RSD ranging from
1.87% to 8.62%. The good recoveries and acceptable RSD has
definitely demonstrate that this assay has been successfully
employed for ALP activity detection in biological samples.

ALP inhibitor screening

As the overexpression of ALP is associated with several dis-
eases, therefore, potent inhibitors of ALP may be used as

therapeutic agents [37]. Therefore, this convenient assay en-
ables us to study its potential application in ALP inhibitor
screening. Na3VO4, a well-known inhibitor for ALP, is used
as a model to evaluate the inhibitory effect. The ability of ALP
to catalyze the hydrolysis of 2-AAP is very much weakened
with the increasing concentrations of Na3VO4 and a relative
low concentration of AA is released. As a result, the fluores-
cence intensity of C-dots increases gradually (Fig. 6a). The
inhibition efficiency (IE) is calculated by the following eq.
IE(%) = 100 × (Fi-F)/(F0-F), where Fi represents the fluores-
cence intensity of the C-dots after the addition of 2-AAP,
ALP and Na3VO4. The IE of Na3VO4 is evaluated by IC50

value, which is the concentration of Na3VO4 needed for 50%
inhibition of ALP activity. From the plot of IE versus Na3VO4

concentration (Fig. 6b), the IC50 value is calculated to be
3.6 μM. The results undoubtedly indicate that this fluores-
cence assay can be used for the screening of ALP inhibitors.

Conclusions

Based on the fact that AA can lead to the aggregation of the
boronic acid-modified C-dots, a novel fluorometric method
for ALP activity and its inhibitor screening has been devel-
oped. ALP is able to catalyze the hydrolysis 2-AAP to obtain
AA, resulting in the fluorescence quench of C-dots. While the
fluorescence recovers after the introduction of Na3VO4 since
the ALP activity is inhibited. Though this method needs lon-
ger detection time, it shows several distinctive merits. Firstly,
the C-dots are easily prepared and they possess good water
solubility. Secondly, the detection procedures for ALP and its
inhibitor is convenient by just mixing C-dots, ALP, 2-AAP
and buffer together. Finally, this method shows high sensitiv-
ity and good selectivity. Moreover, this method may be not
only used for ALP activity and its inhibitor detection, but also
make a great contribution to the development of bioassays
based on the C-dots.

Fig. 6 a Fluorescence spectra of C-dots in the presence of 2-AAP
(4.0 mM), ALP (30.0 mU mL−1) and different concentrations of
Na3VO4. From down to top the concentrations of Na3VO4 are 0.0, 1.0,

3.0, 5.0, 7.0, 10.0 μM, 0.1, 0.3 and 0.5 mM. b The plot of the IE of
Na3VO4 to ALP versus the concentration of Na3VO4. Error bars are the
standard deviation of three independent measurements
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