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Abstract
This review (with 155 refs.) summarizes the progress made in the past few years in the field of electrochemical sensors based on
graphene-derived materials for the determination of heavy metal ions. Following an introduction of this field and a discussion of
the various kinds of modified graphenes including graphene oxide and reduced graphene oxide, the review covers graphene
based electrodes modified (or doped) with (a) heteroatoms, (b) metal nanoparticles, (c) metal oxides, (d) small organic molecules,
(e) polymers, and (f) ternary nanocomposites. Tables are provided that afford an overview of representative methods and
materials for fabricating electrochemical sensors. Furthermore, sensing mechanisms are discussed. A concluding section presents
new perspectives, opportunities and current challenges.
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Introduction

Heavy metal ions (e.g. those of Cd, Pb, and Hg), and semi-
metals (e.g. As) are highly toxic and may cause serious
damage to health. Owing to growing concerns in this area,
many international and national organizations have defined
maximum contaminant levels for drinking water. For ex-
ample, the maximum permissible levels set by the World
Health Organization (WHO) for Cd and Pb are 0.003 and

0.010 mg L-1, respectively [1]. Electrochemical sensors are
very promising for heavy metal monitoring, as they offer
desirable characteristics such as sensitivity, selectivity, in-
expensiveness, robustness, and field-deployability [2].

Graphene and its derivatives, including graphene oxide
(GO), reduced graphene oxide (rGO), and three-dimensional
(3D) graphene, are widely used in electrochemistry [3].
Graphene consists of a one-atom-thick planar sheet compris-
ing a closely packed honeycomb carbon lattice. By definition,
graphene contains only sp2 carbons without oxygen (or nitro-
gen). Pristine graphene has a high electron transfer rate, a large
surface area (2630 m2 g-1) [4], and a high conductivity (64 mS
cm-1) [5, 6]. Although some studies [7, 8] claim that pristine
graphene was used, in fact they used graphite, GO or rGO.
GO, a monolayer of graphite oxide, containsmany defects and
numerous oxygen functional groups, mostly in the form of
hydroxyl and epoxy groups on the basal plane, with smaller
amounts of carboxyl, carbonyl, phenol, lactone, and quinone
groups at the sheet edges [9]. Compared with pristine
graphene, the polar oxygen functional groups provide GO
with good dispersibility in many polar solvents, particularly
in water (concentration < 1 mg mL-1). In addition, the oxygen
functional groups serve as sites for immobilizing various
electroactive species via covalent or noncovalent bonds.
However, the large amount of oxygen functional groups in
GO causes some loss of electrical conductivity, which may
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limit the direct application of GO in electrically active mate-
rials and devices [9].

Reduced graphene oxide (rGO) is obtained by the
chemical/electrochemical reduction of GO. The charge trans-
portation ability of rGO is enhanced compared with that of
GO owing to the removal of some oxygen-containing func-
tional groups and partial remediation of the sp2 conducting
structure. Moreover, the chemical and electrical properties of
rGO are tunable and the content of oxygen functional groups
and defects is sufficient for facilitating analyte adsorption
[10]. Although rGO and its composites have been widely
employed as sensing materials [11], the dispersion ability re-
mains challenging.

In addition to these two-dimensional (2D) nano-carbon
materials, 3D graphene has received considerable interest ow-
ing to its outstanding properties, such as an interconnected
porous structure, an enormous specific surface area, good me-
chanical stability, and flexibility to tailorable surface chemis-
try [12]. Based on these advantages, 3D-graphene-based sen-
sors have been exploited for the electrochemical sensing of
heavy metal ions. However, 3D graphene shows an inferior
sensing ability for heavy metal ions [13] owing to the restrict-
ed diffusion of aqueous analytes in the hydrophobic 3D con-
nected framework [12]. To improve the sensing ability, vari-
ous active species have been introduced on the 3D framework
of graphene [12]. An excellent review related to 3D-graphene-
based electrochemical sensors has been published by Baig
et al. [14]. A summary of the merits and disadvantages of
graphene, GO, rGO, and 3D graphene are listed in Table 1.

In general, the direct use of pristine graphene or graphene
derivatives for electrochemical sensing suffers from low sen-
sitivity, interference from other substrates, and easy agglom-
eration. Therefore, sensors based on graphene-derived
nanomaterials have been widely investigated [15, 16].
Although Gan et al. has addressed the preparation of sensors
based on various 2D nanomaterials and their sensing proper-
ties for heavy metal ions [17], a systematic investigation of the
mechanisms by which graphene-derived nanomaterials
achieve improved detection of heavymetal ions is still needed.

Our review is organized according to the type of sensing ele-
ments, which are classified as heteroatom-doped graphene,
metal-modified graphene, metal oxide-modified graphene, or-
ganically modified graphene, polymer-modified graphene,
and ternary graphene-based nanocomposites. Corresponding
hybrid materials are also introduced.

Sensors using heteroatom-doped graphene
and GO

Heteroatom (N, S, F, etc.) doped graphene can exhibit
various new or improved electromagnetic, physicochemi-
cal, optical, and structural properties [18]. For example,
Xing et al. synthesized N-doped graphene via a one-step
electrochemical strategy. The incorporation of pyridine-
like N and pyrrole-like N in graphene was found to great-
ly enhance the performance for electrochemical determi-
nation of Cd2+, Pb2+, Cu2+, and Hg2+ compared with rGO.
The detection limit were estimated to be 0.05 μM for
Cd2+ and Hg2+, and 0.005 μM for Pb2+ and Cu2+. [19].
Liu et al. reported a nanocarbon paste electrode modified
with N-doped graphene for trace Pb and Cd determination
using square wave anodic stripping voltammetry. The
presence of N atoms in graphene increased the number
of catalytically active sites and enhanced the electron
transfer ability of the modified electrode [20]. In the pres-
ence of dibenzyl disulfide and a silica template, Manna
et al. synthesized S-doped porous rGO by thermal anneal-
ing, and the material was used for efficient removal and
electrochemical determination of Hg2+. As shown in Fig.
1, the presence of a large amount of thiophenic S and the
porous structure provided a detection limit as low as 0.5
nM [21]. Antony et al. reported fluorinated GO for the
simultaneous detection of Cd2+, Pb2+, Cu2+ and Hg2+

using square wave anodic stripping voltammetry. The in-
corporation of F into GO improved the sensitivity owing
to the interactions between electron-donating F and
electron-deficient heavy metal ions [22].

Table 1 Summary of the merits
and disadvantages of graphene,
GO, rGO and 3D graphene for
heavy metal ion sensing

Type of carbon
material

Merits Disadvantages

graphene high electron transfer rate;

large surface area;

high conductivity

easy agglomeration; inferior
solvent dispersion ability

GO good dispersibility in many polar solvents; large
surface area; many oxygen functional groups

poor conductivity

rGO easy preparation method; large surface area;
conductivity approximately 4-fold greater than
that of GO

inferior solvent dispersion ability

3D graphene interconnected porous structure; enormous specific
surface area; good mechanical stability

hydrophobic 3D framework
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Sensors using metal-modified graphene

Graphene modified with noble metal nanoparticles (NPs) has
been used for heavy metal ions sensing because noble metal
NPs exhibit high catalytic activity via the size effect.
Moreover, graphene can transfer electrons acquired from cat-
alytic process of the metal NPs to electrodes, which may ac-
celerate the catalytic process [23]. Among NPs that form
nanocomposite with graphene, Au NPs are the most widely
applied for the detection of metal ions because they offer the
advantages of high chemical stability and easy preparation
processes [15]. For example, Au NPs decorated graphene syn-
thesized via electrodeposition method was used for sensitive
determination of Hg2+. Compared with their bulk electrode
counterpart, Au NP modified electrodes are promising be-
cause they can eliminate the memory effect and increase the
sensitivity for heavy metal ion detection [15]. The detection
limit for Hg2+ was estimated to be 0.03 pM, which is well
below the guideline value set by the WHO [24]. In addition
to Hg2+ electroanalysis, Au NPs/rGO nanocomposites have
also been widely used for the analysis of As3+. For instance,
Liu et al. utilized an Au NPs-electroreduced graphene oxide
(ERGO) composite film for the determination of As3+. The
obtained good sensitivity (limit of detection = 2.7 nM) was
attributed to the formation of Au–As intermetallic compounds
that enhance the efficiency for cathodic preconcentration of
As(0) [25]. Moreover, the effect of the supporting electrolyte
(0.20 M aqueous HClO4, 0.20 M aqueous HCl, or 0.10 M
aqueous H2SO4) on the magnitude of the detected signal
was also evaluated. The detection performance in 0.20 M

aqueous HCl was better than that in the other two supporting
electrolytes, which was attributed to improved electron kinet-
ics resulting from the complexation of Cl- ions with As3+.
However, the detection of inorganic As in highly acidic media
could cause problems such as hydrogen evolution or undesir-
able corrosion reactions [26].

In addition to Au NPs, graphene decorated with Ag NPs has
also been used in heavy metal ion sensing. For example, Sang
et al. synthesized Ag NPs/rGO via an in situ method. A
nanocomposite-modified glassy carbon electrode was used for
simultaneous electrochemical sensing of Cd2+, Pb2+, Cu2+ and
Hg2+, and this modified electrode showed excellent selectivity
[27]. However, expensive materials like Au and Ag are of lim-
ited practicalitywhen fabricatingmacroelectrodes, which require
large amount of material, owing to cost considerations [28].

Alternatives like Bi NPs or Sn NPs have also been used in
heavy metal ion sensing. For example, Sahoo et al. prepared
Bi NPs modified rGO sheets via an in situ method [29]. Lee
et al. decorated rGO with Sn NPs via an electrodeposition
method and realized electrochemical sensing of Cd2+, Pb2+

and Cu2+ using square wave anodic stripping voltammetry
[30]. Sn has similar electroanalytical properties to Bi, but it
is less toxic and cheaper [31].

Apart from metal NPs, metal films have also been hybrid-
ized with graphene to construct sensors for heavy metal deter-
mination. For example, Ping et al. fabricated an electrochem-
ical sensing platform based on a screen-printed electrode mod-
ified with an electrochemically rGO. After in situ plating with
a Bi film, the electrode was used for the simultaneous deter-
mination of Cd2+ and Pb2+ [32]. The mechanism of Cd2+ and
Pb2+ detection at the surface of Bi based electrode involves the
capacity of Bi to form a Bfused alloy^ with heavy metal ions
[33]. Compared with a previously widely used Hg film, Bi is
less toxic to the environment and has excellent mechanical
stability [33]. Unfortunately, compared with the Hg-modified
electrode, the Bi-modified electrode has various limitations,
such as a narrow potential window (below the oxidation po-
tential of Bi) and easy oxidation upon contact with air [34].

Sb film electrodes exhibiting similar electroanalytical per-
formance to the Bi film electrodes have also been applied to
heavy metal sensing. For example, Ruengpirasiri et al. used
GO-Sb film-modified electrode for the simultaneous determi-
nation of Cd2+, Pb2+, Cu2+, and Hg2+ [35]. In situ preparation
of Sb films can be conducted in a wider pH range than Bi films
because bismuth hydroxide will form at pH 4, which results in
irreproducible measurements [36, 37]. Thus, Sb film elec-
trodes are a valuable and complementary alternative to Bi film
electrodes for measurement under an oxidative potential or in
acidic media (e.g. determination of Cu2+ and Hg2+). However,
the toxicity of Sb metal ions, especially Sb3+, cannot be ig-
nored completely [36]. The overview on metal-modified
graphene as sensing material for electrochemical sensing of
heavy metal ions was displayed in Table 2.

Fig. 1 The morphology of S-doped porous rGO and application in Hg2+

electrochemical sensing and removing. Reproduced from [21] with per-
mission of ACS
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Sensors using metal-oxide-modified
graphene

As an alternative to metal NPs and metal films, metal oxides
have frequently been used in heavy metal ion sensing owing
to their large surface areas and high electrocatalytic activities.

The sensing mechanism of metal oxide for heavy metal ion is
strong adsorption ability, or electrocatalytic activity, or both
simultaneously [28, 55–57]. However, most metal oxides
have inferior conductivities and stabilities, which are unfavor-
able for electron transfer during the detection process and
decrease the long-term stability of the electrode. However,

Table 2 Overview on metal-
modified graphene as sensing
material for electrochemical sens-
ing of heavy metal ions

Electrode Sensing ions Linear range LOD Ref.

Au NPs/graphene/GCE Hg2+ 0.12-29.9 pM 0.03 pM [24]

Au NPs/graphene/GCE Hg2+ 1-150 nM 0.6 nM [38]

Au NPs/rGO/CPE Hg2+ 4.99–31.92 nM 1.25 nM [39]

Au NPs/rGO/GCE As3+ 0.01-5 μM 2.7 nM [25]

Au NPs/rGO/CPE As3+ 13.35-266.95 nM 1.74 nM [40]

Au NPs/rGO/GCE As3+ 4-26.69 pM 1.33 pM [41]

Au NPs/graphene/GCE Pb2+ 10-150 nM 0.8 nM [42]

Au NPs/graphene/GCE Cu2+ 5-100 nM 0.028 nM [43]

Au NPs/rGO/Au electrode Cu2+ 0.02-1 μM 8 nM [44]

Au NPs/rGO/GCE Cd2+ 1-12 μM 31.81 nM [45]
Pb2+ 12.69 nM

Cu2+ 27.42 nM

Hg2+ 20.7 nM

dendritic Au/GO/GCE Fe3+ 0.007-1 μM 1.5 nM [46]

Au NPs/rGO/GCE Fe3+ 0.03-3 μM 3.5 nM [47]

Au NPs/rGO/GCE Fe3+ 0.03-3 μM 3.5 nM [47]

Au NPs/rGO/GCE CH3Hg
+ 13.92-111.32 nM 0.56 nM [48]

Ag NPs/rGO/GCE Cd2+ 0.05-3.5 μM 0.254 μM [27]
Pb2+ 0.05-2.5 μM 0.141 μM

Cu2+ 0.05-3.5 μM 0.178 μM

Hg2+ 0.5-3 μM 0.285 μM

Ag NPs/GO/GCE As3+ 13.33-375.19 nM 0.24 nM [49]

Pt NPs/rGO/GCE As3+ 10-100 nM 1.1 nM [50]

Bi NPs/rGO/CPE Zn2+ 1.53-6.12 μM 0.26 μM [29]
Cd2+ 0.18-1.07 μM 0.025 μM

Pb2+ 0.097-0.58 μM 2.65 nM

Cu2+ 0.31-1.57 μM 0.41 μM

Bi nanosheets/GO/GCE Fe3+ 0.01-20 μM 2.3 nM [51]

Sn NPs/rGO/glassy carbon sheets Cd2+ 10-100 nM 0.63 nM [30]
Pb2+ 0.6 nM

Cu2+ 0.52 nM

Bi film/rGO/SPE Cd2+ 8.9-53.38 nM 4.45 nM [32]
Pb2+ 4.83-28.96 nM 7.12 nM

Bi film/graphene/GCE Zn2+ 0.015-1.53 μM 0.028 μM [52]
Cd2+ 0.0089-0.89 μM 1.6 nM

Pb2+ 0.00483-0.48 μM 0.53 nM

Bi film/graphene/GCE Cd2+ 0.062-1.068 μM 4.18 nM [53]

Bi film/graphene nanosheets/GCE Cd2+ 0.00445-0.89 μM 3.11 nM [54]
Pb2+ 0.48-480 nM 0.22 nM

Sb film/GO/SPE Cd2+ 0.3-1.5 μM 0.054 μM [35]
Pb2+ 0.1-1.3 μM 0.026 μM

Cu2+ 0.3-1.5 μM 0.06 μM

Hg2+ 0.1-1.3 μM 0.066 μM

GCE, glassy carbon electrode; CPE, carbon paste electrode; SPE, screen printed electrode
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when a metal oxide is combined with graphene, the nanocom-
posite is expected to provide a new electrochemical platform
for heavy metal ion sensing [58]. Up to now, Fe3O4, ZnO,
MnO2, Cu2O, Fe2O3, SnO2, TiO2, and Co3O4-based graphene
nanocomposites have been successfully applied to the detec-
tion of heavy metal ions in aqueous solution. The morphology
and average size of the metal oxide can greatly influence the
performance of the modified electrode. As shown in Fig. 2,
Sun et al. synthesized rGO decorated with three different
shapes of Fe3O4 via a one-step in-situ co-precipitation meth-
od. The sensitivity for analysis of Pb2+ decreased in the fol-
lowing order: band Fe3O4/rGO > spherical Fe3O4/rGO > rod
Fe3O4/rGO [59]. Karthik et al. synthesized Co-doped ZnO/
rGO as a heavy metal ion sensor for Cd2+ and Pb2+.
Compared with ZnO/rGO, Co-doped ZnO/rGO exhibited bet-
ter catalytic activity toward Cd2+ and Pb2+ sensing with de-
tection limits of 8.36 nM for Cd2+ and 4 nM for Pb2+ [60].

Compared with monometallic oxides, bimetallic oxides ex-
hibit better electrochemical activity owing to electron hopping
between different valence states of metals in oxygen sites [61].
Huang et al. compared the detection performance of NiCo2O4

with those of Co3O4 and NiO. NiCo2O4 exhibited better per-
formance for electrochemical determination of Pb2+ and Cu2+

than the other two materials [62]. Based on this concept,
Xiong et al. used a 1,6-hexanediamine (HDA)- functionalized
MgFe2O4/rGO composite for the electrochemical determina-
tion Cu2+. The amino group in HDA has high activity for
coordination with heavy metal ions. The detection limit was
estimated to be 0.2 nM with a sensitivity of 0.0172 μA nM-1

[63]. The same group investigated polyethyleneimine (PEI)
(or ethanediamine (EDA)) functionalized CoFe2O4/rGO com-
posite for electrochemical detection of ultra-trace Cu2+, and
explored the interaction mechanism. Cyclic voltammetry and
X-ray photoelectron spectroscopy results indicated that the
interaction between the composite and Cu2+ involved an ad-
sorption control process [64]. Zhou et al. synthesized GO
incorporating mesoporous MnFe2O4 for the electrochemical
determination of Pb2+. The mesoporous structure of MnFe2O4

increased the specific surface area of GO and enhanced the

electrochemical activity toward Pb2+ analysis [65]. The over-
view on metal oxide-modified graphene as sensing material
for electrochemical sensing of heavy metal ions was shown in
Table 3.

Sensors using organically modified graphene

The modification of graphene with organic molecules is be-
lieved to increase the sensitivity and selectivity of graphene-
based electrochemical sensors for heavy metal ion through
two different recognition mechanisms, namely, chemical af-
finity and cavity entrapment (or both simultaneously). Various
kinds of organic molecule including small organic molecules
(containing electron-rich groups such as –OH, –SH, and –
NH2) and caged molecules (calixarenes and cyclodextrins)
have been investigated [1]. For instance, Muralikrishna et al.
synthesized L-cysteine functioned GO by reacting the carbox-
yl groups in graphene with the amino group in L-cysteine.
This material was used for the simultaneous electrochemical
determination of Cd2+, Pb2+, Cu2+, and Hg2+. The oxygen–
containing groups of GO and the electron donor group in L-
cysteine facilitated the adsorption process of heavy metal ions
[81]. Yuan et al. reported high–density 2-amino-5-mercapto-
1,3,4-thiodiazole (AMT)–grafted GO prepared via an
amidation reaction between GO and AMT under strong basic
conditions. The high grafting density was attributed to the
high density carboxyl groups on GO. The detection signal
during electroanalysis of Cu2+ was amplified by the abundant
N, O, and S donor atoms of AMT.

To exploit the coordination between heavy metal ions and
N atoms in piperazine, our group synthesized piperazine–
grafted GO through nucleophilic ring–opening of epoxy
groups on GO with the amino groups of piperazine. After
chemical reduction by ascorbic acid, the modified glassy car-
bon electrode was used for the detection of Hg2+ with a de-
tection limit of 0.2 nM [82]. Based on the same synthetic
mechanism, Zhou et al. reported cysteamine-functionalized
GO for the selective determination of Hg2+. In addition to

Nature graphiteGraphene oxide

Hummers

Reduce PVP

Fe3+

Fe2+

2.5:1

4.0:1

5.4:1

NaOH

Fig. 2 Preparation processes of
three shapes of Fe3O4/rGO by
adjusting the mole ratio of Fe2+/
Fe3+ via in-situ co-precipitation
method. Reproduced from [59]
with permission of Elsevier
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interacting with the Au electrode surface through the forma-
tion of Au–S bonds, the residual mercapto groups in cyste-
amine can selectively interact with Hg2+ [83]. Göde et al.
functionalized rGO with calixarenes using 1-ethyl-3-(3-
dimethylaminoprophy) carbondiimide hydrochloride (EDC)

and N-hydroxy succinimide (NHS) to activate the carboxylic
acid (–COOH) groups on rGO. The nanocomposite was used
for simultaneous determination of Fe3+, Cd2+, and Pb2+. As
shown in Fig. 3, the 3D basket, cup, or bucket shapes of
calixarenes can effectively entrap metal ions and the

Table 3 Overview on metal
oxide-modified graphene as sens-
ing material for electrochemical
sensing of heavy metal ions

Electrode Sensing ions Linear range LOD Ref.

band Fe3O4/rGO/GCE Pb2+ 0.4-1.5 μM 0.17 μM [59]
Fe3O4 rose like and spherical/rGO/GCE Pb2+ 0.05-1.5 nM 0.082 nM [66]
Fe3O4/rGO/GCE Cd2+ 0.4-0.8 μM 0.056 μM [67]
Fe3O4/rGO/SPE As3+ 0.027-4 μM 1.33 nM [68]
Fe3O4/rGO/GCE As3+ 0.00013-67.4 nM 0.0016 nM [69]
Fe3O4-rGO/GCE Cd2+ 0.1-1.7 μM 28 nM [70]

Pb2+ 8 nM
Hg2+ 17 nM

Fe3O4-rGO/GCE Cr3+ 0.2-2 nM - [71]
Fe2O3/graphene/Bi/GCE Zn2+ 0.015-1.53 μM 1.68 nM [72]

Cd2+ 0.0089-0.89 μM 0.71 nM
Pb2+ 4.83-482.6 nM 0.34 nM

SnO2/rGO/GCE Cd2+ 0.3-1.2 μM 0.1015 nM [73]
Pb2+ 0.1839 nM
Cu2+ 0.2269 nM
Hg2+ 0.2789 nM

TiO2–graphene/Nafion/GCE Cd2+ 0.6-32 μM 2 nM [74]
Pb2+ 0.01-32 μM 0.1 nM

CeO2/graphene/GCE Cd2+ 0.2-2.5 μM 0.1944 nM [75]
Pb2+ 0.1057 nM
Cu2+ 0.1636 nM
Hg2+ 0.2771 nM

Co3O4/rGO/chitosan/GCE Pb2+ 1-200 nM 0.35 nM [76]
MnO2/rGO/GCE As3+ 1.33-667.37 nM 0.67 nM [77]
ZnO–rGO/SPE Cd2+ 0.089-0.71 μM 1.42 nM [78]

Pb2+ 0.048-0.39 μM 0.82 nM
ZnO/rGO/GCE Pb2+ 2.4-480 nM 0.48 nM [79]
Co-doped ZnO/rGO/GCE Cd2+ 0.089-0.8 μM 8.36 nM [60]

Pb2+ 0.048-0.43 μM 4 nM
PbO/rGO/GCE As3+ - 10 nM [80]
1,6-hexanediamine functionalized MgFe2O4/rGO/GCE Cu2+ 2-1000 nM 0.2 nM [63]
polyethylenimine functionalized CoFe2O4/rGO/GCE Cu2+ 0.003-0.1 μM 0.02 nM [64]
MnFe2O4/GO/GCE Pb2+ 0.2-1.1 μM 0.0883 μM [65]

GCE, glassy carbon electrode; SPE, screen printed electrode

Fig. 3 Preparation of calixarene/
rGO/GCE and nano-sensing of
the guest metal ions. Reproduced
from [84] with permission of
Elsevier
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Table 4 Overview on organically modified graphene as sensing material for electrochemical sensing of heavy metal ions

Electrode Sensing ions Linear range LOD Ref.

β-CDs/rGO/GCE Pb2+ 1-100 nM 0.5 nM [88]

hydroxypropyl-β-CDs/rGO/GCE Cd2+ 0.5-9 nM 0.0673 nM [89]
Pb2+ 0.1-9 nM 0.092 nM

β-CDs/NH2-rGO/GCE Cu2+ 0.03-100 μM 2.8 nM [90]

N-graphene/chitosan/Au electrode Pb2+ 0.1-100 μM 66.4 nM [86]

NH2-graphene/chitosan/GCE Cu2+ 0.4-40 μM 0.064 μM [91]

thiolated thionine/rGO/Bi film/GCE Cd2+ 8.9-355.8 nM 0.89 nM [92]
Pb2+ 4.83-193.05 nM 0.24 nM

7,7,8,8-tetracyanoquinodimethane/
graphene/glassy carbon disc electrodes

Cu2+ 1-10000000 nM 0.63 nM [93]

1,2-Bis(N’-benzoylthioureido) benzene/rGO/GCE Pb2+ 0.000063-39 mM 25.1 nM [94]

κ-carrageenan/L-cysteine/GO/GCE Cd2+ 5-50 nM 0.58 nM [95]
Pb2+ 1.08 nM

carboxymethyl cellulose/glutathione/rGO/GCE Cd2+ 2-20 nM 0.05 nM [96]

N-[(1-pyrenyl-sulfonamido)-heptyl]-gluconamide/
rGO/Au electrode

Hg2+ 0.1-4 nM 0.1 nM [85]

IL/graphene/Se-doped CPE Cu2+ 2-70 μM 0.66 μM [97]
Sb3+ 2-40 μM 0.043 μM

IL/rGO/Au nanodendrites/GCE Fe3+ 0.3-100 μM 35 nM [98]

IL/graphene/CPE Tl+ 1.25-200 nM 0.257 nM [99]
Pb2+ 0.45 nM

Hg2+ 0.386 nM

Bi/IL/rGO/SPE Cd2+ 8.9-711.67 nM 0.71 nM [100]
Pb2+ 4.83-386.1 nM 0.48 nM

L-cysteine/graphene/GCE Cd2+ 4.98-597.8 nM 4 nM [101]
Pb2+ 5.02-299.7 nM 0.58 nM

L-leucine/GO/Nafion/Au electrode As3+ 66.7-667.4 μM 6.67 μM [102]

sodium dodecyl benzene sulfonate/3D graphene/GCE Pb2+ 0.48-970 nM 0.0145 nM [103]

4-carboxyphenyl diazonium tetrafluoroborate/
rGO/Au electrode

Pb2+ 0.4-20 nM 0.4 nM [104]
Cu2+ 1.5-20 nM 1.5 nM

trithiocyanuric acid/rGO/Au electrode As3+ 2.67-133.5 nM 0.72 nM [105]

3,8-diaminobenzo[c]cinnoline/GO/GCE Cd2+ 4.45-222.4 nM 1.07 nM [106]
Pb2+ 2.41-120.66 nM 1.01 nM

GOdoped diaminoterthiophene/SPCE Cd2+ 0.0089-22.24 nM 0.063 nM [107]
Pb2+ 0.0048-12.07 nM 0.0092 nM

Cu2+ 0.016-39.34 nM 0.0063 nM

Hg2+ 0.005-12.46 nM 0.0035 nM

carboimidazole-rGO/GCE Pb2+ 5–10000 nM 3 nM [108]
Hg2+ 0.6–9000 nM 0.2 nM

piperazine-rGO/GCE Hg2+ 0.4–12000 nM 0.2 nM [82]

p-aminophenyl-GO/GCE Cd2+ 0.01-0.5 nM 3.3 pM [109]
Cu2+

2-amino-5-mercapto-1,3,4-thiodiazole-GO/CPE Cu2+ 0.1-1000000 μM 0.04 μM [110]

rhodamine B hydrazide-GO/Au electrode Cu2+ 0.1-50 nM 0.061 nM [111]

L-cysteine-GO/GCE Cd2+ 0.4-2 μM 3.26 nM [81]
Pb2+ 0.4-1.2 μM 2.01 nM

Cu2+ 0.4-2 μM 4.11 nM

Hg2+ 0.4-2 μM 5.55 nM

calixarene-rGO/GCE Fe3+ 0.1-10 nM 0.02 nM [84]
Cd2+

Pb2+

cysteamine-GO/Au electrode Hg2+ 5-40 nM 3 nM [83]
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oxygen–containing groups can form complexes with the metal
ions, thus increasing the sensitivity and selectivity of the sen-
sor for these metal ions [84].

Yu et al. fabricated N-[(1-pyrenyl-sulfonamido)-heptyl]-
gluconamide (PG) modified graphene for ultrasensitive and
selective sensing of heavy metal ions. Owing to the large π
system of pyrene, a stable interaction can occur between the
pyrene residue and graphene. Whereas functional groups such
as hydroxyls and imines in glucose can act as coordination
sites for Hg2+ during the detection process [85]. Magerusan
et al. used an N–doped graphene/chitosan nanocomposite for
selective Pb2+ detection. The electron-donating functional
groups such as hydroxyls and amines in chitosan and the N
doping groups in rGO can easily coordinate electron-deficient
heavy metal ions. Moreover, positively charged chitosan can
interact with negatively charged rGO to increase the stability
of the nanocomposite [86]. Yang et al. constructed an As3+

sensor with excellent selectivity using an Au microelectrode
decorated with amino-functionalized GO. Benefited from the
synergetic effect of the strong adsorption capability of NH2-
GO and the excellent electrocatalytic ability of Au microwire,
resulting in a low detection limit of 2.16 nM [87]. The
overview on organically modified graphene as sensing
material for electrochemical sensing of heavy metal ions
were listed in Table 4.

Sensors using polymer modified graphene

Polymers with a high number of reactive sites allows for analyte
preconcentration on the electrode surface and are thus expected
to increase the sensitivity when used for heavymetal ion sensing.
Among the various types of polymers, conducting polymers
have received much attention owing to their superior electrical
conductivities and anti-fouling capabilities [115].Moreover, the
morphology of the conducting polymers (fiber, wire, film,
or particle) and the dopants are related to the detection
performance (sensing range, limit of detection, and
response/recovery time) of the modified electrode [116,
117]. Conducting polymers including polyaniline

( PAN I ) , p o l y p y r r o l e ( P P y ) , a n d p o l y ( 3 , 4 -
ethylenedioxythiophene) (PEDOT) have been widely used
in heavy metal determination. For example, in our previous
work, we synthesized PEDOT nanorods/GO nanocomposite
via interfacial polymerization as a new electrode material for
electrochemical detection of Hg2+. The specific doping and
de-doping properties of PEDOT could be controlled by vary-
ing the deposition potential, providing a selective sensing plat-
form for Hg2+ determination. Moreover, in the nanocompos-
ite, the PEDOT nanorods can function as electro-active sites to
facilitate electron transfer during the determination process
[118]. Dai synthesized PPy/GO nanocomposites via in situ
chemical oxidation polymerization, and phytic acid molecules
were functionalized with nanocomposites through electrostat-
ic attraction. Owing to the presence of phosphoric acid groups
in phytic acid and N-containing groups in PPy, the sensor was
utilized for the simultaneous determination of Cd2+ and Pb2+

with detection limits of 19 and 1.98 nM, respectively [119].
Muralikrishna et al. described PANI/GO hydrogels for highly
sensitive electrochemical determination of Pb2+. The
hydrogels were synthesized through in situ polymerization
of aniline in the presence of GO nanosheets followed by hy-
drogel formation at an elevated temperature [120].

Besides conducting polymers, other electroactive polymers
including Nafion, poly(dimethylsiloxane) (PDMS),
polydopamine, poly-L-lysine (PLL), polyallylamine, and
polyethyleneimine have also been used in heavy metal ion sens-
ing. For example, Li et al. reported aNafion–graphene nanocom-
posite for ultrasensitive determination of Cd2+, with a detection
limit of 0.044 nM [121]. The addition of Nafion can increase the
mechanical robustness of the electrode and avoid interference
from anionic in the sample (NO3

-, SO4
2-, or CO3

2-).
Chałupniak et al. prepared a microfluidic lab-on-a-chip platform
for heavy metals preconcentration and electrochemical detection
based on a GO-PDMS nanocomposite. The use of GO–PDMS
significantly improve the sensitivity for the electrochemical de-
tection of heavy metals with a low detection limit of 0.34 pM
[122]. Guo et al. prepared an electrode modified with an GO and
chitosan hybrid matrix through drop casting, and a PLL filmwas
coated on the electrode through electropolymerization via a

Table 4 (continued)

Electrode Sensing ions Linear range LOD Ref.

carboxylate-graphene/GCE UO2
2+ 0.05-5 μM - [112]

NH2-GO/Au microelectrode As3+ 13.35-133.47 nM 2.16 nM [87]

GO/4-aminophenyl/Au electrode Pb2+ 1-30.3 nM 1 nM [113]
Cu2+ 10-58.8 nM 10 nM

Hg2+ 10-58.8 nM 5 nM

alkyl-GO/Au substrate Cu2+ 2-100 μM 2.7 μM [114]

CD, cyclodextrin; IL, ionic liquid; GCE, glassy carbon electrode; CPE, carbon paste electrode; SPE, screen printed electrode; SPCE, screen printed
carbon electrode
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cyclic voltammetry method. The amino and hydroxyl groups in
this system effectively coordinated metal ions. Moreover, the
PLL films which had excellent permselectivity, good stability,
strong adherence to the electrode surface, and an increased
amount of active sites enhanced the electrocatalytic activity of
the modified electrode. When used for the simultaneous electro-
chemical detection of Cd2+, Pb2+, and Cu2+, detection limits of
0.089, 0.097, and 0.31 nM, respectively, were obtained [123].
Liu et al. constructed polyallylamine-hydrochloride-
functionalized via a non-covalent method. The –NH2 functional
groups of polyallylamine hydrochloride improved the perfor-
mance or trace detection of Cu2+, with a relatively low detection
limit of approximately 0.35 nM [124]. Through nucleophilic
substitution reactions between the surface-exposed epoxy groups
in GO and the active amine groups in PEI, Hu et al. synthesized
PEI-rGO nanocomposites. When combined with Nafion, the

hybrid modified electrode showed selectivity for Cu2+ electro-
chemical determination, with a detection limit of 0.3 μM [125].
In conclusion, polymer-modified interfaces have many outstand-
ing merits, but the application of these systems is still limited by
potential swelling or denaturation of the polymers during
prolonged accumulation times and slow diffusion across
the films [126]. In addition, the overview on polymer
modified graphene as sensing material for electrochemical
sensing of heavy metal ions was showed in Table 5.

Sensors using ternary graphene-based
nanocomposite

Compared with binary graphene-based nanocomposites, ter-
nary or quaternary graphene nanocomposites such as metal-

Table 5 Overview on polymer
modified graphene as sensing
material for electrochemical
sensing of heavy metal ions

Electrode Sensing ions Linear range LOD Ref.

PEDOT/GO/GCE Hg2+ 0.01-3 μM 2.78 nM [118]

phytic acid functionalizedPPy/GO/GCE Cd2+ 0.044-1.33 μM 0.019 μM [119]
Pb2+ 0.024-0.72 μM 1.98 nM

PPy/rGO/glassy carbon macroelectrodes Hg2+ 5-60 nM 4 pM [127]

PPy-graphene/β-CDs/SPCE Hg2+ 1-300 nM 0.47 nM [128]

cysteine-functionalizedGO/PPy/SPCE Pb2+ 0.00676-67.57 nM 0.34 pM [129]

PANI/graphene/SPCE Zn2+ 0.015-4.59 μM 0.015 μM [130]
Cd2+ 0.0089-2.67 μM 0.89 nM

Pb2+ 4.83 nM-1.45 μM 0.48 nM

graphene/PANI/polystyrene/SPCE Cd2+ 0.089-4.45 μM 0.039 μM [131]
Pb2+ 0.048-2.41 μM 0.016 μM

PANI/GO/GCE Pb2+ 0.2-3500 nM 0.04 nM [120]

poly(1,5-diaminonaphthalene)/rGO/Pt
patterned electrodes

Pb2+ 0.97-3.38 nM 0.97 nM [132]

Nafion-graphene/GCE Cd2+ 1.78-133.44 nM 0.044 nM [121]

Nafion-graphene/Bi film/GCE Cd2+ 13.34-266.88 nM 0.18 nM [133]
Pb2+ 2.41-241.31 nM 0.097 nM

Nafion-rGO/silicon (Si) substrates Cd2+ 50-300 nM 1.69 nM [134]
Pb2+ 0.39 nM

Cu2+ 2.16 nM

Nafion/IL/graphene/SPCE Zn2+ 0.00153-1.53 μM 1.38 nM [135]
Cd2+ 0.89-889.59 nM 0.53 nM

Pb2+ 0.48-482.63 nM 0.39 nM

GO−poly(dimethylsiloxane)/SPCE Pb2+ 1.21-377.05 nM 0.34 pM [122]

cysteine-polydopamine-rGO/GCE Cd2+ 3.56-400.32 nM 0.89 nM [136]
Pb2+ 1.93-217.18 nM 0.58 nM

poly-L-lysine/chitosan/rGO Cd2+ 0.44-88.96 nM 0.089 nM [123]
Pb2+ 0.24-48.26 nM 0.097 nM

Cu2+ 0.79-157.37 nM 0.31 nM

polyallylamine/graphene/GCE Cu2+ 0.5-50 μM 0.35 μM [124]

polyethyleneimine/rGO/GCE Cu2+ 1-70 μM 0.3 μM [125]

glutaraldehyde–glutaraldehyde/
poly(diallyldimethylammonium
chloride)-rGO/GCE

Hg2+ 0.03-5 μM 7.7 nM [137]

GCE, glassy carbon electrode; SPCE, screen printed carbon electrode; IL, ionic liquid
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conducting polymers, metal-carbon nanotube (CNT) or
conducting polymer-CNT hybrid with graphene show better
performance [23]. For example, Dong et al. constructed an Au
NPs/PANI/graphene modified electrode for sensitive detec-
tion of Pb2+. Compared with Au NPs, PANI, or graphene
modified glassy carbon electrodes, the ternary hybrid showed
improved detection performance, which was attributed to the
synergetic effects of these three materials [138]. Moreover,
PANI can function as a protective layer for Au NPs, avoiding
interparticle aggregation via van der Waals attraction [1].

Wang et al. reported that the passivation of modified elec-
trodes is problematic real sample analysis because various
surface-active species may be adsorbed on the electrode.
However, fouling of the electrode can be effectively alleviated
by modification of the electrode with a dialysis membrane lay-
er, such as Nafion, PLL, or cellulose acetate. Commonly used
membrane modification methods usually involve a solvent
evaporation procedure, which results in unsatisfactory homo-
geneity and reproducibility of the membrane. Therefore, they
adopted an electrodeposition method to modify rGO/glassy
carbon electrode with p-aminobenzene sulfonic acid.
Compared with the afore-mentioned modification method, this
electropolymerization method had the advantages of strong
adhesion, controllable film thickness, uniform structure, and
good stability. After in-situ plating a stannum film, the sensor
was used for the sensitive determination of trace Cd2+ [139].

Cui et al. prepared thiazole-derivative functionalized
graphene decorated with SnO2 NPs and compared the influ-
ence of different halogen anions (F, Cl, or I) on the detection
performance of the composite. The F@SnO2/thiazole
derivative-functionalized graphene exhibited superior perfor-
mance for the detection of Cu2+ than the other two materials
[140]. Recently, sensors based on a flexible substrate have

gained attention, owing to their potential application as wear-
able sensors to monitor heavy metal ion in sweat, saliva, tears,
or other body fluids. For example, Xuan et al. fabricated a
fully integrated, miniaturized, and flexible electrochemical
sensor based on a micro-patterned rGO and CNT composite
on a flexible Au substrate as a working electrode (Fig. 4).
After plating with a Bi film, the sensor exhibited separated
and well-defined stripping peaks for Cd2+ and Pb2+ [141].

Sensors based on films have also received attention owing
to their potential as disposable electrodes for heavy metal ion
sensing. For example, Dong et al. synthesized a sandwich
structured ionic liquid-CNT-graphene film via an effective
inkjet printing method for electrochemical determination of
Cd2+ and Pb2+. The sensor exhibited high sensitivity, a wide
linear range, and a low detection limit owing to the synergetic
effects of these materials including fast charge transferability,
sufficient surface active sites, and a large surface area [142].
Table 6 shows the overview on ternary or quaternary
graphene-based nanocomposite as sensing material for elec-
trochemical sensing of heavy metal ions.

Conclusions and perspectives

Graphene-based nanocomposites have been widely investi-
gated as chemical sensors with high sensitivity and selectivity.
We reviewed the sensing principles of graphene-based hy-
brids, including heteroatom-doped graphene, metal-modified
graphene, metal-oxide-modified graphene, organically modi-
fied graphene, polymer-modified graphene, and ternary
graphene based nanocomposite, which provide sensitive, se-
lective and stable platforms for heavy metal ions determina-
tion. On one hand, searching for new materials and new

Fig. 4 Photographs of the
fabricated miniaturized,
integrated, and flexible heavy
metal ion sensor with micro-
patterned rGO and a CNT com-
posite working electrode. Photo
images (a, d) of a fabricated flex-
ible heavy metal ion sensor, (b)
microscope image of 3 electrodes,
and (c) working electrode. (Gap
size: 50 μm, total effective work-
ing electrode area: 1.5 mm2, total
working electrode thickness: ∼1
μm). Reproduced from [141] with
permission of Elsevier
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methodologies to control the morphology and structure of
sensing materials to fabricate new sensors is an important
direction for graphene-based sensors. On the other hand, op-
timizing the performance of current sensor systems, including
sensitivity, selectivity, and stability, is of equal importance.
Furthermore, the development of flexible or wearable sensors
for detecting heavy metal ions in real samples or human body
fluids is an important endeavor.
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