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Abstract
A sensitive aptamer/protein binding-triggered sandwich assay for thrombin is described. It is based on electrochemical-chemical-
chemical redox cycling using a glassy carbon electrode (GCE) that was modified with WSe2 and gold nanoparticles (AuNPs).
The AuNPs are linked to thrombin aptamer 1 via Au-S bonds. Thrombin is first captured by aptamer 1 and then sandwiched
through the simultaneous interaction with AuNPsmodified with thrombin-specific aptamer 2 and signalling probe. Subsequently,
the DNA-linked AuNP hybrids result in the capture of streptavidin-conjugated alkaline phosphatase onto the modified GCE
through the specific affinity reaction for further signal enhancement. As a result, a linear range of 0–1 ng mL−1 and a detection
limit as low as 190 fg mL−1 are accomplished. The specificity for thrombin is excellent. Conceivably, this strategy can be easily
expanded to other proteins by using the appropriate aptamer.
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Introduction

The recognition of thrombin (TB) is usually achieved by using
antibodies. However, aptamers are more easily synthesized and
modified. Aptamers based strategy have the advantages of long-
term storage, inexpensive and high stability [1]. Two kinds of
aptamers with specific binding affinity to TB are obtained by
SELEX technique. One is a 15-mer called thrombin aptamer 1
(TBA1) which was first reported by Bock et al. [2]. The TBA1
binds to the fibrinogen-binding site of TB. The other is a 29-mer
called thrombin aptamer 2 (TBA2) which interacts with the

heparin-binding site of TB. The two aptamers do not interfere
with each other’s binding. In this case, TB-sensing methods
have been constructed by aptamer-target-aptamer sandwiched
structure, such as electrochemical biosensors [3–5],
electrochemiluminescence biosensors [6, 7], fluorometric bio-
sensors [8], and colorimetric biosensors [9]. Among them, elec-
trochemical biosensors have many intrinsic advantages such as
rapid response, relatively low cost and high sensitivity. In addi-
tion, the sensitivity of the sensor is closely related to
nanomaterials. Transition-metal dichalcogenides (TMDCs), as
graphene-like 2D layeredmaterials, have significant merits such
as superior conductivity, excellent chemical stability and large
surface area. Among them, the tungsten selenide (WSe2) has
become an advanced materials in electrochemical sensors [10,
11]. Metal nanoparticles, especially gold nanoparticles (AuNPs)
are widely used as signal amplifiers to improve the sensitivity of
assays due to their good biocompatibility, large surface area and
can accelerating the electron transfer [12, 13].

In this study, a sensitive electrochemical aptamer-target-
aptamer sandwiched biosensor for the detection of protein is
fabricated by using TB as an experimental model based on
electrochemical-chemical-chemical (ECC) redox cycling and
enzyme signal enhancement strategy. The principle of the bio-
sensor is demonstrated in Scheme 1. WSe2 nanosheets with
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superior conductivity and large specific area are used as a good
substrate for sensing. It is well known that, AuNPs can form
links with aptamers through Au-S or Au-NH chemical bonds
[13, 14]. This sensor combined the merits of WSe2 with those
of AuNPs to immobilize large amount of thiol-terminated
TBA1.Moreover, MCH used as blockers to inactivate the mod-
ified electrode surface and reduce non-specific adsorption,
which maintained correct direction of DNA on the electrode
interface. Then, the TBA1/AuNPs/WSe2 modified electrode
capture thrombin as a target. AuNPs can serve as a Bcarrier^
to provide more active sites for the immobilization of TBA2
and biotinylated signal probe. Thrombin initiated the formation
of aptamer-target-aptamer sandwiched structure as DNA-linked
AuNP hybrids. Subsequently, amounts of streptavidin-
conjugated alkaline phosphatase (SA-ALP) are immobilized
on the modified electrode surface through the specific affinity
reaction between streptavidin (SA) and biotin for further signal
enhancement. The alkaline phosphatase (ALP) can effectively
hydrolyze the ascorbic acid 2-phosphate (AAP) to produce
ascorbic acid (AA), thus triggering ECC redox cycling to am-
plify electrochemical signal. Due to the multiple signal en-
hancement of WSe2, AuNPs, enzyme, ECC redox cycling
and aptamer-target-aptamer sandwiched structure, high sensi-
tivity for TB detection is realized.

Experimental section

Materials and reagents

Analytical grade chemicals (Se, Na2WO4·2H2O, NaBH4,
HAuCl4·4H2O, Na3C6H5O7·2H2O, NaCl, DMF, KCl,

MgCl2, CaCl2, K2HPO4, KH2PO4, K3Fe[CN]6, K4Fe[CN]6)
were obtained from Aladdin Chemicals Co., Ltd. (Shanghai,
China, www.aladdin-e.com). 6-Mercapto-1-hexanol (MCH),
tris-(hydroxymethyl) aminomethane hydrochloride (Tris-
HCl), immunoglobin G (IgG), hemoglobin (HB), prostate-
specific antigen (PSA), tris-(2-carboxyethyl) phosphine
hydrochloride (TCEP), AAP, FcM, SA-ALP and TB
were purchased from Sigma-Aldrich (Saint Louis, MO,
USA, www.sigmaaldrich.com). All oligonucleotides
(purified by high-performance liquid chromatography) were
synthesized by Sangon Biotechnology Co., Ltd. (Shanghai,
China, www.sangon.com). The TBA2 sequence was
prepared according to reference [15]. The sequences were
listed in Table S1.

Apparatus

An EC550 electrochemical workstation (Wuhan, Gaoss
Union, China, www.gaossunion.com) was used to carry out
cyclic voltammetric (CV), electrochemical deposition,
e lec t rochemical impedance spec t roscopy (EIS) ,
chronocoulometry (CC) and differential pulse voltammetry
(DPV) with three-electrode system including a modified
glassy carbon electrode (GCE, Φ = 3 mm), Hg/Hg2Cl2 refer-
ence electrode and platinum auxiliary electrode. S-4800 scan-
ning electron microscope (SEM, Hitachi Co, Japan, www.
hitachi.com), a JEM 2100 transmission electron microscope
(TEM, JEOL, Tokyo, Japan, www.jeol.de/electronoptics-
en / index .php ) and a K-ALPHA 0.5EV X-ray
Photoelectron Spectrometer (XPS, Thermo Fisher Scientific,
UK, www.thermofisher.com) were used for characterizing
various samples.
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Scheme 1 Fabrication process of the assay for TB detection
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Assembly of the modified electrodes

Preparation of the TBA2 and signal probe modified AuNPs
hybrids were as follows: TBA1, TBA2 and biotinylated signal
probe were dissolved in 100 mM Tris-HCl solution (pH 7.0,
50mMNaCl, 20mMKCl and 10mMMgCl2) containing 100
times of TCEP in order to reduce disulfide bonds. First, 1 mL
AuNPs, 20 μL 0.1 mM of TBA2 and signal probe were mixed
in centrifuge tube and incubated at 4 °C for 16 h to obtain the
DNA-linked AuNPs composite. The unconjugated TBA2 and
signal probe were eliminated after centrifugation and washed
with phosphate buffer (pH 7.0). Finally, the DNA-linked
AuNPs composites were dispersed in 1 mL phosphate buffer
for further use.

The bare GCE electrode was pretreated with 0.05 μm alu-
mina powders. Then, 8 μL 1 mg mL−1 of WSe2 was applied
onto electrode to form a good disseminated film. After washed

with phosphate buffer, the WSe2/GCE was immersed into
0.1% HAuCl4 solution to deposit AuNPs at −0.2 V and the
deposition time was 25 s. After coating 8 μL 2 μM of TBA1
on the surface of AuNPs/WSe2/GCE and kept at room tem-
perature for 12 h, the electrode was immersed 6 μL 1 mM of
MCH for 40 min. Then, the electrode was washed with phos-
phate buffer (pH 7.0). TB was dissolved in TE buffer (20 mM
Tris-HCl, 140 mMNaCl, 5 mMKCl, 5 mMMgCl2 and 1 mM
CaCl2, pH 7.4). After that, 8 μL TB solutions with different
concentration were dropped onto the MCH/TBA1/AuNPs/
WSe2/GCE surface and incubated at 37 °Cfor 70 min.
Subsequently, 10 μL of the DNA-linked AuNPs hybrids was
dropped on electrode and kept for 90 min to obtain a aptamer-
target-aptamer sandwiched structure. The modified electrode
then reacted with 10 μL 0.1 mg mL−1 of SA-ALP for 1 h.
Lastly, the electrode was incubated in 10 mM Tris buffer
(1 mM MgCl2, pH 8.0) with 5 mM AAP for 30 min.

Fig. 1 SEM (a, b), TEM (c) and
HRTEM (d) images of WSe2.
TEM (e) and HRTEM (f) images
of AuNPs; the inset of (d and f)
show the measurement of lattice
interfaces
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Experimental measurements

CV was performed in 0.1 M phosphate buffer (pH 7.0) con-
taining 10 mM [Fe(CN)6]

3−/4− and 0.1 M KCl, scanning from
−0.2 V to 0.6 V at a scan rate of 100 mVs−1. EIS was carried
out in phosphate buffer (pH 7.0) containing 10 mM
[Fe(CN)6]

3−/4− and 0.1 M KCl in the frequencies swept from
0.1 Hz to 100 kHz with 5 mVas the amplitude at a potential of
0.2 V. DPV measurements were taken in Tris buffer (5 mM
TCEP, 2 mM FcM) with the pulse amplitude of 0.005 V, pulse
width of 0.05 s and the pulse period of 0.2 s. Each measure-
ment was repeated three times.

Results and discussion

Choice of materials

Nanomaterials with many specific properties have been wide-
ly used in the field of electrochemical analysis. Two-
dimensional transition metal dichalcogenides, such as MoS2
and WS2, have been used in electrochemical biosensor due to
their large specific surface areas and chemical stability [16,
17]. However, the electrical conductivity of MoS2 or WS2 is
not that good, which limits their application. As a key member
of two-dimensional transition metal dichalcogenides, WSe2
with a structure composed of three stacked atom layers (Se-
W-Se) bonded together by van der Waals forces has been
explored as a promising material for various fields, such as
hydrogen evolution, photocatalysts and electrochemical sens-
ing [18–21]. Importantly, compared to WS2, WSe2 has higher
intrinsic electrical conductivity due to the moremetallic nature
of Se. Furthermore, the unsaturated Se-edges in WSe2 are
electro-catalytically active and beneficial for the electrochem-
ical sensing [16]. In this work, WSe2 nanosheets was applied
as the substrate platform to fabricate assay for the sensitive
detection of TB.

Morphological and structural characterizations

SEM was used to identify the morphologies of the product.
From Fig. 1a, b, it can be expressly observed that the WSe2
has many ultra-thin sheets tending to different directions to
form hierarchical structure with large surface area and porous
channels. This structure facilitates the construction of sensors
[22]. The TEM of WSe2 in Fig. 1c coincides with the above
SEM. Figure 1d shows the high-resolution TEM (HR-TEM)
image of the WSe2 with more crystal structure information.
The lattice spacings of approximately 0.68 nm and 0.28 nm
which correspond to the D-spacing of the (002) and (100)
lattice fringe of WSe2. The result is in good agreement with
XRD pattern. Figure 1e shows the average size of AuNPs is
about 20 nm. The HR-TEM in Fig. 1f exhibits an interplanar
spacing of 0.24 nm, which is well unanimous with the (111)
plane of AuNPs. The insets of Fig. 1d, f show the measure of
lattice interfaces. Furthermore, the size distribution of AuNPs

Fig. 2 EIS (a, b) of different electrodes in phosphate buffer (pH 7.0)
containing 10 mM [Fe(CN)6]

3−/4− and 0.1 M KCl: GCE (a); WSe2/GCE
(b); AuNPs/WSe2/GCE (c); TBA1/AuNPs/WSe2/GCE (d); MCH/TBA1/

AuNPs/WSe2/GCE (e); TB/MCH/TBA1/AuNPs/WSe2/GCE (f); DNA-
linked AuNPs/TB/MCH/TBA1/AuNPs/WSe2/GCE (g); SA-ALP/DNA-
linked AuNPs/TB/MCH/TBA1/AuNPs/WSe2/GCE (h)

Fig. 3 DPV curves of different electrodes: without DNA-linked AuNPs
composite (a), without SA-ALP (b), without TB (c), SA-ALP/DNA-
linked AuNPs/TB/MCH/TBA1/AuNPs/WSe2/GCE (d)
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and DNA-linked AuNPs composites are further investigated
by dynamic light scattering (DLS) in Fig. S1. The average
dynamic size of DNA-linked AuNPs composites (34.5 nm,
Fig. S1b) is obviously greater than that of AuNPs (21.7 nm,
Fig. S1a), proving that the successful assembly of DNA-
linked AuNPs composites. The measured particle size is
slightly larger than the actual size due to the dust in air [23].
X-ray powder diffractometer, Raman spectra, SEM-energy
dispersive X-ray and X-ray photoelectron spectroscopy
(XPS) of the WSe2 are shown in Fig. 2S.

Electrochemical characterization of electrodes

EIS is effective means for probing the electrochemical prop-
erties of electrode surfaces. Figures 2a, b display the EIS at
different modification steps. In the inset of Fig. 2a, Randles’s
equivalent circuit is used in EIS for explanation of spectra
[24]. The charge transfer resistance (Rct) is the important pa-
rameter. Comparing with the bare GCE (curve a), the Rct sig-
nificantly decreases after the electrode modified with WSe2
(curve b) and AuNPs (curve c). However, the Rct increases in
turn after the electrode incubating negatively charged TBA1
(curve d) and MCH (curve e). The Rct value keeps increasing
after the electrode surface is treated with biological macromol-
ecule TB (curve f), which is ascribed to the effect of steric
hindrance. After the modified electrode is incubated with

DNA-linked AuNPs composite (curve g), the diameter of
semicircle decreases. Furthermore, a further increase of Rct

value is obtained when the electrode is incubated with SA-
ALP (curve h). CV results was in agree with that of the EIS
(Fig. S3).

Optimization

The following parameters were optimized: (a) TBA1 loading;
(b) incubation time of TB; (c) incubation time of DNA-linked
AuNP composite; Respective data and Figures are given in the

Fig. 4 a DPVof different
concentrations of TB in Tris
buffer (a-i: 0, 0.5, 1, 5, 10, 50,
100, 200, 1000 pg mL−1). b The
curve of DPV values versus TB
concentration, inset shows the
calibration plot. c Detection of
various solution in Tris buffer. d
Signal intensities of the four
modified electrodes within
15 days

Table 1 Different strategies for TB detection

Detection method Linear range (pM) LOD
(pM)

References

Electrochemical aptasensor 0.3–54 0.14 [25]

Electrochemical aptasensor 100–25,000 20 [26]

Electrochemiluminescence 10–10,000 6.3 [6]

Electrochemical aptasensor 10–50,000 5.6 [27]

Electrochemiluminescence 0.4–1000 0.23 [7]

Fluorescence 0.25–25,000 8.9 [28]

Fluorescence 10,000–80,000 1300 [29]

Fluorescence 50–100,000 15 [30]

Electrochemical aptasensor 0.014–28 0.0053 This work
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Electronic Supporting Material (Fig. S4). The following ex-
perimental conditions were found to give best results: (a) op-
timal loading: 2 μM; (b) optimal incubation time: 70 min; (c)
optimal incubation time: 90 min.

In order to investigate the feasibility of this sensor, different
modified electrodes were detected. As shown in Fig. 3, in the
absence of SA-ALP (curve a) or DNA-linked AuNPs com-
posites (curve b), no obvious signal is observed at the modi-
fied electrodes. The DPV peak currents is very small at
the electrode without TB (curve c) due to sandwiched
structure can not be formed. However, a clearly signal is ob-
tained at the modified electrode in the presence of all sub-
stances (curve d).

Analytical performance

To illustrate the applicability of the designed method, a series
of concentrations of TB are detected under the optimal condi-
tions. Figure 4a, b display the DPV peaks increases with the
increase of TB concentration varying from 0 pg mL−1 to
1 ng mL−1 and the inset of Fig. 4b depicts linear relationship.
The linear equation is expressed as I(μA) = −7.46 log(c/
g mL−1) – 105.80 (R = 0.995), and the detection limit (LOD)
is detected as 1.9 × 10−13 g mL−1 (S/N = 3). As shown in
Table 1, the analytical performance of the method is compared
with other assays for the detection of TB [6, 7, 25–30]. To
explore the selectivity and specificity of the sensor, interfering
agents including HB (0.2 g mL−1), IgG (20 ngmL-1) and PSA
(2 ng mL−1) were examined under the same constraints.
Figure 4c shows these interferences have negligible effect on
the peak current compared with the blank sample. It is obvious
that the DPV peak current is almost the same as that of the TB
when HB, IgG and PSA (0.2 g mL−1, 20 ng mL−1, 2 ng mL−1,
respectively) are mixed with TB (1 ng mL−1). The reproduc-
ibility was monitored by DPV measurements for five elec-
trodes under the same constraints, and the relative standard
deviation (RSD) of 4.2% was obtained. Furthermore, the sta-
bility of the strategy was examined by using four electrodes
that prepared independently. As shown in Fig. 4d, the DPV
peak currents have no obvious change after the electrodes
were kept at 4 °C over 2 weeks (one test per 2 days), suggest-
ing excellent stability.

Real sample analysis

To assess the application of the assay, recovery experiments
were performed. Human serum samples were obtained from
the affiliated hospital of Xinyang Normal University
(Xinyang, China). The serum sample was extracted by centri-
fugation at 1680 rcf three times. Then 1 mL serum sample was
added into 10 mL phosphate buffer. 0.5 mLTB with different
concentrations was added into 10 mL diluted serum sample.
Then the sample was detected with the assay. The results are

listed in Table S2. The recoveries are 91.1%–108.2% and
RSDs are 3.8%–6.5%. The same samples were also detected
by ELISAmethod. As shown in Table S2, the results display a
good agreement between two assays.

Conclusion

In conclusion, a sensitive sandwich method for TB detection
was fabricated based on ECC redox cycling and enzyme sig-
nal enhancement strategy. The method displayed following
attractive features. Firstly, the WSe2 nanosheets with high
surface area were applied as nano-carriers leading to the de-
position of more AuNPs on the materials surface. Secondly,
AuNPs with good biocompatibility could provide more sites
for immobilization larger amounts of aptamers. Subsequently,
the DNA-linked AuNPs composites resulted in the capture of
many SA-ALPs onto the electrode interface to amply the sig-
nal. Thirdly, ECC redox cycling and sandwiched structure
could further magnify signal respond. However, it should be
noted that this method suffered a major limitation: it required
more time to prepare nanomaterials and modified electrode,
which also needed skilled people.
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