
ORIGINAL PAPER

A glassy carbon electrode modified with nitrogen-doped reduced
graphene oxide and melamine for ultra-sensitive voltammetric
determination of bisphenol A

Jingyu Qin1
& Jing Shen1

& Xiangyang Xu1
& Yuan Yuan1

& Guangyu He1
& Haiqun Chen1

Received: 15 June 2018 /Accepted: 8 September 2018 /Published online: 15 September 2018
# Springer-Verlag GmbH Austria, part of Springer Nature 2018

Abstract
A composite was prepared at room temperature from nitrogen-doped reduced graphene oxide (N-rGO) and melamine via π-
interaction. An ultra-sensitive electrochemical sensor for the determination of trace levels of bisphenol A (BPA) was obtained by
coating a glassy carbon electrode (GCE) with the composite. The structure and morphology of composite were characterized by
FTIR, Raman, XRD, XPS, SEM and TEM. Because of the synergetic effects of N-rGO and melamine, the modified GCE displays
considerably enhanced sensitivity to BPA. The voltammetric response, typically measured at a peak of 0.48 V (vs. SCE) is linear in
the 0.05 to 20 μM BPA concentration range, and the detection limit is 0.8 nM (at S/N = 3). The sensor is reproducible, stable and
selective. It was applied to analyze baby bottles, drinking cups, mineral water bottles and shopping receipts that were spiked with
BPA, and the recoveries reached 99.1–101.4%.

Keywords Carbon-based nanomaterials . π-Interaction . Supramolecular system . Sensor . Voltammetry . Differential pulse
voltammetry . Real sample analysis . Endocrine disruptor . Trace BPA . Electrochemical detection

Introduction

Various analytical methods have been established for detect-
ing trace bisphenol A (BPA) in water, such as fluorimetry [1],
gas chromatography-mass spectrometry [2], liquid
chromatography-mass spectrometry [3] and electrochemical
sensor [4], etc. Compared with other approaches, electro-
chemical methods present advantages owing to its excellent
sensitivity, prominent selectivity and simple operation [5].

Generally, enzyme [4], metal nanoparticles [6], and carbon-
based materials [7] are applied to increase the analytical re-
sponse of electrochemical sensors. Among these electrode ma-
terials, enzymes are commonly used as biosensors due to good
biological compatibility. Nanoparticles of metal oxide (NiO [8],
Fe3O4 [9]) or noble metals (AuNPs [10], PtNPs [11]) are the
conventional candidates in the field of electrochemistry. Thanks
to the properties of size controllability, chemical stability and
high catalysis activity, it is very advantageous for them to be
applied in sensors [11]. Nevertheless, ameliorating the short-
comings of nanoparticles including high costs, low surface area
and easy agglomeration are still challenging.

Carbon-based materials stand out because of their excellent
electrocatalytic properties and strong adsorption capacity
for analytes. Graphene, a two-dimensional carbon nanomaterial
with honeycomb-structure, has shown unique advantages in the
construction of electrochemical sensors. Studies have proved
that N-doped graphene possesses a better electrical conductivity
and large amounts of edge sites than graphene [12]. And
its superiority of high surface area and catalytic ability has
captured great interest. Melamine were introduced during the
modification of sensors because of its unique benzene ring-
structure. In addition, protonated melamine adsorbs negatively
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charged BPA to the surface of electrode more easily, which can
effectively improve the sensitivity of the sensor. Based on the
above properties, we have reason to believe that nitrogen-doped
reduced graphene oxide (N-G) can self-assemblewithmelamine
to form a supramolecular system through π-interaction. The
introduction of melamine provides rigid support for N-G and
allows it to stack orderly [13]. The synergistic effect between N-
G and melamine enhances electron transfer rate, leading to a
higher current response to BPA.

In this paper, nitrogen-doped reduced graphene oxide
/melamine (N-G/M) modified glassy carbon electrode (GCE)
was used to construct successfully an original electrochemical
sensor for detecting BPA. Here, melamine plays a role as mod-
ifier. The electrochemical performance of N-G/M modified
GCE was studied by cyclic voltammetry. The sensitivity of the
electrode was proved by kinetic calculation, and the detection
limit was evaluated to be nearly one order of magnitude lower
than those reported in other literatures [14–16].

Experimental

Materials

Natural graphite powder (99.9%, 500mesh), melamine, BPA,
Na2HPO4, NaH2PO4 were purchased from Sinopharm Chemical
Reagent Co. Ltd. (China, www.labgogo.com). All materials were
of analytical grade and used directly without further purification.
Ultrapure water was used throughout the experiments.

Characterization

X-ray diffraction (XRD) patterns were performed on a Bruker
D/max 2500 PC X-ray diffractometer (Rigaku, Japan) with Cu
Kα radiation (λ = 0.15418 Å) at the scanning angle ranging
from 5° to 70°. The morphology and microstructure of prepared
composite were characterized by SUPRA55 field emission
scanning electron microscopy (FE-SEM, Zeiss, Germany) and

JEM-2100 transmission electron microscopy (TEM, JEOL,
Japan). Fourier transform infrared (FTIR) spectroscopy studies
were conducted by a Nicolet iS50 spectrometer (Thermo, USA)
with the scanning range of 450–4000 cm−1. Raman spectra were
analyzed using RM1000-Invia Reflex Raman microprobe
(Renishaw,U.K). X-ray photoelectron spectroscopy (XPS)were
taken by a PHI-5000C ESCA system (PerkinElmer, USA) with
Mg Kα radiation (hv = 1253.6 Ev).

All electrochemical measurements were recorded on the
CHI 920 workstation (CH Instrument, Shanghai) with a three-
electrode system in 0.1 M phosphate buffer (equal volume of
0.1 M NaH2PO4 and 0.1 M Na2HPO4). The working electrode
was a modified GCE or a bare GCE, while a saturated calomel
electrode (SCE, Hg/Hg2Cl2) was used as the reference electrode
and a platinum wire was used as the auxiliary electrode.

Preparation of the nitrogen-doped reduced graphene
oxide and melamine composite (N-G/M)

Graphite oxide (GO) was synthesized by modified Hummers’
method [17]. And N-Gwas synthesized according to literature
[18]. Then, equal volume (5 mL) of N-G suspension (1.0 mg/
mL) and the melamine saturated solution (3.1 mg/mL) were
mixed together and stirred for 1 h, then ultrasonicated for
30 min to form a dispersion of N-G/M (see detail in the elec-
tronic supporting material).

Preparation of the N-G/M-modified glassy carbon
electrode (GCE)

Before use, GCE was first polished to a mirror-like surface
and cleaned ultrasonically with ethanol and ultrapure water
sequentially for 5 min. Afterward, the 15 μL of N-G/M sus-
pension was coated onto the surface of dried GCE and heated
stoving under an infrared lamp to form a stable film. The
resulting modified electrode was denoted as N-G/M-GCE.
Fabrication process of the electrochemical sensor for detecting
BPA is illustrated in Scheme 1.

Scheme 1 Illustration of
fabricating the electrochemical
sensor for detecting BPA
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Electrochemical measurements

The electrochemical impedance spectroscopy (EIS) was per-
formed in 5 mM [Fe(CN)6]3−/4− containing 0.1 M KCl solu-
tion. The frequency range of EIS was from 0.01 to 105 Hz and
initiative potential was adjusted at 0.25 V. The cyclic volt-
ammetry was scanned with scan rate of 50 mV·s−1. The sam-
ple interval and quiet time of CV were set as 0.001 Vand 2 s,
respectively. Differential pulse voltammogram (DPV) was re-
corded from 0.3 to 0.9 V. The parameters were as follows:
increment potential, 0.004 V; pulse amplitude, 0.05 V; pulse
width, 0.0167 s; pulse period, 0.5 s; quiet time, 2 s.

Extraction of BPA from samples

To evaluate the practicality of the prepared sensor, N-G/M-
GCE electrode was used for the actual sample analysis. The
baby bottle (Pigeon), drinking cups (Lock & Lock), mineral
water bottles (Wahaha) and shopping receipts were purchased
from RT-MART (Changzhou, China) as experimental sam-
ples. BPA was extracted from the samples according to the
literature [19]. Firstly, the samples were ultrasonicated with
acetone and washed with ethanol and deionized water. After
that, the cleaned plastic samples were cut into small pieces
(2 g) and transferred into a flask equipped with a condenser,
and then heated in 30 mL of deionized water at 70 °C for 48 h.
Subsequently, the reaction mixture was filtered (Navigator
Membrane Filter, pore size, 0.22 μm) and the filtrate was
collected after cooling to ambient temperature. Finally, 4 mL
of each filtrate was added to equal volume of phosphate buffer
(pH = 7) and stored at low temperature before analysis.

Results and discussion

Choice of materials

Carbon-based materials, such as carbon dots, carbon nanotubes,
graphene, have been successfully used to modify bare electrode
[20]. However, the types of analytes carbon dots can detect are
very limited [21]. And it is difficult for carbon nanotubes to be
dispersed in routine solvents due to the intrinsic van der Waals
interactions between pristine nanotubes [7]. In our previous
studies [22], the highly ordered graphene paper with remarkable
electrical conductivity, admirable thermal stability and excellent
mechanical strength was successfully prepared, and used to im-
prove the performance of electrochemical sensors. Nevertheless,
it is difficult to control the conductivity of graphene owing to
zero band gap, which limits its application in electrochemistry.
Studies have proved that nitrogen doping can effectively adjust
the energy band structure and modulate conducting types [23].
In addition, we assume that introducing benzene ring-structure
materials to form a supramolecular system with N-G through π-
interaction can further improve the conductivity of the electro-
chemical sensor. Compared with other heterocyclic compound,
melamine stands out because it can be multi-protonated. During
the procedure of detection, electrostatic interaction was involved
between protonated melamine and negatively charged BPA,
leading to a higher sensitivity of the sensor.

Characterization of composites

Melamine, N-G and N-G/M were analyzed by FTIR spectros-
copy (Fig. 1a). The absorption peak of N-G at 1565 cm−1

Fig. 1 a FTIR spectra of
melamine, N-G and N-G/M. b
Raman spectra of N-G and N-G/
M. cXRD patterns of RGO, N-G,
N-G/M. d Full XPS spectra of N-
G and N-G/M
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proves the existence of C=C bond. As expected, there are two
new absorption peaks obtained at 1550 cm−1 and 1165 cm−1,
corresponding to the characteristic absorption peaks of C=N
and C-N, respectively, which indicates that GO is doped with
nitrogen [18, 24]. N-G/M exhibits a C=N stretching vibration-
al absorption peak of triazine ring between 1652 cm−1 and
1550 cm−1, which coincides with the absorption peaks of
C=N generated byN-doping of graphene. This result indicates
that N-G/M is successfully prepared.

As shown in Raman spectra (Fig. 1b), the characteristic
peaks of N-G appear at 1340 cm−1 and 1589 cm−1, corre-
sponding to the D and G band, respectively, whilst the G
band of graphene is observed at 1580 cm−1. This is due to
the introduction of nitrogen atoms that causes a significant
G band shift of N-G [25]. After combining with melamine,
there is an obvious red shift of the D and G band of N-G/M
composite. In addition, the Raman intensity of N-G/M is
significantly weakened. That can be attributed to the fact

that the surface of N-G is modified by melamine, causing
decrease in the number of N-G sheets per unit volume [24].
The value for the D/G intensity ratio (ID/IG) of N-G (ID/
IG = 1.02) is higher than that of N-G/M (ID/IG = 0.99),
further indicating the lower defect density in N-G/M.

The typical XRD pattern (Fig. 1c) of N-G exhibits two peaks
at 2θ = 24.6° and 2θ = 42.8°, corresponding to (002) and (100)
plane of reduced graphene oxide, respectively. This result indi-
cates that N-G bears high resemblance in structure to graphene
[26]. After the combination of N-G with melamine, the com-
posite exhibits more sharp and intense diffraction peak corre-
sponding to (002) plane. This might be because N-G sheets
restack in an orderly manner due to the intercalation of mela-
mine into the N-G layers, leading to high crystallinity.

Fig. 1d depicts full XPS spectra of N-G and N-G/M. The
main peaks observed at 284 eV, 400 eVand 531 eV prove the
coexistence of C 1 s, N 1 s and O 1 s in both materials. The
intensities of characteristic peaks of N-G/M are stronger than

Fig. 2 Typical SEM images of (a)
N-G and (b) N-G/M; TEM
images of (c) N-G and (d) N-G/M

Fig. 3 a Nyquist plots of bare GCE, N-G-GCE and N-G/M-GCE in
5 mM [Fe (CN)6]

3−/4− containing 0.1 M KCl solution at an initiative
potential of 0.25 V. b CV curves of bare GCE, N-G-GCE and N-G/M-

GCE in 0.1 M phosphate buffer containing 25 μM BPA (voltage
range:0.3 V–0.9 V; scan rate: 50 mV/s)
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those of N-G, and the N percentage in N-G is estimated to be
9.95%, while the content in N-G/M is increased to 13.37%
after the introduction of melamine.

The microstructure of N-G was investigated by SEM (Fig.
2a) and TEM (Fig. 2c). It can be clearly observed that N-G
sheets have a transparent and crumpled silk-like morphology.
SEM image (Fig. 2b) of N-G/M shows that it has a distinct
lamellar texture. TEM image (Fig. 2d) presents clear shadowed
areas, which further indicates that the melamine molecules are
successfully immobilized to the surface of N-G by π stacking,
and ushers the restack of N-G layer by layer simultaneously.

3.3 Electrochemical behavior of electrodes.
To further characterize the modified electrode, the electro-

chemical impedance spectroscopy (EIS) was obtained in the
frequency range of 0.01–100,000 Hz. As shown in Fig. 3a, the
diameter of the semicircle portion indicates the charge transfer
resistance (Rct) [27]. Besides, the impedance spectra of differ-
ent working electrodes can be simplified by the Randles’
equivalent circuit. The bare GCE shows a certain semicircle
at high frequencies, and the Rct value is about 326 Ω, indicat-
ing a high charge transfer resistance. The plot of N-G shows
an obviously smaller radius with the Rct value dramatically
decreasing to 223 Ω. Furthermore, the easier electron transfer

is involved when N-G/M is fixed on bare GCE. It might be
due to the enhanced conductivity, which accelerates the trans-
fer of electrons.

Figure 3b displays the cyclic voltammogram (CV)
curves of bare GCE, N-G-GCE and N-G/M-GCE in
0.1 M phosphate buffer containing 25 μM BPA. A well-
defined oxidation peak without reduction current peak is
appeared at different electrodes in the selected potential
window, suggesting an absolutely irreversible electrode re-
action [28]. The N-G/M modified GCE exhibits higher
current response for BPA oxidation (at 0.55 V) than bare
GCE and N-G modified GCE. This is because melamine
can be protonated at pH 7.0 (pKa of melamine is 8) and
become positively charged. Thanks to electrostatic interac-
tion, the protonated melamine is more likely to adsorb
negatively charged BPA to the surface of electrode [29],
so the electrocatalytic activity and electron transfer rate of
the sensor are improved.

In addition, the experimental conditions were opti-
mized by CV test. The influence of pH on the oxidation
of BPA at N-G/M-GCE proves that the transfer of elec-
trons is accompanied by equal number of protons (Fig.
S1). And the relationship between scan rate and the
oxidation peak currents (Fig. S2) further demonstrates
that two electrons and two protons are involved in the
oxidation of BPA at N-G/M-GCE electrode. Therefore,
the possible mechanism of the aptamer-captured BPA on
prepared sensor is proposed as shown in Scheme S1.

Electrokinetics

The valid surface area of bare GCE and N-G/M-GCE were
studied by chronocoulometry, and calculated according to
Anson equation (eq. 1) [30]:

Q ¼ 2nFAc

ffiffiffiffiffiffi
Dt
π

r

þ Qdl þ Qads ð1Þ

Fig. 4 Plot of Q-t curves on N-G/M-GCE in 0.1 M phosphate buffer
(pH = 7.0) with (a), and without (b) 0.25 mM BPA, respectively;
Calibration plot of Q-t1/2 on N-G/M-GCE (Inset)

Fig. 5 a DPV curves for the detection of BPA at N-G/M-GCE with
different concentrations (0.05, 0.5, 1, 5, 10, 15, 20 μM, respectively). b
Linear calibration plot between BPA concentrations and the peak currents

(working potential: 0.48 V vs. SCE), and the error bars correspond to the
standard deviation (n = 5). Pulse amplitude, 0.05 V; pulse width, 0.0167 s;
pulse period, 0.5 s
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According to the calibration plot of Q-t1/2 (Fig. S3), the
calculated valid surface area (A) is 0.0097 cm2 and
0.0998 cm2 for bare GCE and N-G/M-GCE, respectively.

Faradic charge (Qads) and the diffusion coefficient (D) of
BPA at N-G/M-GCE were obtained through chronocoulometry
method in 0.1 M phosphate buffer with and without 0.25 mM
BPA, respectively. As shown in the inset of Fig. 4, the calibra-
tion plot of Q vs. t1/2 is described by the equation (eq. 2):

Q ¼ −60:12� 10−6∙t1=2 þ 7:538� 10−6 ð2Þ

The intercept (Qads) is equal to 7.538 × 10
−6 C. Then, accord-

ing to the Anson equation,D is calculated to be 1.22 × 10−4 cm2·
s−1 at room temperature. Additionally, the adsorption capacity
(Γs) of BPA at N-G/M-GCE is calculated by the equationQads=
nFAΓs to be 3.91 × 10

−10 mol·cm−2 (n = 2, A = 0.0998 cm2).
The standard heterogeneousrate constant (ks) for N-G/M-

GCE can be calculated by the Velasco equation (eq. 3) [31]:

ks ¼ 2:415 exp −002F=RTð ÞD1=2 Epa−Epa=2
� �−1=2v1=2 ð3Þ

where Epa stands for the peak potential and Epa/2 represents
the potential at I = Ipa/2. In this experiment, D = 1.22 ×
10−4 cm2·s−1, Epa/2-Epa/2 = 30 mV, v = 50 mV·s−1. As a result,
ks is calculated to be 1.58 × 10−2 cm·s−1 (ks0 = 2.65 × 10−3 cm·
s−1), demonstrating a rapid electron transfer process.

Calibration features

The peak current response of N-G/M-GCE towards BPA in
various concentrations was measured by differential pulse

voltammetry (DPV). The oxidation peak current increases
proportionally along with an increasing BPA concentration
from 0.05 μM to 20 μM (Fig. 5a). And the fitting equation
is expressed in Fig. 5d as I (μA) = 1.56787c + 1.096 (R2 =
0.9952). Consequently, the detection limit is obtained as
0.8 nM (S/N = 3). It indicates that N-G/M modified GCE pos-
sesses wide linear range for detecting BPAwith high sensitiv-
ity (15.71 μA·μM−1·cm−2). That is benefited from the high
electron transfer rate and electrocatalytic activity of N-G/M.
Moreover, the protonated melamine helps adsorb negatively
charged BPA onto the electrode surface through electrostatic
interaction. The detection limit is much lower than that report-
ed in literatures, which are presented in Table 1.

Repeatability, reproducibility, stability, and selectivity

To prove the accuracy of the modified electrode, the repeat-
ability of the N-G/M-GCE carried out by cyclic voltammetry
in 25 μM BPA. The relative standard deviation (RSD) was
2.5% for 8 successive measurements, which indicated the ex-
cellent repeatability of the fabricated sensor. The reproducibil-
ity was verified by detecting 25μMBPA on six different N-G/
M-GCE sensors with same fabrication procedures. All sensors
exhibited similar current responses with the RSD of 2.8%. As
for stability, the prepared electrode was stored in air for a week
at ambient temperature. Only 3.7% decrease of current re-
sponse with no shift of oxidation peak potential was observed,
which revealed the good stability of the electrode.

Besides, the interference tests were carried out to estimate
the selectivity of the prepared sensor under optimal condi-
tions. Structures analogous (polyphenols etc.) and inorganic

Table 1 Comparison of several
fabricated sensors for detecting
BPA

Electrode Method LDR(μM) LOD(nM) Reference

N-GS/CS-GCEa Amperometry 0.01-1.3 5.0 [32]
TMO-GCEc CV 0.8-7.2 1.2 [27]
PME/GR-CPEb DPV 9.0-100.0 10.5 [33]
Ni2Al LDH-GCE

d

gold nanodendrites/GCE

DPV

DPV

0.02–1.51

0.05–55.0

6.8

1.2

[34]

[35]
N-G/M-GCE1 DPV 0.05–20.0 0.8 This work

a N-doped graphene sheets /chitosan composites modified GCE
b poly(melamine) coated graphene doped carbon paste electrode
c Ternary metal oxide (TMO) composite modified GCE
dNi2Al-layereddouble hydroxide nanosheets modified GCE

Table 2 Interferences of other
species on 25 μM BPA Interferents C (mol/L) Ipa change (%) Interferents C (mol/L) Ipa change (%)

Fe3+ 2.5 × 10−3 −2.5 Phenol 1.25 × 10−3 +4.3

Al3+ 2.5 × 10−3 −2.9 Catechol 1.25 × 10−3 +3.6

Mg2+ 2.5 × 10−3 +3.1 Resorcinol 1.25 × 10−3 +4.5

SO4
2− 2.5 × 10−3 −2.8 Hydroquinone 1.25 × 10−3 +3.7

Cl− 2.5 × 10−3 −2.0 4-Nitrophenol 1.25 × 10−3 +4.9
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ion were selected as possible interfering species, which may
preconcentrated on the electrode surface through π-interaction
or electrostatic attraction. The effects of several possible inter-
fering substances were measured in phosphate buffer contain-
ing 25 μM BPA (Table 2). It is found that 100-fold concen-
tration increase of Fe3+, Al3+, Mg2+, SO42− and Cl−, and 50-
fold concentration increase of phenol, catechol, resorcinol,
hydroquinone and 4-nitrophenol have no influence on BPA
detection with the Ipa variations below ±5%.

Real sample analysis

To check the applicability of N-G/M-GCE in real samples,
commercially available goods (three polycarbonate plastic
bottles and one receipt) were used as the experimental sam-
ples. The quantities of BPA were examined by the standard
addition method, and the results are listed in Table 3. The
recoveries are in the range of 99.1%–101.4%, so the fabricat-
ed sensor can be satisfied with the practical application.

Conclusions

In summary, N-G/M composite modified GCE has been suc-
cessfully fabricated to detect trace BPA. Ascribed to the elec-
trochemical conductivity and adsorption capacity of N-G/M,
the sensor exhibits a good current response for the oxidation
of BPA with a wide linear range and low detection limit.
Moreover, the prepared sensor is proved to be suitable for real
sample determination. Further study is needed to focus on
applying the sensor on more complex targets, including sam-
ples taken from outdoor rivers, lakes, etc.
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