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Abstract
A glassy carbon electrode (GCE) was modified with poly(L-arginine) (P-Arg), reduced graphene oxide (rGO) and gold nanopar-
ticle (AuNP) to obtain an electrode for simultaneous determination of dopamine (DA), serotonin (5-HT) and L-tryptophan (L-Trp)
in the presence of ascorbic acid (AA). The modified GCE was prepared via subsequent ‘layer-by-layer’ deposition using an
electrochemical technique. The surface morphology of the modified electrode was studied by scanning electron microscopy, and
electrochemical characterizations were carried out via cyclic voltammetry and electrochemical impedance spectroscopy. The
modified electrode showed excellent electrocatalytic activity toward DA, 5-HT and L-Trp at pH 7.0. Figures of merit for the
differential pulse voltammetric reponse are as follows: (a) Response to DA is linear in two intervals, viz. 1.0–50 nM and 1.0–
50 μMDA concentration range, the typical working voltage is 202 mV (vs. Ag/AgCl), and the detection limit is 1 nM (at an S/N
ratio of 3). For 5-HT, the respective data are 10 to 500 nM and 1.0 to 10μM, 381mV, and 30 nM. For L-Trp, the respective data are
10–70 nM and 10–100 μM, 719 mV, and 0.1 μM. The modified GCE is fairly selective. It was successfully applied to the
simultaneous determination of DA, 5-HT, and L-Trp in spiked urine samples, and high recovery rates were found.

Keywords Electrochemical sensor . Nanocomposite . Cyclic voltammetry . Differential pulse voltammetry . Scanning electron
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Introduction

The neurotransmitters dopamine (DA) and serotonin (5-hy-
droxytryptamine, or 5-HT) play an important role in the central
nervous, cardiovascular, hormonal and renal systems [1–4].
On the other hand, L-tryptophan (L-Trp) is one of the most

important essential amino acids having clinical and biochemi-
cal significance in humans and herbivores [5, 6]. Due to the
coexistence of DA, 5-HT and L-Trp in biological system, their
simultaneous determination is an important task. However, the
oxidation peaks of these compounds are at a close potential and
overlap during simultaneous determination. Moreover, the ox-
idation potential of ascorbic acid (AA) is very close to that of
DA and 5-HT which results in an overlapping voltammetric
response.

A great deal of research effort has been directed towards
separating the anodic peak of AA, DA, 5-HT, and L-Trp by
using different electrochemical techniques [7–9]. Among all
analytical methods, electrochemical techniques have been
paid much more attention due to high sensitivity, high accu-
racy and simple operation [10–13]. Poly amino acids modified
electrodes have been the focus of intense research interest in
the field of electrochemical sensors due to their extraordinary
electrocatalytic properties [14, 15]. Among them, poly(L–ar-
ginine) has attracted significant attention which can be easily
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electropolymerized on electrode surface through combination
of -NH2 and -COOH [16, 17]. Such polymer films can notably
improve the stability of the electrode response and im-
prove the electroactivity properties of analytes. For pre-
paring electroactive and functionalized polymers at elec-
trodes surface, electropolymerization is the incredibly conve-
nient method [15].

Few researchers combined polymers and graphene oxide
(GO) composites to improve the electrocatalytic performance
of the electrodes [15, 18]. The guanidyl group of P-Arg

engaged in hydrogen bonds with unique feature which can
electrostatically interact favorably with this partial negative
charge groups of GO. Moreover, the free amine group of P-
Arg can easily interact with the carboxyl groups of GO. It is
well known that GO-based materials provide an effective
sensing platform toward the selective detection of bio-
entities due to their tunable basal plane oxygen functionalities.
The two-dimensional honeycomb sp2 carbon lattice of re-
duced graphene oxide (rGO) holds a great potential for sens-
ing applications as it offers a rapid location of redox potentials

Scheme 1 Step by step modification technique of GCE/P-Arg/ErGO/AuNP modified electrode

Fig. 1 SEM images of bare
GCE (a), GCE/P-Arg film (b),
GCE/P-Arg/ErGO film (c), and
GCE/P-Arg/ErGO/AuNP film (d)
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of the electroactive species when employed as an electrode
substrate [19, 20]. Preparation of rGO by electrochemical re-
duction method is recognized as one of the most promising
methods that provides highly conductive, low-oxygen-
containing graphene sheets without relying on toxic reagents
[21, 22].

Moreover, metallic nanoparticles functionalized with rGO
have been implemented in different modified electrodes to
improve the electrical, thermal, and optical properties of the
devices. Among them, Au-nanoparticle (AuNP) decorated
graphene oxides are one of the most studied and widely
employed in electrochemical sensing, due to the ease of prep-
aration, simple surface functionalization and high analytical
sensitivity [23, 24]. Zhang et al. also reported that rGO/AuNP
composite shows better catalytic activities than AuNP/GO
composite or free AuNP [25].

This work describes a novel electrochemical sensor based
on the advantages of poly-Arg, ErGO, AuNP film modified
GCE electrode (GCE/P-Arg/ErGO/AuNP) for the simulta-
neous determination of DA, 5-HT and L-Trp by DPV tech-
nique. The formation of ‘layer-by-layer’ polymer, reduced
graphene oxide and metal nanoparticles film was firstly
monitored. The electrocatalytic activity of the different
modified electrodes was also evaluated. Furthermore, the po-
tential application of the modified electrode for determination
of these analytes in the real human urine samples was also
investigated.

Materials and methods

Reagents

L-Arginine, dopamine hydrochloride, serotonin hydrochloride,
L-Tryptophan, L-Ascorbic acid, Tetrachloroaurate (HAuCl4)
trihydrate were purchased from Aladdins Reagent, Shanghai,
China (http://www.aladdin-e.com). Modified Hummers
method was used to prepare graphene nanosheet from natural
graphite powder as described in previous work [26] and it was
kindly supplied by Prof. Yuta Nishina, Japan. All the reagents
for GO nanosheet preparation were purchased from Sigma
Aldrich (http://www.sigmaaldrich.com/). The solutions of
AA, DA, UA and L-Trp were prepared daily by dissolving
the required amount of reagent in 0.1 M PB (pH 7.0). A redox
probe solution was prepared in 0.1 M KCl, which contained 5.
0 mM Fe(CN)6

3− and 5.0 mM Fe(CN)6
4−.

Preparation of the modified electrode
(GCE/P-Arg/ErGO/AuNP)

The sequential ‘layer-by-layer’ film was fabricated on a GCE
with a diameter of 3 mm by cyclic voltammetry (CV). Prior to
modification, the GCE electrode was mirror fine-polished

with 0.05 μm alumna slurry on microcloth pads and then
subsequently ultrasonically washed using nitric acid (1:1),
ethanol, and deionized water. Next, the electrode was rinsed
with doubly distilled water and dry under N2. Scheme 1 illus-
trates the details of the modification procedure. The cleaned
GCE was dipped into 0.1 M PB (pH 7.0) containing
2.5 mM L-Arg and cyclic voltammetry (CV) was performed

Fig. 2 Cyclic voltammograms (a) and Nyquist plot of EIS (b) of the
different electrodes measured in 0.1 M KCl including 5.0 mM
Fe(CN)6

3−/4–: (a) bare GCE, (b) GCE/P-Arg, (c) GCE/P-Arg/ErGO, and
(d) GCE/P-Arg/ErGO/AuNP. CV response for GCE/P-Arg/ErGO/AuNP
at different scan rates (from inner to outer): 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 150 and 200 mV/s in 0.1MKCl including 5.0 mM Fe(CN)6

3−/4–

solution (c). All potentials are given vs. Ag/AgCl. The inset shows the
dependence of peak currents on the scan rates
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in the potential range from −2.2 to 2.0 V at 100 mV s−1 for a
defined cycle. After electropolymerization, the GCE/P-Arg
electrode was carefully washed with ultrapure water and dried
in air. To prepare GCE/P-Arg/ErGO film, 0.5 mg ml−1 GO
was dispersed in 0.1 M PB (pH 7.0) solution in nanosheet
form and was prepared according to our previous report
[27]. Later, CV method (condition: 15 cycles @ −1.4 and
0.7 V vs. Ag/AgCl at a scan rate of 50 mVs−1) was used for
electrodeposition of GO on GCE/P-Arg electrode under deox-
ygenated conditions. After electrodeposition, the modified
electrode GCE/P-Arg/ErGO was washed with ultra-pure wa-
ter, and then air-dried. Subsequently, the modified electrode
was immersed in 0.5 mM HAuCl4 + 0.1 M KNO3 aqueous
solution and CV was run for 20 continuous cycles (−0.5 to
0 V at a scan rate of 50 mVs−1) to obtain GCE/P-Arg/ErGO/
AuNP modified electrode. At last, the GCE/P-Arg/ErGO/
AuNP was carefully washed with ultra-pure water and stored
in 4 °C for use. For electrode characterization and comparison,
four different electrodes were also prepared with or without P-
Arg, ErGO, and AuNP respectively.

Detection of DA, 5-HT and L-Trp in real sample

The sensor was applied to the analysis of real urine samples
in order to assess its analytical performance. Following the
standard addition method, 0.1 mL of human urine sample
was spiked to 10 ml of PB solution (0.1 M, pH 7.0) and
purged N2 to removal oxygen. Different concentrations of
standard analyte solution were added to the diluted urine
samples. We then measured the DPV curves in a potential
range of 0.0 V to 1.0 V with amplitude of 50 mV and a
pulse width of 0.2 s.

Apparatus

CHI electrochemical workstation (Shanghai CH Instruments,
Model CHI-660E) (http://www.chinstruments.com/) with
conventional three electrode system was used for
electrochemical measurements. Electrochemical impedance
spectroscopy (EIS) studies were analyzed using ZAHNER
impedance analyzer EIM6ex ZAHNER (Kroanch, Germany)
(http://zahner.de/). Before the EIS measurements, the
electrode was cycled for 3 cycles and then measured in a
frequency range from 0.01 Hz to 1.0 MHz. A small ac
signal of 10 mV in amplitude was used as the perturbation
of the system throughout the tests. Hitachi S-3000H model
(https://www.hitachi-hightech.com) scanning electron
microscopy (SEM) was used for surface characterization. All
voltammetric measurements were carried out at room temper-
ature under nitrogen (N2) atmosphere.

Results and discussion

Choice of materials

Graphene is an outstanding material which exhibits larger sur-
face area, higher electrical conductivity and better stability

Fig. 3 The CV curves of AA
(200 μM), DA (5 μM), 5-HT
(10 μM) and L-Trp (10 μM)
recorded on bare GCE (a), GCE/
P-Arg (b), GCE/P-Arg/ErGO (c),
and GCE/P-Arg/ErGO/AuNP (d)
in phosphate buffer of pH 7.0,
scan rate set at 100 mV s−1

Scheme 2 Electrochemical oxidation of DA, 5-HT, and L-Trp at GCE/P-
Arg/ErGO/AuNP modified electrode
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than carbon nanotubes or carbon dots. The combination of
graphene oxide and polymer composite enhance the perfor-
mance of biosensors in terms of sensitivity, selectivity and
efficiency. Compared with other polymers, the multidentate
characteristics of P-Arg provide electrostatic interactions with
negatively charged groups of GO. Owing to low-cost, versa-
tility and easiness of the electrodeposition, P-Arg/ErGo com-
posite has been used for the modification of electrode. In con-
trast to graphene and GO, reduced graphene oxide ensures
high electrochemical activity, more reactive sites, as well as
the more efficient charge transport. Moreover, AuNP were
employed for improving the analytical sensitivity of the mod-
ified electrode.

Characterization of the modified electrode
(GCE/P-Arg/ErGO/AuNP)

The details observation of the layer-by-layer electrodeposition
process was described in electronic supporting material
(ESM) section S1–3. We adopted cyclic voltammetry tech-
nique for both electropolymerization and electrodeposition
alongwith AuNP depositionwithout any reducing agents onto
the electrode surface. SEMmeasurements were done to inves-
tigate the surface morphology of the bare and different mod-
ified GCE and presented in Fig. 1. The image of Fig. 1b shows
the P-Arg layer clearly deposited on GCE with regular and
patterned interconnected net-like structure. The observed sur-
face morphology indicates that P-Arg film has been success-
fully adhered to the electrode surface. After electrochemical
deposition/reduction of GO, the ErGO nanosheets were ob-
served as well connected and closely arranged thin folded
sheets as shown in Fig. 1c. Finally, AuNP with an average
size of ~30 nm uniformly and densely decorated along the
surface of ErGO film by electrodeposition at 50 mVs−1 (Fig.
1d). The size distribution of AuNP in the electrodeposited
GCE/P-Arg/ErGO/AuNP film was presented in Fig. S4.
However, the electro-deposited AuNP were slightly aggregat-
ed due to the absence of any stabilizing functional groups in
ErGO film.

The electrochemical characterization of the bare and mod-
ified electrodes was performed via CVand EIS in 0.1 M KCl
including 5.0 mM Fe(CN)6

3−/4–. A pair of well-defined redox
peaks corresponding to Fe(CN)6

3−/4– appeared with the lowest
peak currents at the bare GCE. The peak to peak separation
(ΔEp) value was calculated as 254 mV for bare GCE elec-
trode which indicates the occurrence of a slow electron-
transfer kinetics at the surface of the bare GCE. However, after
electrodeposition of L-Arginine, the anodic and cathodic
peaks increased with a ΔEp value of 185 mV. As reported
by earlier researchers, the electrochemical reaction of
Fe(CN)6

3−/4– effectively facilitated by the positive charges of
poly(L-arginine) [5, 15]. After electrodeposition of GO, the
peak current significantly increased as shown in Fig. 2a, with

a ΔEp value of 123 mV which indicates increased electro-
chemical active sites with ErGO modification. The highest
redox current and lowest potential difference were observed
with GCE/P-Arg/ErGO/AuNP modified electrode. The possi-
ble reason may be ascribed to that the conductive graphene
sheets connected individual AuNP and effectively facilitated
electron transfer between the modifying layer and GCE sub-
strate, thus resulting in synergic effect. These observations

Fig. 4 a DPVs for determination of DA using GCE/P-Arg/ErGO/AuNP
electrode in pH 7.0 phosphate buffer at scan rate of 50mV s−1 with a wide
range of concentrations from 0.001 to 50 μM of DA; (b) Determinations
of 5-HTwith a wide range of concentrations from 0.01 to 10 μM; and (c)
Determination of L-Trp with a wide range of concentrations from 0.01 to
100 μM. All the inset show the corresponding calibration plots for high
and low concentrations ranges
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demonstrated excellent electro-catalytic prosperities of the
modified GCE/P-Arg/ErGO/AuNP electrode.

We have also calculated the electrochemical active surface
area for bare and modified electrodes based on the Randles–
Sevcik equation (Eq. 1) [28].

Ip ¼ 2:69� 105AD1=2 n3=2 γ1=2C ð1Þ

Where A is the electroactive surface area, C is the concen-
tration of the probe molecule, D is the diffusion coefficient
(6.70 ± 0.02 × 10−6 cm2/s), γ is the scan rate (V/s), and n is the
number of electrons in the redox reaction. The calculated A
value for the GCE, GCE/P-Arg, GCE/P-Arg/ErGO, and GCE/
P-Arg/ErGO/AuNP were 0.085 cm2, 0.135 cm2, 0.204 cm2

and 0.288 cm2 respectively. This finding proved that GCE/P-
Arg/ErGO/AuNP modified electrode has the maximum elec-
trochemical active surface area and high electron transfer
kinetics.

Electrochemical impedance spectroscopy (EIS) experi-
ments were performed to confirm the synergy between vari-
ous modified electrodes and the results were shown in Fig. 2b.
Theoretically, the electron-transfer kinetics of the redox probe
at the electrode interface controlled by the charge transfer
resistance (Rct) which represents the diameter of the semicir-
cular portion presented in the Nyquist plot at higher frequen-
cies of the EIS. It was observed that the bare GCE shows the
largest semicircle. The Rct value of 922 Ω underpins the low
transfer rate. Whereas GCE/P-Arg modified electrode shows a
Rct value of 379 Ω. The diameter of semicircle obviously

decreases after ErGOmodification owing to the high electrical
conductivity. The smallest semicircle (Rct value of 115Ω) was
observed at the GCE/P-Arg/ErGO/AuNP indicating that the
synergistic effect of the conductivity of ErGO and AuNP lay-
er, thereby promoting a higher electron transfer rate in the
redox probe.

Moreover, the relationship between different scan rate and
peak current was also studied to investigate the electrochem-
ical mechanism of the electrode. From Fig. 2c, it can be ob-
served that the peak currents increased with scan rate (in the
range of 10–200 mV/s) for GCE/P-Arg/ErGO/AuNP modi-
fied electrode. A linear relationship with good correlation co-
efficients was observed between the peak current values and
the scan rate as shown in the inset of Fig. 2c.

Electrochemical behavior of target analytes
at different electrodes

CV behaviors of the bare and modified GCE electrodes were
individually investigated in 0.1 M PB (pH 7.0) by adding
target analytes. Figure 3 displays the cyclic voltammograms
of AA, DA, 5-HT, and L-Trp at the bare GCE (a), GCE/P-Arg
(b), GCE/P-Arg/ErGO (c), and GCE/P-Arg/ErGO/AuNP (d),
respectively. A broad peak was observed at the bare GCE due
to the overlapping oxidation peaks of AA, DA. However, the
GCE/P-Arg/ErGO/AuNP electrode successfully separated the
voltammetry peaks into four well-separated peaks at the po-
tentials of 0.048 V (AA), 0.202 V (DA), 0.381 V (5-HT) and
0.719 V (L-Trp), which were large enough to determine AA,

Table 1 Comparison of the
parameters from the
electrochemical detection of DA,
5-HT, and L-Trp with different
methods and modified electrodes

Linear range (μM) LOD (μM)

Electrode DA 5-HT L-Trp DA 5-HT L-Trp Reference

NiO/CNT/PEDOT/GCE 0.03–20 0.3–35 1–41 0.026 0.063 0.210 [29]

Graphene/CP/SPCs 0.05–100 0.05–150 – 0.002 0.003 – [11]

CPE-MWCNTs 2.00–170 – 0.60–100 0.36 – 0.065 [30]

NiO–CuO/GR 0.5–20 – 0.3–40 0.17 – 0.1 [31]

Au/CoS2/IL-GN/GCE 0.1–400 – – 0.04 – – [32]

rGO-Mn3O4/Nafion-Au 1–1450 – – 0.25 – – [33]

MWCNT/PSVM/Au/GCE 0.2–1000 – – 0.056 – – [34]

β-CD/CQDs/GCE 4–220 – 5–270 0.14 – 0.16 [35]

MWNTs-SiO2-chitosan 1–20 0.1–2.0 – 0.2 0.01 – [36]

AgNPs/P(Arg)-GO 0.05–50 – 1.0–150 0.01 – 0.122 [5]

NiCo2O4/Nano-ZSM-5 0.6–900 – 0.9–1000 0.5 – 0.7 [37]

PTh/GPE 10–180 6–180 1.0 0.6 [38]

GCE/P-Arg/ErGO/AuNP 0.001–0.05

1.0–50

0.01–0.5

1.0–10

0.01–0.07

10–100

0.001 0.03 0.1 This work

CNT- carbon nanotube; PEDOT-poly(3,4-ethylenedioxythiophene); CP-conducting polymer; SPCs-screen
printed carbon sensor; CPE-MWCNTs-carbon paste electrode modified with multi-walled carbon nanotubes;
(CPE-MWCNTs); CoS2-cobalt disulfide; IL-ionic liquid; PSVM- poly(vinylbenzyl thymine-co-styrene-co-
maleic anhydride); β-CD-poly(β-cyclodextrin); CQDs-carbon quantum dots; Nano-ZSM-5-Nanocrystalline ze-
olite; PTh-Polythiophene nanostructures; GPE-graphite paste electrode.
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DA, 5-HT and L-Trp individually and simultaneously. The
separations of Ep of AA–DA, DA–5-HT and 5-HT–L-Trp
were of 154, 179 and 338 mV, respectively. These results
indicate that the simultaneous detection of DA, 5-HT and L-
Trp is feasible with the sensor. The excellent electrochemical
performance can be ascribed to the synergistic effects between
the ErGO and AuNP that would be beneficial for improved
electron transfer kinetics.

Individual voltammetric responses of DA, 5-HT,
and L-Trp

The electrochemical oxidationmechanism of target analytes at
GCE/P-Arg/ErGO/AuNP modified electrode was illustrated
in Scheme 2. The electrochemical behavior of modified elec-
trode in the presence of DA, 5-HT, L-Trp was investigated by
differential pulse voltammograms (DPV) in wide potential
range. All experimental procedures were performed in
0.1 M PB (pH 7.0) at room temperature. For all the DPV
analysis, we have employed the following parameters: con-
stant time interval of 90 s; N2 gas purging into the electrolyte
solution for 5 min before the start of each experiment.
Figure 4a, b and c, illustrates the DPVs for the individual
detection of DA, 5-HT, and L-Trp and their calibration plots.
As shown in Fig. 4a, the change of DPVs indicates that the
oxidative peak current (Ipa) has linear relationship with the
DA concentration. The calibration plot for DA exhibits two
linear segments in the range from 1.0 to 50 nM (R2 = 0.997),
and 1.0 to 50μM (R2 = 0.997), with a detection limit (S/N = 3)
of 1 nM. On the other hand, a linear relation between the
concentration of 5-HT and the peak current (Fig. 4b) was in
the range of 10 to 500 nM (R2 = 0.998) and 1.0 to 10 μM
(R2 = 0.992), with a detection limit of 30 nM (S/N = 3). As
shown in Fig. 4c, the peak current of L-Trp increases linearly
with its two concentration range from 10 to 70 nM
(R2 = 0.999), and 10 to 100 μM (R2 = 0.998), with a detection
limit of 0.1 μM (S/N = 3). The sensor has a better ability to
determine target analytes over a broader range of concentra-
tions. The observed two linear concentration ranges corre-
spond to low and high concentrations can be attributed to
the sensor nature; due to the variation in its analytes concen-
tration tolerance. Same results were verified with repeated
tests. The calculated sensitivities for DA, 5-HT, and L-Trp
are 2.48 μA·μM−1·cm−2, 5.97 μA·μM−1·cm−2, and 0.35 μA·
μM−1·cm−2 respectively. Moreover, the analytical findings of
this study were compared with several modified electrodes
reported in last few years and presented in Table 1.

Repeatability, reproducibility, stability
and interference study

A series of repetitive voltammetricmeasurements were carried
out at the sameGCE/P-Arg/ErGO/AuNP electrode to evaluate

the precision of this method. The relative standard deviations
(R.S.D.) for each 10 μM DA, 5-HT, and Trp measurements

Fig. 5 DPVs of simultaneous determination of DA, 5-HT, and L-Trp in
the presence of AA using GCE/P-Arg/ErGO/AuNP electrode in pH 7.0
phosphate buffer at scan rate of 50 mV s−1. a 0.1–5.0 μM of DA (a-i) in
the presence of 400 μM AA, 0.5 μM 5-HT, and 5 μM L-Trp; b 0.01–
1.0 μM of 5-HT (a-h) in the presence of 400 μM AA, 0.1 μM DA, and
5.0 μM L-Trp; c 5.0–60 μM of L-Trp (a-h) in the presence of 400 μM
AA, 0.1 μMDA, and 0.5 μM 5-HT. The insets show the calibration plot
for each analyte (n = 3)
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(n = 10) were 1.72, 1.23 and 2.87% respectively, indicating an
excellent detecting reproducibility. For stability test, the mod-
ified electrode was kept at 4 °C for 2 weeks and the peak
current did not have an obvious change (lower than 5%) for
the same concentration of 10 μM analyte solution, illustrating
the good film stability of the sensor.

Since the presence of high concentration of AA in biolog-
ical systems together with monoamine neurotransmitters, in-
terference study was performed before target analytes deter-
mination. From Fig. 5, we observed that AA doesn’t interfere
with the measurement of DA, 5-HT and L-Trp. The effect of
some possible other main interfering substances was also ex-
amined. Indeed, it was observed that 100-fold excess L-cys-
teine, Na+, K+, Ca2+, and Zn2+, 300-fold excess glucose, 200-
fold excess urea, and 100-fold excess citric acid caused only
negligible change and did not interfere with the measurement
of the mixer of 10 μM of DA, 5-HT and L-Trp in 0.1 M PB
(pH 7.0). Hence, the sensor has good selectivity towards the
simultaneous determination of DA, 5-HT, and L-Trp. The rel-
ative response of the sensor in the presence of the various
examined interferants was shown in the Table S1.

Real sample analysis

To investigate the practicality of the method, GCE/P-Arg/
ErGO/AuNP electrode was applied to the determination of
DA, 5-HT, and L-Trp in healthy human urine using the stan-
dard addition method. The human urine samples were diluted
100 times using 0.1 M PB (pH 7.0). The recovery results
ranged from 98.0 to 102.6% reveals the possibility of the
sensor for real biological samples. Good recovery values were
observed and the results are summarized in Table 2.

However, the major limitations of this sensor are the com-
plex modification procedure and operational capabilities.
Meanwhile, this technique has limitations in simultaneous
multiple analyte detection and sometimes results overlapped
voltammetric response.

Conclusion

A novel electrochemical sensor was prepared for the individ-
ual and simultaneous determination of DA, 5-HT, and L-Trp

in the presence of ascorbic acid. The GCE/P-Arg/ErGO/
AuNP electrode successfully resolved the overlapped
voltammetric signals of target analytes into well-separated
peaks by the DPV method. In particular, the electrode showed
wide linear concentration ranges, very low detection limit and
good selectivity. The sensor shows high electrocatalytic activ-
ity, efficacy, excellent stability and reproducibility towards the
electro-oxidation of DA, 5-HT, and L-Trp. Hence, the pre-
pared GCE/PArg/ ErGO/AuNP sensor provides a potential
platform for the analysis of DA, 5-HT, and L-Trp in biological
samples for diagnostic research. Despite of some limitations,
this sensor may contribute for point-to-care applications.
Further extensive studies are suggested on the clinical appli-
cation and long-term biocompatibility of the electrode.
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