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Abstract
Several nanocomposites of tin oxide with CuS, SnS or Cu@SnS were prepared and used to modify carbon paste electrodes
(CPEs). The structure and morphology of the materials were studied by XRD and SEM techniques. Cyclic voltammetry and
electrochemical impedance spectroscopy were applied to investigate their electrochemical properties. Themodified CPEs exhibit
superior voltammetric response to paracetamol (PAT) and hydroquinone (HQ) (when compared to a bare CPE) in terms of onset
oxidation potential and current density. The CPE modified with SnO2/SnS was applied to voltammetric determination of PAT (at
a working potential of 0.55 V versus Ag/AgCl and with a 0.06 μM detection limit), and of HQ (at 0.39 V versus Ag/AgCl with a
0.2 μM detection limit). The voltammetric responses were linear in the range from 1.0 to 36 μM for PAT and from 1.0 to 85 μM
for HQ.
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Introduction

Tin oxide nanostructures have been the most important n-type
semiconductor with a lot of properties and characteristics that
may justify their potential applications within various fields. A
large band gap of 36 eV [1], catalytic activity, good compat-
ibility and biocompatibility, non-toxic, inexpensive, green
material, good chemical stability and medium conductivity
[2, 3] are some of these properties. Different types of tin ox-
ides structures have been introduced for application in elec-
trochemical sensor and biosensor such as nanotubes [1], nano-
spheres [2], core shell [4], nanowires [5], hollow spheres [6]

and nanosheets [7]. Additionally, the composite of SnO2 with
some materials such as Ni [8], Cu [9], graphene [10], reduced
graphene oxide [11] and Co3O4 [12] have been reported in
literature. These structures are used in optical materials [13],
gas sensor [14], electrochemical sensors and biosensor [15,
16] and secondary batteries [17].

This study describes synthesis and characterization of some
novel nanocomposites of tin oxide such as SnO2/CuS, SnO2/
SnS and Cu@SnS/SnO2. These new nanoparticles are used as
modifier for preparation of carbon paste modified electrodes
and their electrocatalytic behaviors have been investigated by
cyclic voltammetry in the presence of some important chem-
ical compounds. The carbon paste modified electrode with
SnO2/SnS has been utilized for determination PAT and HQ
in real samples.

Experimental

Chemicals and apparatus

Tin(II) chloride dihydrate (SnCl2 2H2O), tin(IV) chloride
(SnCl4), thiourea (NH2CSNH2), thioacetamide (CH3CSNH2)
and ammonium acetate (NH4CH3COO) were bought from
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Scharlau (http://www.scharlab.com). Sodium hydrogen
phosphate salt and all other solvents and reagents were
obtained from Merck (https://www.merck.com). All the
chemicals were ultrapure or reagent grade and were used
without further purification.

Cyclic voltammetry measurements were performed by
PalmSens EmStat3+ and PSTrace software for Windows.
Electrochemical impedance spectroscopy experiments were
performed using μAutolab type III/FRA2 potentiostat/
galvanostat with NOVA software. A three electrode system:
Ag|AgCl|KCl (3 M) as reference electrode a platinum wire as
auxiliary electrode and homemade carbon paste modified
electrode as working electrode with a diameter of 2 mm was
used. All experiments were carried out at room temperature
(25 ± 1 °C).

Preparation of SnO2/SnS nanocomposite

First, 8.0 mL of 0.5 M SnCl2 aqueous solution was mixed
under stirring with 8.0 mL of 1.0 M NH4CH3COO solution.
In the next step, 10.0 mL of SnCl4 8% (V/V) aqueous solution
and 10.0 mL of 0.4 mol L−1 CH3CSNH2 solution was added
to the initial mixed solution and stirred for 30 min. Then, de-
ionized water was added to the prepared mixed solution to
make a total volume of 50 mL. Next, the prepared reaction
solution was transferred into an autoclave and heated with
temperature of 80 °C for 24 h. After that, the mixture was
centrifuged at 8000 rmp and isolated nanoparticles were
washed several times with de-ionized water. Next the nano-
particles were filtered through filter paper (0.45 μm porosity)
and dried at 50 °C for 24 h.

Preparation of CuS@SnO2 nanoparticles

The procedure was same as in the previous section except that
the dried precipitate dispersed in 150 mL of de-ionized water
in an Erlenmeyer flask to form a suspension. Then, 1.0 mL of
copper acetate solution 0.002 M was added to 25 mL of the
above suspension drop by drop to obtain the CuS@SnO2

nanoparticles. The homogenous precipitation of CuS@SnO2

nanoparticles was filtered through filter paper (0.45 μm po-
rosity) washed several times by de-ionized water and dried at
50 °C for 24 h.

Preparation of cu@SnS/SnO2 nanoparticles

The Cu@SnS/SnO2 nanoparticles were synthesized according
to the procedure explained in the literature with some modifi-
cation [18]. The procedure is presented in the Electronic
Supporting Material in detail.

Electrochemical analysis procedure

The experiments were carried out in 0.1 M phosphate buffer
(pH 4.0). Differential pulse voltammograms from 0.2 to 0.8 V
were recorded by adjusting the following parameters: ampli-
tude of 0.08 V, pulse width of 0.05 s, pulse period of 0.5 s and
time of equilibrating for 4 s. The impedance analysis was
performed under the oscillation potential 0.005 V from
200,000 Hz to 0.1 Hz at open circuit potential.

Sample preparation and procedures

The urine sample of a healthy man was stored 2 h in refriger-
ator (at 4 °C). Then, it was centrifuged for 30 min at 5000 rpm
and filtered using filter paper and diluted 100 times with phos-
phate buffer pH = 4. PAT tablet from Aria Iranian Company
was examined for estimation of its acetaminophen content.
Five tablets of PAT (500 mg of PAT in each tablet) were
accurately weighed and powdered in a mortar. An adequate
amount of the powders was weighed and transferred to a
100 mL volumetric flask and then dissolved in distilled water.
The standard addition method was used for analyzing PATand
HQ-spiked samples for validation of the CPE modified with
SnO2/SnS.

Characterization methods

The structure and surface morphology of nanomaterials was
investigated by scanning electronmicroscopy (FE-SEM-EDX
MIRA3 TESCAN). The crystallization degree and the size of
nanoparticles were specified by X-ray powder diffractometer
(XRD PHILIPS - PW1730).

Preparation of working electrodes

To invest igate the electrochemical propert ies of
nanomaterials, the carbon paste electrodes were prepared by
hand-mixing of 0.9 g graphite fine powder 30 mg mineral oil
and 70 mg from each of the synthesized nanomaterials with a
mortar and pestle in 30 min for total uniformity. The resulting
carbon paste was packed at the bottom of a polypropylene
tube (internal diameter of 2.1 mm). The electrical connection
was performed by a copper wire.

Results and discussion

Choice of materials

Electrodes modified with carbon nanomaterials [19–21],
nanostructured metal oxides [22, 23], conductive polymers
[24–26], various metal nanoparticles [27–29] and other nano-
structured [30–33] have been demonstrated to enhance the
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electroanalysis efficiency of PAT and HQ. Composite or hy-
brid materials containing two or more constituents are of great
interest. They can exhibit combination of individual properties
of the components or unique new physical and chemical prop-
erties for various applications. Among these, composite of
SnO2 nanoparticles attract considerable attention due to their
fascinating physical and chemical properties. Metal sulfide
nanocrystals have been studied the most due to their great
number of applications in different technological areas includ-
ing biological labeling and diagnostics, photovoltaic devices,
sensors and electroluminescent devices. CuS was found to
show interesting properties including metal-like electrical
conductivity which may have potential application in electro-
chemical sensors [34, 35]. SnS is a p-type semiconductor with
a band gap of 1.3 eV. The most significant aspect of SnS is
being cheap and nontoxic [36]. Additionally, the preparation
of their hybrid materials is convenient. Based on the above-
mentioned notes, the investigation of sensing properties of
new composites of SnO2 and CuS, SnS and their utilization
in constructing electrochemical sensors are worthy of studying.

Microstructural analysis of the electrocatalysts

Characterizations of the SnO2/CuS, SnO2/SnS and Cu@SnS/
SnO2 nanoparticles were investigated by SEM and XRD tech-
niques. The microstructural characterization of modified elec-
trode surface have significant role in the response of electro-
chemical sensor. Figure 1 shows FE-SEM micrographs of
surface morphologies of SnO2/CuS, SnO2/SnS and
Cu@SnS/SnO2 nanoparticles respectively. As seen, the ho-
mogenous dispensation of the very fine spherical shape parti-
cles with a diameter of approximately 10–30 nm is observed.
Figure 2d shows the EDX analysis of SnO2/SnS nanoparticles
which indicates the existence of Sn, O, S, and Cu elements in
the chemical composition.

Powder X-ray diffraction (XRD) is carried out to investi-
gate the crystal structure analysis of the prepared nanocom-
posites (Fig. 2). As seen, XRD pattern of SnO2 in Fig. 2a–c
shows the peaks at 266°, 340° and 518° which are assigned to
(110), (101), and (211) indicating the rutile structure of SnO2

((JCPDS card: 41–1445).

Fig. 1 SEM images of SnO2/CuS
(a), SnO2/SnS (b) and Cu@SnS/
SnO2 (c). (a′-c′) are EDX analysis
of SnO2/CuS, SnO2/SnS and
Cu@SnS/SnO2 respectively
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Figure 2a shows the peaks at 273°, 281°, 342°, 541° and
588°. These can be attributed to the hexagonal covellite crys-
talline phase of CuS with characteristic (101), (102), (006),
(110) and (116) planes. This is in good agreement with the
standard data for CuS (JCPDS Card No 06–0464).^ Fig. 2b
shows the XRD pattern of SnO2/SnS composite. As seen, in
addition to the peaks observed for SnO2, the peaks around
220°, 271°, 315°, 519.5° and 658° are observed. These are
related to lattice planes of (110), (120), (111), (151) and (251),
SnS (JCPDS Card No 39–0354). Concerning Cu@SnS/SnO2

nanocomposite, the XRD pattern (Fig. 2c) contains the peaks

around 430° and 501°. These are assigned to (110) and (200)
planes of copper and agree with the standard diffraction card
of JCPDS No 04–0836.

The crystallite size of the nanocomposites powders are cal-
culated according to Scherrer equation. The value of 17.7 nm
for SnO2/CuS, 15.0 nm for SnO2/SnS and 16.6 nm for
Cu@SnS/SnO2 are obtained respectively.

Electrochemical characterization

Electrochemical properties of carbon paste modified elec-
trodes are evaluated by cyclic voltammetry and electrochem-
ical impedance spectroscopy. Figure 3a, b show the cyclic
voltammograms and the Nyquist plots for unmodified carbon
paste electrode (a) SnO2/CuS (b) SnO2/SnS (c) and Cu@SnS/
SnO2 (d) in phosphate buffer containing 1 mmol L−1

[Fe(CN)6]
3− and 1 mmol L−1 [Fe(CN)6]

4−. As can be seen in
Fig. 3a, a well-defined redox peaks is observed for all modi-
fied electrodes. However, partial differences are observed for
peak to peak potential separation (ΔEp). The ΔEp value for
SnO2/CuS, SnO2/SnS, Cu@SnS/SnO2 modified CPEs and
bare CPE are calculated as 145, 130, 140 and 260 mV versus
Ag/AgCl respectively. These show increasing electron trans-
fer rate for the modified electrodes.

Fig. 2 Powder XRD patterns of (a) SnO2/CuS (b) SnO2/SnS and (c)
Cu@SnS/SnO2 composites

Fig. 3 a Cyclic voltammograms (b) Nyquist plots for 1 mM [Fe(CN)6]
3

−/4– in a solution of 0.1 M KH2PO4 at the surface of modified CPEs. Scan
rate: 50 mV s−1, EIS condition: frequency range: 200 KHz – 0.1 Hz,
perturbation amplitude: 5 mV
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The effective surface area of the electrodes was examined
by recording CVs of 1 mmol L−1 K3[Fe(CN)6] at various scan
rates for a reversible process by the Randles–Sevcik equation:

Ip ¼ 269� 105AD1=2n3=3Cυ1=2 ð1Þ
where Ip refers to the peak current (A), n is the electron trans-
fer number, A is the effective surface area (cm2), D is the
diffusion coefficient of K3[Fe(CN)6] in the solution (7.66 ×
10−6 cm2 s−1 at 0.1 mol L−1 KCl [37], C is the concentration of
K3[Fe(CN)6] (mol cm−3) and υ is the scan rate (V/s). The
calculated effective surface areas (A) for bare CPE, SnO2/
CuS, SnO2/SnS and Cu@SnS/SnO2 modified CPEs are cal-
culated as 0.257, 0.597, 0.773 and 0.457 cm2 respectively.. As
a result, current responses for the redox couple of [Fe(CN)6]

3

−/4− increase with rise in the effective surface area of the mod-
ified electrodes. Accordingly, the highest current is observed
for CPE modified with SnO2/SnS (Fig. 3a).

The EIS can provide information about the electron transfer
rate of reaction. The Fig. 3b represents the EIS curve obtained
from the modified and unmodified electrodes. The Nyquist-
shaped EIS curves contain a semicircular part and a linear part.
The semicircle in the Nyquist plot is related to the charge-
transfer limiting processes at high frequencies. Moreover,
the semicircle’s diameter corresponds to the charge transfer
resistance (Rct) of the redox probe at the interfacial surface
while the linear portion represents the diffusion process.
Howsoever Rct is small, the system is kinetically facile. As
can be seen in Fig. 3b, the Rct values are much lower for the

modified electrodes compared with the Rct of the bare carbon
paste electrodes which indicate increased electron transfer at
their surface.

Electrocatalytic oxidation of some important species

The electrocatalytic properties of the carbon paste modified
electrodes are studied toward some important drugs, biologi-
cal and environmental species such as ascorbic acid (AC), uric
acid (UA), salicylic acid (SA), paracetamol (PAT), carbidopa
(CA), methyl paraben (MP), hydroquinone (HQ) and hydra-
zine (HZ). The CVs responses are shown in Fig. 4. As seen,
good responses are observed at the carbon paste modified
electrodes for all those redox systems. For example, the
overpotential for oxidation of HQ and hydrazine are signifi-
cantly decreased to 335 and 680 mV at the surface of CPE
modified with SnO2/CuS compared to 455 and 880mVat bare
carbon paste electrode respectively. On the other hand, the
onset potentials for all tested compounds are dramatically de-
creased as shown in Fig. 4. Moreover, considerable increases
in peak currents are also observed due to the enhancement in
reversibility of the electron transfer processes. These suggest
an efficient electrocatalytic reaction for HQ and hydrazine at
the carbon paste modified electrodes.

In spite of observed electrocatalytic behavior, it should be noted
that oxidation potentials are still high for some tested compounds.
This may cause fouling of the electrode surface and selectivity
reduction in determining the analyte in the real samples.

Fig. 4 Cyclic voltammograms of 0.5 mmol L−1 (a) ascorbic acid (b) uric
acid (c) Salicylic acid (d) PAT (e) carbidopa (f) HQ (g) methyl paraben
and (h) hydrazine, recorded at the surface of bare and modified CPEs.

Scan rate: 50 mV s−1, pH = 4.0. Graphite (bare electrode) (......), SnO2/
CuS (— — —), Cu@SnS/SnO2 (———) and SnO2/SnS (— • — •)
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Differential pulse voltammetric determinations

Case study evaluation of linear concentration range, sensitivity
and detection limit using the differential pulse voltammetry
(DPV) method has been used for PAT and HQ at surface of
modified electrodes. The results of these initial studies are
shown in Fig. S1. Figure 5 shows differential pulse voltamm-
etry responses of PAT and HQ in different concentrations at
surface of CPE modified with SnS/SnO2. The experiments
were performed under the optimal conditions by keeping con-
centration of one component constant at 20.0 μmol L−1. A
working voltage of 0.390 V (vs. Ag/AgCl) for PAT and
0.550 V (vs. Ag/AgCl) for HQ were used for obtaining current
data. Detection limits were calculated using 3σ/s definition,
where σ is the standard deviation of the blank signals (n = 5)
and s is the slope of the calibration curve. As seen, the peak
currents increase linearly with the increase in the concentration
of the target molecules. In both, two linear dynamic ranges are
observed. The relationship between peak currents PATand con-
centration is in the range of 1–36 μmol L−1, and the linear

equations of PAT are Ipa (μA) = 0.290 C (μmol L−1) + 0.190
(1–8.5 μmol L−1, R = 0.9973) and Ipa (μA) = 0.154 C
(μmol L−1) + 1.758 (8.5–36 μmol L−1, R = 0.9912). The limit
of detection (LOD) was calculated to be 0.06 μmol L−1.
Similarly, the anodic peak current for HQ is proportional to
its concentration from 1.0 to 85 μmol L−1. The linear equations
are Ipa (μA) = 0.0756 C (μmol L−1) + 0.060 (1.0–10μmol L−1,
R = 0.9919) and Ipa (μA) = 0.038 C (μmol L−1) + 0.340 (10–
85 μmol L−1, R = 0.9968) with a LOD of 0.2 μmol L−1. The
sensitivities are 7.07 μA μM−1 cm−2 for PAT and
1.8 μA μM−1 cm−2 for HQ, respectively. The sensitivity and
detection limit are comparable with or sometimes better than
previously reported electrochemical methods for PAT and HQ
in Table S1.

The relative standard deviations for the determination of
10 μmol L−1 of PAT and HQ were obtained 3.9 and 2.5% by
successive 5 measurements, respectively. These indicate that
the CPMEs have excellent repeatability. The stability of all
modified electrodes is also evaluated by measuring the anodic
peak currents responses at a fixed 15 μM of the some sub-
stances under study over a period of 5 months. The peak
potentials are unchanged and the current signals are decreased
by less than 2%. These results show that the modified elec-
trodes have a long-term stability.

Interference study

The potential interference of some inorganic and organic spe-
cies was investigated accurately to detect PAT and HQ in the
real sample. The results indicate that the 300 fold Na+, Ca2+,
Mg+2 and K+, 300 fold of NO2

−, NO3
−, H2PO4

−, HPO4
2−,

SO4
2−, Cl−, 50 fold of glucose, ascorbic acid, quercetin, allura

red, 80 fold of codeine sulphate and ibuprofen (as PAT ingre-
dients) and 100 fold of benserazide and bisoprolol (as PAT
similar structure) have no notable interference with PAT and
HQ determination (the peak current response change <5%).
This suggests that CPE modified with SnO2/SnS has a great
selectivity for PAT and HQ determination without sensible
problem in presence of usual interfering species.

Fig. 5 a Differential pulse voltammograms at surface CPME with SnS/
SnO2 in phosphate buffer (pH 4.0) a for a binary mixture of 20.0 μmol L−1

HQ and different concentrations of PAT (1–36 μmol L−1). b For a binary
mixture of 20.0 μmol L−1 PAT and different concentrations of HQ (1–
85 μmol L−1). The inserts are the relationships between the anodic peak
currents and concentrations

Table 1 Determination of PAT and HQ with modified carbon past
electrode in Tablet, urine and tap water

Sample Added (μM) Detected (μM) Recovery (%)

PAT HQ PAT HQ PAT HQ

PAT Tablets (Aria, Iran) – 50 – 48.3 – 96.9

– 10 – 10.4 – 103.8

Urine – 15 – 15.3 – 101.7

– 20 – 19.4 – 97.1

Tap water 10 – 10.9 – 100.9 –

20 – 19.5 – 97.5 –
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Real sample analysis

To evaluate the efficiency of the CPME with SnS/SnO2, the
standard addition method was used. For this purpose, known
quantities of PAT and HQ within the linear range of PAT and
HQ were added to tablet, urine and tap water samples. The
analyses of their concentrations were performed by DPV
method in the optimal conditions. The results have been
shown in Table 1. As seen, the PAT and HQ concentrations
determined using this sensor is in good agreement with the
spiked value.

Conclusions

Electrocatalytic properties of the novel SnO2/CuS, SnO2/SnS
and Cu@SnS/SnO2 nanocomposites toward several important
molecules were investigated. The results indicate that the nov-
el tin oxide nanocomposites can be used in construction of
electrochemical sensors and biosensors as an effective
electrocatalyst. Differential pulse voltammetric determina-
tions of PAT and HQ were accomplished at CPE modified
with SnO2/SnS. Additionally, the novel nanocomposites can
also offer a high electrocatalytic activity towards other
electroactive species such as ascorbic acid, uric acid, salicylic
acid, carbidopa and methyl paraben. The oxidation potentials
of the tested species are relatively high and this can limit
selectivity. However, this new modified electrodes show good
sensitivity, repeatability and reproducibility.
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