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Abstract
This review (with 340 refs) focuses on methods for specific and sensitive detection of metabolites for diagnostic purposes, with
particular emphasis on electrochemical nanomaterial-based sensors. It also covers novel candidate metabolites as potential
biomarkers for diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis. Following an introduction
into the field of metabolic biomarkers, a first major section classifies electrochemical biosensors according to the bioreceptor type
(enzymatic, immuno, apta and peptide based sensors). A next section covers applications of nanomaterials in electrochemical
biosensing (with subsections on the classification of nanomaterials, electrochemical approaches for signal generation and am-
plification using nanomaterials, and on nanomaterials as tags). A next large sections treats candidate metabolic biomarkers for
diagnosis of diseases (in the context with metabolomics), with subsections on biomarkers for neurodegenerative diseases, autism
spectrum disorder and hepatitis. The Conclusion addresses current challenges and future perspectives.
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Introduction

The term Bbiomarker^ was first used in 1989 as a measurable
indicator of some biological states or conditions [1]. These
traceable substances can be utilized for physiology-related
assessments such as disease risk, psychiatric disorders, envi-
ronmental exposure, disease diagnosis, metabolic processes,
substance abuse, pregnancy, cell line development, etc.
Biomarkers reflect the entire spectrum of diseases from the
earliest manifestations to the terminal stages and are one of
the driving forces of pharmaceutical research and drug devel-
opment. They have been approved by the U.S. Food and Drug
Administration (FDA) regulation for use as surrogate end-
points in the treatment development process [2]. Biomarkers
are often cheaper and easier to measure than true endpoints.
Furthermore, they can also be measured more quickly and
earlier. Considering these advantages, biomarkers have

tremendous potential to affect the success rate of clinical trials,
identify new drug targets and develop diagnostic assays for
early detection of diseases [3, 4].

The metabolic biomarkers known as an important class of
biomarkers indicate changes in metabolic processes [5]. The
role of metabolism in diseases is emerging as an area of
etiopathological interest. Defining the differential alterations
in metabolic pathways for a variety of disorders has become
an increasingly accessible option for investigators and clini-
cians. The exponential growth of metabolomic analyses and
their relevant scientific literature within the clinical biochem-
istry over the last decade provides evidence of the utility of
such approaches in distinguishing between health and disease
and in defining potentially targetable disease mechanisms.
The deregulated levels of metabolites are observed in abnor-
malities or disorders such as neurodegenerative diseases [6, 7]
and autism spectrum disorder (ASD) [8, 9]. In addition, al-
tered metabolite levels can represent chronic infectious dis-
eases such as hepatitis [10]. Therefore, a fast and reliable
detection of these biomarkers can help medical professionals
to differentiate between diseases showing similar symptoms.

Nowadays there is a growing interest in the develop-
ment of devices for the specific and sensitive quantifica-
tion of biomarkers. Electrochemical biosensors can play a
key role in the development of low cost, portable and rapid
sensing techniques for this purpose. They provide reliable
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electrical signals resulting from specific immunoreactions.
During the last years, different biosensing platforms have
been described for the detection of biomarkers. The high
interest raised by this issue has been highlighted in the
recent reviews devoted to the use of functionalized
nanomaterials with biological receptors for low-level de-
tection of metabolic biomarkers. The signal enhancement
associated with the use of nanomaterials is an effective
path for ultrasensitive biosensing of biomarkers [11].

With remarkable achievements in nanotechnology, the
nanomaterials have attracted significant attention in the elec-
trochemical biosensors not only for electrical signal amplifi-
cation, but also for immobilizing biological probes on the
electrode surface [12]. The inherent advantages of electro-
chemical biosensors are associated with unique chemical
and physical properties of nanomaterials, such as outstanding
electronic and catalytic characteristics, high surface to volume
ratio and simple modification of their surfaces. They have
active surfaces that can easily be modified for immobilization
of numerous biomolecules [13]. In addition, the large specific
surface area and high surface free energy of nanomaterials will
lead to the preparation of a variety of surface-immobilized
biomolecules with improved stability. It is important to note
that direct adsorption onto bulk materials may result in bio-
molecule denaturation and loss of bioactivity, while nanosized
materials not only show a strong tendency to adsorb biomol-
ecules but also retain their bioactivity [14]. These features
combined with the functioning of biomolecules contribute to
the improvement of biosensor performance in terms of sensi-
tivity and specificity.

This review provides an updated overview of selected ex-
amples during the period 2005–2018 involving electrochem-
ical biosensing approaches and nanomaterial-assisted signal
enhancement strategies, which have been applied for the de-
termination of a wide range of metabolic biomarkers. The aim
of this effort is to provide the reader with a concise view of
advances in the field of electrochemical nanobiosensors for
determination of metabolic biomarkers.

Classification of electrochemical bioassays
according to the bioreceptor type

Compared to non-bioreceptor sensors, the receptor-based bio-
sensors are of particular interest, due to the high specific and
strong interaction of biological probes with their target mole-
cules, which results in a more efficient and reversible attach-
ment of the analyte and/or ligand.

The sensitivity and selectivity of these methods essen-
tially depend on the properties of the biorecognition ele-
ments to be used for analyte binding [15]. Electrochemical
biosensors, an important subclass of biosensors, combine
the high specificity of the bioreceptor with the high

sensitivity of electrochemical transducers. In general, the
biosensors can be classified into five major classes, accord-
ing to the bioreceptors used. The enzymes, antibodies and
aptamers are the main classes of bioreceptors that are most-
ly used in biosensing applications (Fig. 1). Although anti-
bodies and oligonucleotides have been widely employed,
enzymes are by far the most commonly used biosensing
elements in biosensors.

Electrochemical enzyme-based biosensors

The field of biosensors has grown enormously since the first
demonstration of the glucose enzyme electrode concept by
Clark and Lyons in 1962 [16]. The entire field of biosensors
can trace its origin to this original enzyme electrode. From
1962 until now, considerable efforts have been made on the
creation and evolution of new enzymatic biosensors as an
exciting area of biochemical research, reflecting a growing
emphasis on this technology.

Depending on the assay type, two fundamental classes of
enzymatic biosensors can be distinguished. In the first group,
the enzyme detects the presence of a substrate, or co-substrate/
co-factor. A typical example is a glucose biosensor. The sec-
ond group is based on the detection of inhibitors in the pres-
ence of a substrate. The most common example of this ap-
proach is the detection of organophosphate compounds used
as pesticides or warfare nerve agents. The major advantage of
these approaches is the high sensitivity and specificity of cat-
alytically active enzymes towards their target molecules.

Notwithstanding all these advantages, the enzymes have
some drawbacks that have limited their widespread appli-
cation. They often suffer from lack of chemical and ther-
mal stabilities. Exposure to certain conditions, such as el-
evated temperatures or organic solvents, can lead to dena-
turation and concomitant loss of activity. There have been
significant improvements in the field of enzymatic biosen-
sors. For example, the use of new genetically engineered
enzymes has allowed the improved performance character-
istics of current biosensors for the detection of established
analytes. In fact, the application of modern engineering
techniques in enzyme biosensors has enabled the optimi-
zation of their properties [17, 18].

Electrochemical antibody-based biosensors

Antibody-based biosensors known as immunosensors have
revolutionized diagnostics for the detection of a variety of
biomarkers [19, 20]. The first immunosensor reported in the
1950s opened the doors to the possibility of immuno-
diagnosis [21]. Since then, a widespread effort has been con-
ducted to develop immunosensors for clinical diagnostics.

Antibodies, as a member of the biorecognition elements are
categorized into two main classes of monoclonal and
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polyclonal antibodies. Monoclonal antibodies have a mono-
valent affinity, in that they specifically bind to the same epi-
tope. In contrast, polyclonal antibodies bind to multiple epi-
topes and are usually made by several different plasma cell
lineages. They have higher overall antibody affinity against
the antigen due to the recognition of multiple epitopes of an
antigen. Polyclonal antibodies can be produced in large quan-
tities in a short time, without complicated technologies and at
low cost; however, they suffer from lack of specificity [22].
Thus, for such applications as biosensing and therapeutic drug
development that require antibodies specific to a single epi-
tope, the monoclonal antibodies might be more apptopriate.
They offer a combination of high specificity with an excellent
ability for affinity purification. However, they have long pro-
duction time and high cost.

Nanobodies (Nbs) as the single-domain antibody frag-
ments derived from heavy-chain antibodies of camelids and
cartilaginous fish were discovered in camelidae in the early
1990s [23]. Like a whole antibody, they are able to bind se-
lectively to a specific antigen. In contrast to common antibod-
ies, they are well expressed in microorganisms and are less
lipophilic and more soluble in water [24]. Due to their low
molecular weight, high physico-chemical stability and ability
to bind antigens inaccessible to conventional antibodies, they
have broadly used in biosensing applications. Theses single-
domain antibodies can be coupled more densely on biosensor
surfaces. In addition to their advantage in targeting less

accessible epitopes, their conformational stability also leads
to higher resistance to surface regeneration conditions.

Electrochemical aptamer-based biosensors

Aptamers are artificial single-stranded nucleic acid ligands
that can bind a wide range of target molecules including small
molecules [25], tumor markers [11], ions [26], proteins [27],
cells [28] and tissues and organisms [29] with high specificity
and selectivity. Aptamers are screened through an in vitro pro-
cess called SELEX and can replace antibodies in different
applications. Aptamers are similar to antibodies regarding
their binding affinities, but they offer a number of advantages
over antibodies such as chemical and thermal stability, adapt-
ability to various targets, ease in synthesis and storage, and
versatility in labeling, immobilization, signaling and regener-
ation [30]. These outstanding properties make the aptamers
promising diagnostic and therapeutic tools for the future bio-
medical and analytical applications.

Since their discovery in 1990 [31–33], aptamers have dem-
onstrated important advantages in the field of biosensing, espe-
cially for the development of devices that allow the detection of
disease biomarkers. The first aptasensor proposed in 1998 for
the detection of thrombin was based on the use of an aptamer
labeled with a fluorescent marker [34]. Since then, a consider-
able advancement has occurred in biosensor design as well as
the use of signal amplification probes to achieve small
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Fig. 1 The main classes of
bioreceptors used in the
biosensing applications
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molecules sensing. Although the potential biosensing applica-
tions are unlimited, most of the current applications are fore-
seen in the areas of biomarker detection, cancer clinical testing,
and detection of infectious microorganisms and viruses [35].

Strategic applications of nanomaterials
in electrochemical biosensing

The need for ultrasensitive bioassays and the trend towards
miniaturized assays make the nanomaterials one of the hot
fields in biosensor technology. Ever since the pioneering study
of Mirkin and co-workers [36] on nanoparticle-based biosen-
sors, a variety of nanostructured materials have demonstrated
their appropriateness for biosensing applications. The intelli-
gent use of nanomaterials can lead to clearly enhanced perfor-
mances with increased sensitivities and lowered detection
limits of several orders of magnitudes.

In this review, we will briefly describe the classification of
nanomaterials and provide a brief overview of their role in the
development of ultrasensitive electrochemical biosensors.
Special attention is paid to the major role of nanomaterials
as the signal amplifiers. Applications of nanoparticles in elec-
trochemical signal amplification are mainly based on three
mechanistic types: (1) nanomaterials that increase the loading
of bioreceptors; (2) nanomaterials that act as the electrochem-
ical signal generating probes; (3) nanomaterials that enhance
the loading of electrochemically detectable species (Fig. 2).

Classification of nanomaterials

Nanomaterials are defined as materials in which at least one
length dimension is below 100 nanometers. In this size

regime, these materials exhibit particular and tunable optical,
electrical and mechanical properties that are not present at the
macro-scale. The synthesis of novel nanomaterials is a grow-
ing research area due to the potential applications for the prog-
ress of novel technologies. In the past two decades, hundreds
of novel nanomaterials have been introduced. So, the prepa-
ration, characterization and classification of nanomaterials, as
well as their applications, are essential.

The first classification idea of nanomaterials was given
in 1995 [37] and further explained in 2000 [38]. A new
classification scheme was reported in 2007 to overcome
the limitations of previous classification methods [39]. In
this scheme, the various types of nanostructures were dis-
criminated based on their dimensionality. They were char-
acterized as i) zero-dimensional (0D), ii) one-dimensional
(1D), iii) two-dimensional (2D) and iv) three-dimensional
(3D).

Zero-dimensional nanomaterials

Zero-dimensional nanomaterials are the elementary building
blocks in the design of nanostructures, represented by nano-
particles, quantum dots and nanoclusters (Fig. 3a–c). All three
dimensions of zero-dimensional nanomaterials are within 100
nm, more specifially less than 50 nm in the most cases.

One-dimensional nanomaterials

Nanostructures like nanotubes, nanorods, nanowires,
nanobelts, nanoribbons and nanofibers with two dimensions
in the nanoscale regime and the third dimension in the micro-
scale are known as one-dimensional nanomaterials (Fig. 3d–i).

Fig. 2 Applications of
nanomaterials in the
electrochemical biosensing
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Two-dimensional nanomaterials

Two-dimensional nanomaterials are the thinnest materials
with only one dimension whithin 100 nm whereas the other
two dimensions are those of bulk materials. The common
representations of two-dimensional nanomaterials are
nanoplates, nanosheets nanowalls and nanodisks (Fig. 3j–
m). These nanomaterials generally possess very high specific
area and good aspect ratio.

Three-dimensional nanomaterials

Three-dimensional nanomaterials such as nanocoils,
nanoballs and nanoflowers are nanophase materials
consisting of equiaxed nanometer-sized grains (Fig. 3n–
p). These nanomaterials have attracted intensive research
interests because they have higher surface areas and sup-
ply enough absorption sites for all involved molecules in
a small space.
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Fig. 3 Typical SEM and TEM images of different kinds of nanostructures
based on their dimensionality; a Aunanoparticles [40], b Au nanoclusters
[40], c carbon dots [41], d carbon nanotubes [42], eAu nanorods [43], fAu
nanowires [44], gCdSe nanobelts [45], h graphene oxide nanoribbons [46],

i ceramic nanofibers made of anatase and rutile [47], jAg nanoplates [48], k
graphene oxide nanosheets [49], l copper nanowalls [50],m silica nanodisks
[51], n carbon nanocoils [52], o graphene nanoballs with copper cores [53],
and p Pd nanoflowers [54]; Reprinted by permission of ACS Publishers
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Electrochemical signal amplification approaches
using nanomaterials

The electrochemical signal amplification based on
nanomaterials for obtaining lower and lower detection
limit has recently attracted considerable attention due to
the need for ultrasensitive bioassays. Especially, most
nanomaterials are biocompatible, which permit them to
act in direct contact with the biological environment. In
order to achieve a good performance for biosensing,
three approaches including biosensing nanoplatforms,
signal generating nanoprobes and nanocarriers for signal
probes in label-free sandwich detection strategies have
been introduced.

Nanomaterials as the platforms of sensing elements

Nanotechnology offers unique opportunities for creating
highly sensitive biosensing platforms. Electrode
nanostructuration with nanoscale materials is currently
a regular operation for preparing electrochemical scaf-
folds with improved conductivity and enhanced ability
for immobilization of biomolecules. In fact, the stabili-
zation of functionalized nanomaterials on the electrode
surface increases the effective surface area and promotes
the accumulation of bioreceptors. They act as signal am-
plification platforms for bioreceptors, owing to the exis-
tence of reactive groups on their surface, the fast elec-
tron transfer kinetics (particularly beneficial for electro-
chemical biosensors) and the high surface to volume
ratio. It is widely believed that the large surface area
to volume ratio is directly related to the high sensitivity
of nanomaterials based biosensors. In addition, the ion
centers and high electrical conductivity of some nano-
structures can also have a major role in accelerating
the electron transfer process.

A wide variety of electroconductive or semi-
electroconductive nanomaterials with small sizes and ap-
propriate surface modifications have been actively utilized
as the signal amplifiying nanoplarforms for fabrication of
electrochemical receptor based biosensors. In particular,
nanomaterials such as noble metal nanoparticles (Au, Pt)
[27, 55], carbon based nanostructures [56, 57], magnetic
nanoparticles (MNPs) [19, 58], quantum dots (QDs) [59,
60], metal oxide nanoparticles [61, 62] and polymer
nanomaterials [63, 64] have been attracted a lot of atten-
tion in this field.

Within the group of carbon nanostructures, graphene
and its derivatives are considered as the rapidly Brising
star^ carbon nanomaterials due to tailorable chemical
functionalities originated from the pristine sp2 hybridiza-
tion, superior mechanical strength, good chemical and
thermal stabilities, low density, excellent thermal

conductivities and low toxicity [65]. Graphene oxide
(GO) well-known for its distinct physiochemical proper-
ties and a high quantity of oxygen-containing functional
groups is electrically semiconducting and has low elec-
tronic conductivity. In some cases, it is necessary to re-
gain graphene's desirable characteristics such as electrical
conductivity or catalytic activity. Reduced graphene ox-
ide (rGO) with higher electrical conductivity than GO
still contains some oxygen related functional groups
which can bind to the biological probes [66]. Graphene
quantum dots (GQDs), as the newest member of
graphene family, are graphene sheets with lateral size
smaller than 100 nm in single, double and multiple
layers, and diameters spanning the range 3–20 nm main-
ly [25, 67]. They combine the advantages of graphene
with the quantum confinement of carbon dots for elec-
trochemical biosensing applications.

Nanomaterials as the signal generating probes

Growing demand for developing ultrasensitive electro-
chemical bioassays has led to the design of numerous
signal amplification strategies based on nanoparticle
electroactive labels. The importance of the use of
nanomaterials as the signal tags for amplification of elec-
trochemical responses has been reflected in the number
of reviews published on this topic [68]. Nanoparticles
consist of thousands of atoms, which in principle can
be oxidized or reduced electrochemically. Consequently,
when all bioreceptor molecules are labeled with nanopar-
ticles, the loading of electroactive species on the elec-
trode surface significantly increases, which leads to en-
hanced sensitivity of the biosensor. Nanoparticles of Au
[69, 70] and Ag [71, 72] have been used for this pur-
pose. AuNPs can be electrochemically oxidized in HCl
to produce electroactive AuCl4

-, which is then reduced to
give a detectable signal. Conjugated metal sulfide nano-
particles, such as CdS [73], PbS [74] and ZnS [75], have
also been extensively used as labels in the development
of ultrasensitive electrochemical affinity bioassays. These
metal sulfides are easily dissolved in HNO3 medium to
obtain Cd2+, Pb2+ and Zn2+, which can then be detected
with high sensitivity using stripping voltammetry.

Nanomaterials as the carriers for signal tags in label-free
sandwich detection strategies

Along with the use of nanomaterials for the construction
of nanostructured electrode surfaces, their utilization as
carriers of signal tags for electrochemical signal amplifi-
cation is another less widespread but equally relevant ap-
plication. Nanomaterials, especially carbon nanostruc-
tures, have been demonstrated to be excellent carriers
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for signal probes with their good conductivity and bio-
compatibility in label-free electrochemical sandwich-type
biosensors. Nanoscale materials have a greater surface
area, which increases the amount of the accumulation of
redox probes, which can be led to high sensitivity.
Typically, graphene and its derivatives are the promising
supports for immobilization of redox tags such as thionine
or methylene blue [76]. The graphene nanosheets offer a
large surface area for immobilization of electroactive
compounds as the electrochemical signal probes. In addi-
tion, the high electrical conductance is a distinctive char-
acter for graphene, which leads to increased current den-
sity and high sensitivity. Our group developed a
sandwich-type electrochemical aptasensor for detection
of MUC 1 in breast cancer patients [77]. In this work,
rGO-N'1,N'3 dihydroxymalonimidamide nanosheets with
large surface area, excellent electroconductivity and good
adsorption capacity were employed, not only as an ideal
carrier to immobilize numerous secondary aptamers, but
also as a suitable sorbent for the accumulation of
electroactive thionine. Another example of these
nanocarries is core-shell nanocomposites. Valipour and
Roushani [78] reported an electrochemical sandwich-
type immunoassay for the core antigen of hepatitis C
based on a nafion coated TiO2 nanocomposite as the car-
rier of Celestine Blue tags.

Candidate metabolic biomarkers
for diagnosis of diseases

Metabolomics, a postgenomic approach used to rapidly
identify global metabolic changes in biological systems,
has been increasingly applied to diagnosis of diseases,
measurement of the response to treatment, discovery of
biomarkers and identification of perturbed pathways. In
this review, we attempted to explore the electrochemical
biosensing strategies for the potential biomarkers related
to some diseases and for validation of these biomarkers
as predictors to diagnose the neurodegenerative diseases,
autism spectrum disorder diseases and hepatitis.

Neurodegenerative diseases

Neurodegenerative diseases such as Alzheimer’s disease
(AD), Parkinson’s disease (PD) and Amyotrophic Lateral
Sclerosis (ALS) are incurable and debilitating conditions
that result in progressive degeneration and death of nerve
cells. Currently, the human and animal studies are devel-
oping new and compelling ideas about the early diagno-
sis of these disorders, with the goal of slowing or stop-
ping their progression. These efforts reveal the presence
of abnormal metabolites in many degenerative diseases

that interfere with normal cellular functions. The ultra-
sensitive assessment of these functional biomarkers for
neurodegenerative diseases is important in diagnosis,
management and t rea tment of these disorders .
Considering the studies performed in the previous de-
cade, 101 metabolites have been identified as putative
biomarkers for AD, PD and ALS. Notably, alanine, cho-
line, creatinine, creatine and uric acid are the shared me-
tabolite signatures among these three diseases [6, 7].
Thus, a variety of electrochemical biosensors based on
enzymatic reacrions have been developed for the selec-
tive and sensitive determination of these metabolic bio-
markers. In the most of these cases, the measurement is
based on the amperometric detection of hydrogen perox-
ide (H2O2), as a side product of the choline oxidase
catalysed reaction.

Alanine

D-amino acid oxidase (DAAO) as a peroxisomal enzyme
has been used in several biosensors for the determination
of the D-amino acids such D-alanine in biological fluids.
As seen in Table 1, with combination of excellent electron
transfer ability of CNTs and high bioactivity of DAAO,
various signal amplification biosensors for assessment of
D-alanine have been designed [79–83]. The high sensitiv-
ity and selectivity of these catalytic biosensors indicate
the good conductivity of designed nanoplatforms and suc-
cessful maintenance of DAAO bioactivity.

Choline

Choline is a precursor of the neurotransmitter acetylcho-
line, one of the crucial brain chemicals involved in mem-
ory. Individuals suffer from various nerve disorders such
as PD and AD due to the lack of acetylcholine [84]. The
quantitative determination of choline is important in clin-
ical analysis, especially in the early diagnosis of brain
disorders. Among different methods available for choline
detection, the electrochemical biosensors based on choline
oxidase (ChO) and nanomaterials present advantages such
as simplicity, reliability, high sensitivity and selectivity. A
broad range of the electrochemical biosensors for deter-
mination of choline using the electrocatalytic properties of
conductive nanomaterials and enzymatic activity of ChO
has been listed in Table 2 [85–111].

Creatinine and creatine

Creatinine is the end product of creatine catabolism in
mammals [112]. It is found together with creatine in
muscle tissue and in blood. Determination of these met-
abolic biomarkers in biological fluids is essential for
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detection of neurodegenerative diseases. For this pur-
pose, the commercial enzymes containing creatininase
(CA), creatinase (CI) or sarcosine oxidase (SO)
immobilized on the nanomaterial modified electrodes

have been extensively used as the biosensing interfaces.
Table 3 represents the recent developments in design and
fabrication of electrochemical biosensors for the determi-
nation of creatine [113] and creatinine [114–120].

Table 1 A list of nanomaterials-based biosensors for electrochemical detection of D-alanine

Metabolic biomarker Type of affinity assay LOD DLR References

D-Alanine GCE/MWCNT/Au nanofilm/DAAO/Sol-gel film 20 nM 0.25–4.5 μM [79]

GCE/MWCNTs/Au-Pt NPs/DAAO 1.67 nM 5 nM–5 mM [80]

GCE/MWCNTs/PTCA/DAAO 3.3 nM 10 nM–1 mM [81]

GE/PANI/Cu NPs/c-MWCNTs/DAAO 0.2 μM 1–700 μM [82]

SPE/CNTs/PB/DAAO ----- 5–200 μM [83]

GCE,Glassy carbon electrode; MWCNT, Multiwall carbon nanotube; DAAO, D-Amino acid oxidase; PTCA, 3,4,9,10-Perylene tetracarboxylic acid;
GE, Gold electrode; PANI, Polyaniline; SPE, Screen printed electrode; PB, Prussian blue

Table 2 A list of nanomaterials-based biosensors for electrochemical detection of choline

Metabolic biomarker Type of affinity assay LOD DLR References

Choline GCE/Chitosan-MWCNT/(AuNPs)4/ChO 0.6 μM 3–120 μM [85]

GCE/MnO2 NPs/ChO/Nafion 5 μM 8.0 μM–1.0 mM [86]

AuSPE/Silica film-ChO 6 μM 0.02–0.6 mM [87]

GE/TGA-SAM/ChO μ-chip 0.012 nM 0.05 nM–10.0 μM [88]

Pyrolytic graphite/ZnO/MWCNTs/ChO-AChE/PDDA 0.3 μM 1–800 μM [89]

CPE/PANI/SiO2/ChO 0.1 μM 0.5–10 μM [90]

GCE/BG/PB-Ni/ChO 0.45 μM 0.45–100 μM [91]

GCE/Chitosan-AuNPs-G/Fe3O4-TiO2@NH2-ChO 1 nM 3 nM–1.12 mM [92]

GE/PBBIns-G-ChO 0.02 μM 0.1–830 μM [93]

GCE/Fc-rGO/HRP/ChO 0.35 μM 1–400 μM [94]

GCE/ZrO2NPs/MWCNTs/AChE-ChO 0.01 μM 0.05–200 μM [95]

GCE/NH2-MWCNT/RTIL/ChO 2.7 μM 0.69 pM–0.67 mM [96]

Graphite electrode/Poly(TBT6–NH2)/GA/ChO 16.8 μM 0.1–10 mM [97]

GCE/PB-FePO4 nanostructures/PDDA-ChO 0.4 μM 2 μM–3.2 mM [98]

CPE/ChO ----- 0.1–500 μM [99]

PtE/Chitosan-MWCNT/MPTMOS Sol/AuNPs-ChO 15 μM 0.05–0.8 mM [100]

GE/Cystamine/GA/Chitosan-Fe3O4 NPs/GA/ChO 0.1 nM 1 nM–10 mM [101]

PtE/CNT/K3Fe(CN)6/ChO 12.1 nM 0.1 μM–4 mM [102]

PtE/MWCNTs-AuNPs/PDDA-ChO 0.3 μM 0.001–0.5 mM [103]

PIGE/MWCNT-CdS QDs/ChO 0.8 μM 1.7–332.0 μM [104]

PtE/Au nanorods/ChOx/PVA 10 μM 20 μM–0.4 mM [105]

GCE/Chitosan/α-MnO2 NPs/ChO
GCE/Chitosan/β-MnO2 nanowires/ChO

1.0 μM
0.3 μM

2.0 μM–0.58 mM
1.0 μM–0.79 mM

[106]

GCE/MnO2 NPs/Chitosan-ChO ----- 10 μM–2.1 mM [107]

PtE/MWCNT/SiO2 sol-gel-ChO 0.5 μM 5 μM–0.1 mM [108]

PtE/MWCNT/Sol-gel silicate-ChO 0.1 μM 5 μM–0.1 mM [109]

GCE/CNT/HRP/ChO 10 μM 50 μM–5 mM [110]

GCE/{MWNTs/PANI}5/{PANI}3/ChO 0.1 μM 1 μM–2 mM [111]

GCE, Glassy carbon electrode; GE, Gold electrode; CPE, Carbon paste electrode; SPE, Screen printed electrode; G, Graphene; r-GO, Reduced graphene
oxide; Fc, Ferrocene; MWCNT, Multiwall carbon nanotube; PB, Prussian blue; ChO, Choline oxidase; AChE, Acetylcholinesterase; PVA, Polyvinyl
alcohol; PANI, Polyaniline; Poly(TBT6–NH2), Poly(6-(4,7-di(thiophen-2-yl)-2H-benzo[d][1,2,3]triazol-2-yl)hexan-1-amine); MPTMOS, (3-
Mercaptopropyl) trimethoxy silane; HRP, Horseradish peroxidase; GA, Glutaraldehyde; RTIL, Room temperature ion liquid; BG, Bucky gels;
PBBIns, Poly(N-butyl benzimidazole)
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Uric acid

Uric Acid (UA), considered as a waste of cellular me-
tabolism, has now received increasing attention because
it was found to directly participate in the pathogenesis
of many human diseases including neurological disor-
ders. UA protects neurons in neurodegenerative disor-
ders via antioxidative effects. Fast and accurate determi-
nation of UA in human physiological fluids has been
recognized as a vital clinical test in the diagnosis of
patients suffering from numerous metabolic disorders.
Thus, continuous monitoring of UA levels in the blood
is of paramount importance. The important challenge in
the electrochemical detection of UA is the co-existence
of many interfering compounds in biological systems
such as dopamine (DA) and ascorbic acid (AA). To
overcome this limitition, non-enzymatic sensing strate-
gies have been designed using the materials with high
electrocatalytic activity to oxidation of UA [121–136].
These nanocomposites electrocatalytically oxidize UA,
DA and AA at different potentials, so that the simulta-
neous determination of the analytes by these sensors
will be in rich. Although these sensors can effectively
achieve UA detection, there is a scope for improvement
in the receptor based biosensors. The binding of UA to
the active site of uricase enzyme is a very specific and
strong interaction. Thus, considerable efforts have been
focused on the development of new enzyme-based bio-
sensors. Table 4 presents a list of the electrochemical
enzymatic biosensors for evaluation of UA in biological
fluids [137–175].

Autism Spectrum Disorder

The pattern of behavioral symptoms now described as
Autism Spectrum Disorder (ASD) was first recognized
in 1943 [176]. ASD is a complex neurodevelopmental

condition that occurs within the first 3 years of life, which
is marked by social skills and communication deficits
along with stereotyped repetitive behavior [177]. The
prevalence of autism has been increased by more than
tenfold in the last decade. This growing prevalence has
stimulated intense research into the identification of bio-
chemical markers related to autism would be advanta-
geous for earlier clinical diagnosis and intervention.

The etiology of this developmental disorder is poorly
understood, and no biomarker has definitely been identi-
fied. However, many investigators are addressing the
concept of autism as a general metabolic disorder.
Some studies suggest that oxidative stress-induced mech-
anisms and reduced antioxidant defense, mitochondrial
dysfunction and impaired energy metabolism (nicotin-
amide adenine dinucleotide (NAD), adenosine triphos-
phate (ATP), pyruvate) and altered tryptophan metabo-
lism are major causes of ASD [178–180]. They have
shown a disturbance in energy metabolism in the brains
of autistic children with a marked increase in the size
especially in areas related to social cognitive processes.
In addition, tryptophan is a precursor of important com-
pounds, such as serotonin, quinolinic acid and kynurenic
acid, which are involved in neurodevelopment and syn-
aptogenesis. The decreased tryptophan metabolism may
alter brain development, neuroimmune activity and mito-
chondrial function [181].

These findings provided initial support for the possi-
bility that the evaluation strategies of biomarkers may be
effective for a broad range of individuals with ASD.
Thus, a variety of biosensors have been developed for
blood analysis of these children. Table 5 provides
renewed insight related to electrochemical biosensors
for ultrasensitive detection of ASD metabolic biomarkers
[61, 182–233].

It should be noted that most of these electrochemical
biosensors have been fabricated based on the formation

Table 3 A list of nanomaterials-based biosensors for electrochemical detection of creatine and creatinine

Metabolic biomarker Type of affinity assay LOD DLR References

Creatine Fe3O4-CPEE (CI or SO) 0.2 μM 0.2–3.8 μM
0.9–0.12 mM

[113]

Creatinine GCE/CA NPs/CI NPs/SO NPs 0.01 μM 0.01–12 μM [114]

Teflon/MWCNT/AuNPs/FC/HRP/CA or CI or SO 0.1 μM 0.003–1.0 mM [115]

FC-SPE/Creatinine amidinohydrolase 2.4 μM 5–1000 μM [116]

PtE/g-PANI/Chitosan/Fe3O4 NPs/CA or CI or SO 1 μM 1–800 μM [117]

Gold chip-PPy-Creatinine/Ab-HRP 0.46 mg dL-1 Up to 11.33 mg dL-1 [118]

PtE/PANI/Carboxylated MWCNT/CA or CI or SO 0.1 μM 10–750 μM [119]

PtE/PANI/MWCNT/Chitosan/ZnO NPs/CA or CI or SO 0.5 μM 10–650 μM [120]

GCE, Glassy carbon electrode; GE, Gold electrode; CPEE, Carbon paste enzyme electrode; SPE, Screen printed electrode; Fc, Ferrocene; MWCNT,
Multiwall carbon nanotube; CA, Creatininase; CI, Creatinase; SO, Sarcosine oxidase; PANI, Polyaniline; g-PANI, Graft-polyaniline; HRP, Horseradish
peroxidase; PPy, Polypyrrole
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Table 4 A list of nanomaterials-based biosensors for electrochemical detection of uric acid

Metabolic biomarker Type of affinity assay LOD DLR References

Uric acid (UA) ITO/ZnS NPs/UOx/Nafion
ITO/ZnS nanoflakes /UOx/Nafion
ITO/ZnS urchin-like nanostructures/UOx/Nafion

1.79 μM
1.51 μM
0.7 μM

0.01–1.5 mM
0.01–2.0 mM
0.01–1.7 mM

[137]

AgE/ZnO nanorods/UOx/Nafion 5 nM 0.01–4.56mM [138]

GCE/PB/Poly(4-ASA)/UOx 3.0 μM 10–200 μM [139]

p-n junction heterostructure/ZnO/CuO/UOx 5.45 μM 50 μM–1 mM [140]

GCE/GO-UOx 3.45 μM 0.02–0.49 mM [141]

CuE/Au/L-methionine/UOx 2.4 μM ----- [142]

(Ag/Si) electrode/ZnO nanosheets/UOx/Nafion 0.019 μM 0.05–2.0 mM [143]

GCE/PVF/Gelatin/MWCNT/UOx 23 nM 0.2 μM–0.71 mM [144]

GCE/Fc/UOx/Nafion 230 nM 500 nM–600 μM [145]

GE/MWCNT/Plated Pd/PdNPs-PFBA-UOx/Chitosan 0.1 μM 1.0 μM–2.5 mM [146]

ITO/NiO/Ni/UOx 0.03 mM 0.05–1 mM [147]

PtE/Chitosan-g-PANI/Fe3O4 NPs/UOx 0.1 μM 0.1–800 μM [148]

GE/Ag NPs/Chitosan-CNTs nanofiber/UOx 1.0 μM 1–400 μM [149]

GE/Ptnano-PTBA-UOx/Chitosan 1 μM 5 μM–1.2 mM [150]

ITO/ZnO:Nitrogen nanocrystal/UOx 0.04 mM 0.05–1.0 mM [151]

GE/AuNPs/Amino acid/UOx 7.0 μM 0.02–2.5 mM [152]

GE/ZnO nanowires/UOx/Nafion 25.6 μM 100–590 μM [153]

SPE/FC-GO/UOx 0.1 μM 1−20 μM [154]

SPE/PB/UOx 0.01 mM 0.03–0.3 mM [155]

ITO-μEA/APTES/BS/UOx 0.0084 mM 0.058–0.71 mM [156]

PtE/PPy/UOx 75 pM 75 pM–8.3 μM [157]

GE/T-ZnOnano/UOx/Nafion 0.8 μM 0.8 μM–3.49 mM [158]

SPE/CoPC/CA/UOx/PC 15 μM 15 μM –0.25 mM [159]

GE/PANI/MWCNTs/PB NPs/Chitosan-GA/UOx 5 μM 0.005–0.8 mM [160]

Glass(Au)/ZnO nanoflakes/Nafion/UOx 0.5 μM 0.5–1500 μM [161]

ITO/APTES/AuNP/MUA-MPA/UOx 54 μM 0.07–0.63 mM [162]

Glass(Au)/ZnO nanotubes/UOx 500 nM 500 nM–1500 μM [163]

Plastic(Au)/ZnO nanowires/UOx
Plastic(Au)/ZnO nanowires/Nafion/UOx

1 μM 1–650 μM
1–1000 μM

[164]

Glass/Ti/Pt/NiO/UOx 0.11 mM 0.05–1.0 mM [165]

GE/MPTS-Sol/UOx/PtNPs 0.1 nM Up to 1.4 mM [166]

GE/MWCNT/AuNPs/UOx 0.01 mM 0.01–0.8 mM [167]

ITO/APTES/Bis[sulfosuccinimidyl]/UOx 0.037 mM 0.05–0.58 mM [168]

ITO/PANI/MWCNT/Bacillus UOx 5 μM 0.005–0.6 mM [169]

GCE/TiO2 nanotube/UOx 1 μM 1 μM–5 mM [170]

PGE/MWCNT/ZnO NPs/UOx/PDDA 2 μM 0.05–1 mM [171]

Pt plate/PANI-PPy/UOx 1.0 μM 2.5 μM–85 mM [172]

Ir-C electrode/UOx 10 μM 0.1–0.8 mM [173]

GE/Cysteine/ZnS QDs/UOx 2 μM 0.05–2 mM [174]

PtE/PPy-UOx 0.5 μM 0.5 μM–1 mM [175]

GCE, Glassy carbon electrode; GE, Gold electrode; CPEE, Carbon paste enzyme electrode; SPE, Screen printed electrode; UOx, Uricase; MWCNT,
Multiwall carbon nanotube; PANI, Polyaniline; PB, Prussian blue; Ir–C, Ir-modified carbon; PVA, Polyvinyl alcohol; PVF, Poly(vinylferrocene); TGA,
Thioglycolic acide; MUA, 11-Mercapto undecanoic acid; MPA, 3-Mercapto propionic acid; SAM, Self-assembled monolayer; PTBA, Poly(thiophene-
3-boronic acid); PC, Polycarbonate; CoPC, Cobalt phthalocyanine; CA, Cellulose acetate; PDDA, Poly(diallyldimethyl ammonium chloride); T-ZnO,
Tetrapod-shaped ZnO; PGE, Pencil graphite electrode; PIGE, Paraffin impregnated graphite electrode; Fc, Ferrocene; HRP, Horseradish peroxidase;
VACNT, Vertically aligned CNT; IL, Ion liquid; g-PANI, Graft-polyaniline; PFBA, Poly(furan-3-boronic acid); ITO-μEA, Indium tin oxide microelec-
trode array; 4-ASA, 4-Amino-salicylic acid; APTES, 3-Aminopropyltriethoxysilane; BS, Bis[sulfosuccinimidyl]suberate; MPTMOS, (3-
Mercaptopropyl) trimethoxy silane; PPy, Polypyrrole
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Table 5 A list of nanomaterials-based biosensors for electrochemical detection of metabolite biomarkers for autism spectrum disorder

Metabolic biomarker Type of affinity assay LOD DLR References

Adenosine
triphosphate (ATP)

GCE/Nafion-TGA caped CdTe QDs/DNA/Aptamer/Methylene blue 45 pM 0.1 nM–1.6 μM [60]

GE/AuNPs/Aptamer/Peptide 0.1 pM 0.1 pM–5 nM [182]

GE/Hairpin aptamer 1/ssDNA/ Hairpin aptamer 2-Methylene blue 0.6 nM 1–200 nM [183]

GE/Fc-aptamer/ssDNA/Methylene blue 90.8 pM 0.1 nM–100 μM [184]

GE/Dendritic aptamer-DNA nanoassembly/ST-AP/α-NP 5.8 nM 10 nM-10 μM [185]

Nanogap electrode/Polysilicon/Aptamer 10 nM 10–100 nM [186]

GE/Nano-organic framework-Ce/Aptamer 5.6 nM 10 nM–1 mM [187]

SPE/AuNPs/Aptamer fragment (F1)/AgNPs-GO/Aptamer fragment (F2) 5.0 nM 10–850 nM [188]

GCE/PDA/PEG/Aptamer 0.1 pM 0.1−1000 pM [189]

GE/DNA-Methylene blue/Hairpin aptamer/ATP/Nb.BbvCI 3.4 nM 10 nM−1 μM [190]

GE/DTT/Aptamer/c-DNA-Methylene Blue 1.4 nM 5 nM–1 μM [191]

GE/Aptamer/Hemin-GO 0.08 nM 0.5–100 nM [192]

GCE/MoS2 nanosheets-AuNPs/Aptamer/MB 0.74 nM 1 nM–10 mM [193]

SPE/MnO2 nanosheet/Fc-aptamer 0.32 nM 0.5–500 nM [194]

GE/Beacon like DNA 20 pM 100 pM–1 nM [195]

GE/c-DNA/Trigger aptamer duplex DNA-Aptamer/ATP/Haipin
1-Haipin 2/Silver nanotag

30 fM 0.1 pM–100 nM [196]

GCE/AuNPs/Aptamer/Ru(bpy)3
2+/GO 4.8 pM (ECL)

6.7 pM (EIS)
10 pM–10 nM [197]

GCE/Au-G
nanosheets/Thionine/DNA/Aptamer-PdCu@MWCNT/HRP/GOx

2.5 nM 10–400 nM [198]

GCE/NH2-G/AuNPs/Aptamer 10 pM 10 pM–100 nM [199]

GE/Thiolated DNA/DNA-methylene blue/DNA1/DNA2/DNA
ligase/C-DNA/Invasive DNA/Zn2+

0.05 nM 0.1–1000 nM [200]

GCE/GO-PANI/Aptamer1/ATP/Aptamer2-PNN@ CdS QDs 0.1 pM 0.5 pM–20 nM [201]

GE/PBTA-CCG-Aptamer 1/ATP/Fe3O4-Aptamer 2/ADA 13.6 nM Up to 1 μM [202]

GCE/NPG/Ru-silica/ssDNA 1/ATP/Fc-SSDNA 2 0.03 pM 0.1 pM–10.0 nM [203]

GCE/Aptamer/Tris(bpyRu)-β-CD 0.01 nM 10.0–0.05 nM [204]

GCE/MWCNT/IL/Chitosan/ssDNA/PtNPs@Aptamer 1 nM 1–750 nM [205]

GCE/CdTe QDs-DNA 1/Aptamer/ATP/DNA 2-AuNP/DNAzyme 7.6 nM 8−2000 nM [206]

GE/Aptamer fragment 1/Aptamer fragment 2/Auxiliary
probe 1/Auxiliary probe 2/Auxiliary probe 3/RuHex

20 fM 20 fM−10 nM [207]

GCE/PoPD/G/Aptamer-Methylene blue 0.3 nM 10 nM–2 mM [208]

GE/ssDNA1/ATP/ssDNA2-SiO2-GQD 1.5 pM 5 pM–5 mM [209]

Nanoporous GE/Aptamer 100 nM Up to 3 mM [210]

ITO/Hairpin aptamer (Exonuclease III-assisted target recycling strategy) 0.1 nM 1–20 nM [211]

CPE/AuNP/G/Aptamer-FAD 11.4 pM–30 μM 20.1 pM [212]

GE/Aptamer-Methylene blue/ssDNA-Fc 1.9 nM 10 nM–100 μM [213]

GE/MPA/Amino-DNA segment1/ATP/ DNA segment2-AgNPs 1 mM ----- [214]

GCE/T(4-Mop)PS4-G/Aptamer 0.7 nM 2.2 nM–1.3 μM [215]

GE/G/Aptamer 15 nM 15 nM–4 mM [216]

Nitrogen doped TiO2 nanotubes
electrode/Aptamer/ATP/Fe3O4-CdTe-COOH-ssDNA/bbcDNA

10 nM 10 nM–1.0 mM [217]

GE/Aptamer1/ATP/Aptamer2-RuSiNP 0.2 pM 1 nM–1 pM [218]

GE/Aptamer-PbS or CdS QDs 30 nM ----- [219]

GE/Ru(bpy)3
2+-AuNPs/FC-aptamer/ssDNA 5 nM 10 nM–0.1 μM [220]

GE/Aptamer/ATP/c-DNA/Avidin-QDs 6 nM 0.018–90.72 μM [221]

GE/DNA1/DNA2/AuNPs-DNA3/Ru(NH3)6
3+ 0.02 nM 0.02–3 nM [222]

GE/Anchored DNA/Target-responsive DNA/Reporter
DNA capped AuNPs

0.2 nM 1 nM–10 μM [223]

GCE/Chitosan/Nano-MnO2/Aptamer 0.8 nM 1–100 nM [224]

GE/HDT/AuNPs/Aptamer/Methylene blue 1 nM 5–1000 nM [225]
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of aptamer-target complexes. The DNA aptamer for aden-
osine is one of the most studied since the initial report in
1995 by Huizenga and Szostak [234]. It has a similar af-
finity to a few adenosine derivatives including adenosine
monophosphate (AMP), cyclic adenosine monophosphate
(cAMP) and ATP, but it cannot bind other nucleosides such
as guanosine [235].

Tryptophan aptamers with different dissociation con-
stants have been extensively studied for the affinity based
bioassays [236]. The investigation of specificity showed
that these aptamers strongly bind to tryptophan and pos-
sess almost no binding to other amino acids, so that they
can be used as the efficient biorecognition tools for bio-
sensing applications.

Hepatitis

Hepatitis refers to an inflammatory condition of the liver.
It may be caused by viruses, drugs or alcohol, although
the most common cause is viruses. Viral hepatitis can be
caused by five hepatitis viruses including A, B, C, D and
E. During a five-year period, 10–20% of chronic hepatitis
leads to cirrhosis [237]. Accordingly, the major clinical
risk factor for hepatocellular carcinoma (HCC) develop-
ment is liver cirrhosis as 70–90% of HCCs develop in a
cirrhotic liver [238]. These data clearly indicate the criti-
cal importance of early diagnosis of hepatitis. Therefore,
the reliable and noninvasive diagnostic methods to predict
and assess liver hepatitis are needed. The blood testing
including enzyme immunoassay, polymerase chain reac-
tion (PCR) assay, recombinant immunoblot assay, bio-
marker assay and quantification of hepatitis RNA in

serum are the most common methods for detection of
hepatitis. Among these, the analysis of metabolic bio-
markers is a powerful strategy to advance the diagnosis,
treatment and prevention of hepatitis.

Liver is a major metabolic organ and its infection is
expected to result in measurable changes in such metab-
olite levels as tryptophan, phenylalanine, histidine, tyro-
sine, ethanol, lactic acid, L-proline and fumaric acid
[239]. Especially, the concentration of amino acids is very
often found altered in liver diseases [240]. The high blood
level of lactate also plays an important role in liver dys-
function [241]. Both acute and chronic hepatic diseases
can result in lactate accumulation and lactic acidosis. In
addition, several studuies reported the relationship be-
tween blood alcohol concentration and hepatic enzymes
in these patients [242]. Hepatic enzymes can be used as
a predictor of hepatic injury.

A variety of electrochemical biosensing methods have
been developed to detect metabolic biomarkers for the
fast diagnosis of hepatitis. Most of these biosensors have
been designed based on the amperometric determination
of H2O2, a by-product of the enzyme reactions. They
reveal good performances such as increased sensitivity,
excellent selectivity and good repeatability, when com-
pared with non-enzymatic biosensors [243, 244]. Table 6
summarizes a list of reported electrochemical biosensors
based on the biorecognition elements for ultrasensitive
detection of hepatitis metabolic biomarkers [228,
230–234, 245–340]. The analytical characteristics of
these biosensors confirm that they can serve as potential
devices for the detection of metabolism dysregulations in
patients with hepatitis.

Table 5 (continued)

Metabolic biomarker Type of affinity assay LOD DLR References

GE/AuNPs/DNA1/DNA2@AuNPs-Linker DNA/Ru(NH3)6
3+ 0.18 nM 0.5–4.0 nM [226]

NADH GE/G-DNA tetrahedron-AuNPs 1 fM 1 fM–10 pM [227]

GE/AuNPs/PSSG/Ru(bpy)3
2+/ADH 1 nM 2.5 nM–586 μM [228]

Pyruvate CFE/Poly(neutral red)/PyOx 34 μM 90–600 μM [229]

Tryptophan SPE/NH2-FSN/AuNPs/Aptamer/Hemin 0.026 nM (DPV)
0.01 nM (EIS)

0.06–250 nM [230]

AuSPE/MWCNT/Aptamer 4.9 pM 10 pM–0.1 mM [231]

GE/MWCNT/Aptamer 0.064 nM 0.0001–10 μM
10–300 μM

[232]

ITO/APTES/GO/HSA ----- 0.10–1.0 mM [233]

GE, Gold electrode; SPE, Screen printed electrode; GCE, Glassy carbon electrode; G, Graphene; CPE, Carbon paste electrode; CFE, Carbon film
electrode; ITO, Indium tin oxide; PDA, Polydopamine; PEG, Polyethylene glycol; FC, Ferrocene; PBTA, 1-pyrene butyric acid; CCG, Chemically
converted graphene; ST-AP, Streptavidin-alkaline phosphatase; MPA, 3-Mercaptopropionic acid; ADA, Adenosine deaminase; GQD, Graphene quan-
tum dot; PNN, Platinum nanostructured network; NPG, Nanoporous gold; Ru-silica, Ru(bpy)3

2+ -doped silica; Tris(bpyRu)-β-CD,
Tris(bipyridine)ruthenium(II)-β-cyclodextrin[tris(bpyRu)-β-CD]; PoPD, Poly(o-phenylenediamine); T(4-Mop)PS4, meso-Terakis(4-methoxyl-3-
sulfonatophenyl) porphyrin; DTT, Dithiothreitol; RuHex, Hexaammineruthenium(III); FSN, Functionalized silica nanoparticle; IL, Ion liquid; QDs,
Quantom dots; FAD, Flavin adenine dinucleotide; MWCNT, Multi-wall carbon nanotube; PyOx, Pyruvate oxidase; APTES, 3-Aminopropyl
triethoxysilane
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Table 6 A list of nanomaterials-based biosensors for electrochemical detection of metabolite biomarkers for hepatitis

Metabolic biomarker Type of affinity assay LOD DLR References

Tryptophan SPE/NH2-FSN/AuNPs/Aptamer/Hemin 0.026 nM (DPV)
0.01 nM (EIS)

0.06–250 nM [230]

AuSPE/MWCNT/Aptamer 4.9 pM 10 pM–0.1 mM [231]

GE/MWCNT/Aptamer 0.064 nM 0.0001–10 μM
10–300 μM

[232]

ITO/APTES/GO/HSA ----- 0.10–1.0 mM [234]

Alcohol GE/AuNPs/PSSG/Ru(bpy)3
2+/ADH 12 nM 5.0 μM–5.2 mM [228]

GCE/Fe3O4/PDA/AOx 130 μM Up to 3.0 mM [245]

GCE/MnOx-MoOx/PtNPs/Gluconobacter oxydans biofilm ----- 0.075–5.0 mM [246]

SPE/MWCNT/AuNPs/PNR/ADH/GA 96.1 μM 320.2–1000 μM [247]

GCE/Chitosan/Nafion/AOx-AuNPs/PANI 7 μM 10 μM–4.7 mM [248]

SPE/AA/TO-AuNPs/ADH/Chitosan 0.14 μM 1 μM –2.0 mM [249]

GCE/G-CdS QDs/IL/CPZ-SO/ADH ----- ----- [250]

Graphite electrode/Poly(BIPN)/COOH-MWCNT/AOx 0.17 μM 0.855–11.97 mM [251]

GCE/MWCNT/Nafion/HRP/Sol-gel chitosan/FcAOx 2.3 μM 5 μM–3 mM [252]

GCE/NiOxNPs/ADH-Nafion 6.4 μM 0.2–6 mM [253]

GE/MWCNT-Nafion/AOx-PEI 5 μM 8–42 μM [254]

GCE/Ru(bpy)3
2+–G/BSA/ADH 0.1 μM 1–2000 μM [255]

GCE/G-AuNPs/ADH 1.5 μM 5–377 μM [256]

GCE/CNT/Chitosan-NAD+-ADH 8–30 μM Up to 20 mM [257]

GE/Cysteine/TTF/AOx 30 μM 0.1–1.0 mM [258]

GCE/NH2-Ru(bpy)3
2+-doped silica NPs/ADH 50 nM 0.1 μM–10 mM [259]

GCE/SWCNT/PBCB/ADH 0.1 mM 0.4–2.4 mM [260]

GCE/OMC/Meldola’s Blue-ADH 19.1 μM Up to 6 mM [261]

GCE/MWCNT-Chitosan-ADH 0.52 μM ----- [262]

CFE/MWCNT/AOx 86 μM Up to 1.4 mM [263]

SPE/Nafion-AuNPs-ADH-Meldola’s blue 16 μM 8.3 mM [264]

Teflon electrode/MWCNT/AuColl/ADH
Teflon electrode/MWCNT/ADH

4.7 μM
32 μM

0.02–1.0 mM
0.010–1.0 mM

[265]

GCE/Nafion-TiO2 sol gel-CNT-ADH 5.0 μM Up to 3 mM [266]

GCE/SWCNT/Poly(nile blue A)-ADH 50 μM 0.1–3.0 mM [267]

GCE/SWCNTs-PDDA-ADH/Nafion 90 μM 0.5–5.0 mM [268]

GCE/PVA–MWCNT–ADH 13 μM Up to 1.5 mM [269]

ITO/AuNPs-Ru(bpy)3
2+-ADH 3.33 μM 10 μM–10 mM [270]

GCE/PTH-CNF/AOx 1.7 μM 2.0–252 μM [271]

GCE/MWCNTs-Nafion-ADH 3 μM Up to 0.1 mM [272]

GE/PPYOx/AOx-GA-BSA 2.3 μM Up to 0.75 mM [273]

CPE-MWCNT- Meldola’s Blue-ADH 5 μM 0.05–10 mM [274]

Graphite rods/HRP/EDP-Os complex/EDP-AOx ----- Up to 2 mM [275]

Fumaric acid Pt/SU-8 photoresist/Fumarate hydratase 0.026 mM 0.1–3.0 mM [276]

Histidine GCE/G-AuNPs/DNAzymes 0.1 pM 10 pM–10 μM [277]

GE/HDT/AuNPs/DNA1-DNA2-FC
GE/HDT/DNA1-DNA2-FC

0.1 pM
1 nM

10 pM–50 nM
1 nM–10 μM

[278]

Lactic acid or Lactate PET/Cu foil/G nanowalls/LOx 1.0 μM 1.0 μM–10.0 mM [279]

SPE/Glycerol/NAD+/BSA/PyrOx-LDH 17 μM (RIM)
20 μM (CPEIM)

0.01–0.25 mM [280]

PEG/PANI-CuNPs-MWCNT/LOx 0.25 μM 1.0–2500 μM [281]

SPE/LOx/BSA/HRP/Chitosan/FcMe/MWCNT 22.6 μM 30.4–243.9 μM [282]

GCE/FcMe2-LPEI/LOx 3 μM Up to 5 mM [283]

SPE/PB nanocubes/LOx 10 μM 0.01–0.5 mM [284]

CPE-Fe3O4-PB/LOx 0.59 μM 7.5 μM–0.13 mM [285]
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Table 6 (continued)

Metabolic biomarker Type of affinity assay LOD DLR References

SPE/GO/K3[Fe(CN)6]/LOx 60 μM 0.5–15 mM [286]

GE/MPTS/DNP/LOx 16 μM 0.053–1.6 mM [287]

GCE/PPy-F127 NPs/LOx/Nafion 0.0088 mM 0.015–37.5 mM [288]

SPE/rGO-AuNPs/LDH 0.13 μM 10 μM–5 mM [289]

GE/DNP/LOx 15 μM 0.05–0.7 mM [290]

CPE-BCC-MWCNT-LOx 70 nM 0.2 μM–0.11 mM [291]

SPE-Glycine-LOx-GA-PEI-GCNF/PtNPs 6.9 μM 10–2000 μM [292]

PtE/4-aminothiophenol/SWCNT/LOx (Covalent immobilization)
PtE/4-aminothiophenol/SWCNT/LOx (Adsorption)

4.0 μM
3.0 μM

Up to 0.12 mM
Up to 0.18 mM

[293]

GCE/rGO/TiO2 NPs/LOx 0.60 μM 2 μM–0.4 mM [294]

SPE/PDDA-CNF-PtNPs/LOx 11 μM 25–1500 μM [295]

GE/ZnO NPs/LDH 4.73 nM 0.2–0.8 μM [296]

GE/ZnO nanowire/LOD/Nafion 12 μM 12 μM–1.2 mM [297]

GCE/rGO/LOx
GCE/GO/LOx

7.5 μM
5.5 μM

0.025–0.25 mM
0.018–0.58 mM

[298]

PTE/TTF/CNT/LOx/Chitosan 1 mM 1–20 mM [299]

PET/G/LOx 0.08 μM 0.08–20 μM [300]

GCE/Nano-CeO2/LDH/NADH 50 μM 0.2–2 mM [301]

GCE/Pt30%-PDDA-CMM film/LOx/Nafion 1.7 μM 5.0–50.0 μM [302]

GCE/VBT-VBA/LOx
GCE/PDDA/LOx

3.4 μM
10 μM

0.01–1.0 mM
0.03–0.50 mM

[303]

GE/3DOM gold film/DTSP/LOx
GE/3DOM gold film/LOx

3.93 μM
16.22 μM

Up to 1.3 mM
Up to 0.6 mM

[304]

Glass-AuE/ZnO nanorods/GA/LOx 0.1 μM 0.1 μM –1.0 mM [305]

GE/ZnO nanotetrapods/LOx/Nafion 1.2 μM 3.6 μM–0.6 mM [306]

GE/LOx/Alginate/PDDA 50 nM 2.0 μM–3.6 mM [307]

SPE/MWCNT/PS/Meldola’s blue/LOD 0.37 μM 1–20 μM [308]

SiO2-GE/MoO3 nanowire/LOx/Nafion 0.15 mM 0.5–8 mM [309]

SPE/CoPC/Nafion/Mesoporous silica-LOD 18.3 μM 18.3 μM–1.5 mM [310]

GCE/Fe3O4/MWCNT/LDH/NAD+ 5 μM 50–500 μM [311]

GE/ZnO NPs-MWCNT/LOx/Nafion 4.0 nM 0.01–10 μM
10–200 μM

[312]

GCE/Nitrogen-doped CNT/TBABr-Nafion 4.1 μM 14–325 μM [313]

GE/MPTS/AuNPs/LOx 4.0 μM 50 μM –0.25 mM [314]

PGE/MWCNT/ZnO NPs/PDDA 6.0 μM 0.2–2.0 mM [315]

GE/Nanostructured rough Au-DTSP-LOx 21.5 μM Up to 1.2 mM [316]

PtE/PB/PPy-LOx from the species Pediococcus ----- 0.5 μM–0.5 mM [317]

SPE/Meldola’s Blue-Reinecke salt/NAD+/LDH 0.55 mM 0.55–10 mM [318]

PtE/Nafion/Albumin–mucin hydrogel/LOx/ Polycarbonate membranes 0.8 μM 2–1000 μM [319]

GE/pTTCA/MWCNT/LDH 1.0 μM 5–90 μM [320]

SPE/CoPC/LOx 289 μM Up to 6 mM [321]

GE/Pt-black NPs/LOx ----- 1–20 mM [322]

GCE/Pt NPs/MWCNT/Sol gel-LOx 0.01 mM 0.2–2.0 mM [323]

GE/Nafion/H2Ti3O7 nanotubes/LOx 0.2 mM 0.5–14 mM [324]

GE/CNT-PVI-Os-Chitosan-LOx 5 μM Up to 1 mM [325]

PtE/Albumin–mucin hydrogel/GA/LOx/ Polycarbonate membranes 0.7 μM Up to 1.5 mM [326]

GCE-MWCNT-Silica sol gel-LOx 0.8 μM 0.3–1.5 mM [327]

GE/AuNPs/LDH 100 nM Up to 0.8 mM [328]

FET (Nano-Si4N3-PAA-LDH) 0.2 μM Up to 10 μM [329]

CNTPE/Meldola’s blue/LDH 7.5 μM 0.10–10 mM [330]

GCE/LOx 0.9 μM Up to 0.2 mM [331]
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Conclusion

With increasing acute and chronic diseasese, sensitive and
reliable diagnostic tools will improve treatment outcomes.
However, the conventional diagnostics used for such purposes
are extremely powerful; most of these are limited by time and
cost-consuming protocols and require higher volume of test
sample. In this review, we have presented a snapshot of the
recent developments in the field of electrochemical biosensors
and an overview of signal amplification strategies based on
the nanomaterials. However, researchers have developed
many signal enhancement strategies in the fabrication of elec-
trochemical biosensors such as nuclease amplification, rolling
circle amplification, catalyzed hairpin assembly amplification
and etc. The nanomaterial-assisted signal amplification is
more efficient because that they are not only employed as
ideal carriers to immobilize various bioreceptors but also act
as the sorbents for the accumulation of redox indicators. One
of the fascinating aspects of nanomaterials is that the chemical
properties of their surface can bemanipulated by surface mod-
ification and functionalization. Furthermore, some of these
nanomaterials exhibit unique electrical conductivity with high
performance for electrochemical biosensors. The combination
of high affinity and specificity of bioreceptors and unique
properties of nanomaterias provides promising opportunities
for various biosensing applications. Despite considerable pro-
gresses in this area, there are definitely challenges that must be

addressed. (I) Most of electrochemical biosensors have been
constructed for in vitro detection of metabolic biomarkers;
therefore, the design of biosensors for in vivo measurements
should be a priority in the future. The real-time measurement
of metabolic biomarkers requires the development of in vivo
biosensors, which necessitates the synthesis of non-toxic
nanomaterials, improved stability of enzymatic immobiliza-
tion and enhanced resistance to substance interference. (II)
The fabrication of multiplexed nanoscale biosensors for si-
multaneous detection of different analytes has still remained
a major challenge at the nanotechnology frontier.
Development of biosensors that allow for simultaneous detec-
tion of multiple metabolic biomarkers of a disease can achieve
higher detection sensitivity while reducing false positives. For
this purpose, integration of analytical technologies on a single
platform is recommended. (III) The design of microfluidics
platforms for electrochemical biosensors is required to over-
come the limitations of conventional bioassays through the
development of biosensors that can provide continuous, in situ
and rapid measurement of targets. The developments in
microfluidics should be directed towards fabrication of biomi-
metic human organoid models that simulate both the biology
and the physiological microenvironment of the human system,
termed organs-on-chips. Microfluidic organs-on-a-chip plat-
forms allow the continual monitoring of (multiple) secreted
biomolecules in a noninvasive manner while consuming only
small volumes of media. (IV) Despite all significant

Table 6 (continued)

Metabolic biomarker Type of affinity assay LOD DLR References

GCE/Nanoscaled CoPc/LOx/Chitosan-MnO2 NPs 8 μM 0.020–4.0 mM [332]

ITO/Poly(An-co-FAn)/GA/LOx 0.1 mM 0.1–0.6 mM [333]

L-phenylalanine GE/GO-Chitosan/PDH 416 nM 500 nM–15 mM [334]

GE/nPrNH2-MCM-41/PDH 0.006 μM 0.01–0.15 μM [335]

L-proline GCE/Chitosan-Cysteine/nPrNH2-MCM-41-Fe2O3-Chitosan-PRODH 0.006 μM 0.01–0.15 μM [336]

Tyrosine GCE/rGO/Hemin 75 nM 0.5 μM–0.5 mM [337]

GCE/MWCNT/PAMAM/Hemin 10 nM 0.1–29 μM [338]

GCE/Cysteamine/AuNPs 40 nM 0.1 μM–0.3 mM [339]

GCE/L-serine polymer film 0.1 μM 0.3 μM–0.1 mM [340]

GCE, Glassy carbon electrode; PDA, Polydopamine; AOx; Alcohol oxidase; BIPN, 2-(4-Nitrophenyl)-4,7-di(thiophen-2-yl)-1H-benzo[d]imidazole;
FcAOx, Ferrocene entrapped alcohol oxidase; FcMe, Ferrocene methanol; HRP, Horseradish peroxidase; MPTS, (3-Mercaptopropyl)-trimethoxysilane;
DNPs, Diamond nanoparticles; PSSG, Partial sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel; ADH, Alcohol dehydrogenase; PBCB, Poly
brilliant cresyl blue; PPy-F127, Polypyrrole-Pluronic F127; PDDA, Poly (diallyldimethylammonium chloride); PAA, Polyacrylic acid; G, Graphene;
HDT, 1,6-Hexanedithiol; GA, Glutaraldehyde; FC, Ferrocene; AA, Azure A; TO, Thioctic acid; PANI, Polyaniline; PDDA,
Poly(diallyldimethylammonium); PET, Poly (ethylene terephthalate); PTH, Poly(thionine); LOx, Lactate oxidase; PB, Prussian blue; CPE, Carbon
paste electrode; SPE, Screen printed electrode; CNF, Carbon nanofiber; CFE, Carbon film electrode; Ru(bpy)3

2+ , Tris(2,2'-bipyridine) ruthenium(II);
PNR, Polyneutral red; CoPC, Cobalt phthalocyanine; VBT, 4-vinylbenzyl thymine; GCNF, GCNF, Graphitized carbon nanofibers; CPZ-SO,
Chlorpromazine-sulfoxide; VBA, 4-Vinylbenzyl triethylammonium; PDDA, Polycation polydiallyldimethylammonium; PPYOx, Overoxidized non-
conducting polypyrrole; BCC, Benzo[c]cinnoline; LDH, Lactate dehydrogenase; PyOx, Pyruvate oxidase; CMM, Carbon mesoporous material; PS,
Polysulfone; PGE, Penciled graphite electrode; TBABr, Tetrabutylammonium bromide; DTSP, Dithiobis-N-succinimidyl propionate; EDP,
Electrodeposition paints; PVI-Os, (Polyvinylimidazole-Os); pTTCA, Poly-5,2'-5',2^-terthiophene-3'-carboxylic acid; (FcMe2-LPEI),
Dimethylferrocene-modified linear poly(ethyle- nimine) hydrogel; Poly(An-co-FAn), Polyaniline-co-fluoroaniline; PRODH, Proline dehydrogenase;
APTES, 3-Aminopropyl triethoxysilane; FSN, Functionalized silica nanoparticle
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achievements in the design and development of highly sensi-
tive and selective electrochemical biosensors, there is a need
to address the issue of transition from development stages
towards commercialization of biosensors for point-of-care di-
agnostics of diseases. By driving the development of suitable
bench-top technology through product development, other
practical aspects including portability, costs and fabrication
techniques can also be examined. These biosensors will then
be well poised for speedy translation into point-of-care diag-
nostics. Finally, it is expected that the nanomaterials will have
a great practical foundation in design of novel biosensors for
point-of-care clinical diagnostics. Taking into account the con-
tinuous progress in the development of novel nanomaterials,
the application of new electrochemical sensing scaffolds
based on multifunctional nanomaterials is expected to be
widely developed in the future.
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