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Abstract
A colorimetric detection scheme is introduced for the determination of alkaline phosphatase (ALP) activity based on
Cu(II)-modulated G-quadruplex-based DNAzymes. It is exploiting the strong affinity of Cu(II) for pyrophosphate
(PPi) upon which the cofactor PPi is trapped by Cu(II). Hence, the activity of the DNAzyme is inhibited. ALP
catalyzes the hydrolysis of PPi, causing the release of Cu(II). DNAzyme, in turn, is activated and catalyzes the
cleavage of the DNA probe substrate. The released G-rich sequence folds into the G-quadruplex, which can bind
hemin and catalyze the oxidation of 2,2′-azinobis (3-ethylbenzothiozoline)-6-sulfonate (ABTS), and this leads to an
increase in absorbance at 420 nm. Absorbance increases linearly with increasing ALP activity in 0.07 to 300 U.L−1

range, with a 70 mU.L−1 detection limit. The method was applied in ALP inhibition tests and to the determination of
ALP activity in spiked serum samples where it gave satisfactory results.
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Introduction

Alkaline phosphatase (ALP), a widely distributed en-
zyme in mammalian tissues, is responsible for dephos-
phorylation in metabolic pathways [1]. Because the lev-
el of serum ALP is linked closely to an extensive range
of diseases, including osteopathy, hepatopathy, breast
and prostatic carcinoma, cardiac diseases, and diabetes
[2, 3], it has been developed to become an important
biomarker to help in early diagnosis of hardly-recognized dis-
eases. Beside its high potential in clinical field, it is also

advantageous to forensic investigations [4]. Hence, progres-
sive exploration of a strategy for ALP detection that has high
velocity, sensitivity, facility, and adjustable dynamic range is
undoubtedly in considerably high demand.

Over the past decades, various methods have been
put forward to detect ALP activity, and some of these
have made some progress in their high sensitivities
based on techniques, such as fluorometry [5–12], elec-
trochemistry [13–17], chromatography [18], colorimetry
[19–21], and surface-enhanced Raman spectroscopy
[22]. Despite some progress, some of these methods
have disadvantages: they are time-consuming, high-cost,
and incapable of convenient and/or real-time measure-
ment. It is worth mentioning that among these various
methods, the fluorometric methods, in which different
types of fluorescence probes are mainly utilized, has
its advantage and is of many researchers’ interests ow-
ing to its rapid response, relatively high sensitivity, and
convenience. Thousands of papers have established nu-
merous fluorescence probes, and a large portion of
which, probes are designed to detect ALP activity.
These probes can include conjugated polyelectrolytes,
small molecule organic probes, metal nanoclusters,
nanosheets, DNA-templated nanoparticles, and quantum
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dots (QDs) [5–10]. Although these fluorescent strategies
have indeed made an unignorable contribution to ALP
detection, their disadvantages which cannot be ignored
can include poor photostability and water solubility of
organic fluorescent dyes, complex synthesis and purifi-
cation processes of conjugated polyelectrolytes, and
high toxicity of QDs. Recently, some late-model
methods have been established for the detection of
ALP activity, in which carbon dots were used as fluo-
rescent signal [23, 24]. Nevertheless, these fluorescence
quenching-based enzymatic assays can possibly produce
false positive signals when interfered by environmental
stimulus. Qu et al. have developed a novel and sensitive
turn-on fluorescence method via carbon dots and MnO2

nanosheets [10]. Its popularity is, however, restricted by
its expensive and time-consuming synthesis of MnO2

nanosheets. In addition, Sun and co-workers have ad-
vanced the fluorescence-based ALP detection with high-
ly fluorescent dots. In contrast to these unfavorable fea-
tures, a unique visual detection technique that can di-
rectly observe such signals without any highly complex
and/or costly apparatus has gained increasing attention.
A commercial kit has been the dominate detection meth-
od for detecting of ALP [25]. However, the sensitivity
is sometimes unsatisfactory. Therefore, a facile, sensi-
tive, and low-cost method for the detection of ALP is
desired.

Herein, we report a colorimetric assay system based
on Cu2+-modulated G-Quadruplex-based DNAzymes for
the detection of ALP activity [26]. Owing to the advan-
tage of strong binding ability of Cu2+ and pyrophos-
phate (PPi) [27–29], cofactor Cu2+ can be trapped and
lead to effective inhibition of DNAzyme activity.
Because ALP can catalyze the hydrolysis of PPi, ALP
can cause the release of Cu2+, and in turn activate
DNAzyme, which catalyzes the cleavage of DNA probe
substrate. These events result in increased absorbance of
2,2′-azino-bis(3-ethyl benzothiazoline-6-sulfonic acid)-
H2O2 system [30–32].

Experimental

Materials and methods

Alkaline phosphatase (ALP), Uracil DNA glycosylase
(UDG), 8-hydroxy guanine DNA glycosidase (hoGG1), bo-
vine serum albumin (BSA), T4 polynucleotide kinase (T4
PNK),and Lambda exonuclease (λ Exo) were purchased from
Takara Biotechnology Co., Ltd. (http://www.takarabiomed.
com.cn/) (DaLian, China). HPLC-purified DNA probe(agc
ttc ttt cta ata cgg tgg gta ggg cgg gtt ggg cta ccc acc tgg gcc
tct ttc ttt tta aga aag aac)was obtained from Sangon

Biotechnology Co., Ltd. (http://www.sangon.com/)
(Shanghai, China). HeEPES, free acid, Sodium chloride
(NaCl), Tris (Tris-(hydroxymethyl) aminomethane),
hydrochloric acid (HCl), copper sulfate (CuSO4),
pyrophosphate (PPi), and hydrogen peroxide (H2O2) were
purchased from Sinopharm Chemical Reagent Co., Ltd.
(http://en.reagent.com.cn/) (Shanghai, China). Hemin and
2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS)
were purchased from Yuanye (http://www.shyuanye.com/)
(Shanghai, China). Inorganic phosphate (Pi) was obtained
from an equilibrium buffer solution of Na2HPO4 and
NaH2PO4 (pH = 7.4). All other reagents were of analytical-
reagent grades. Ultrapure water (18.2 MΩ cm−1) was used in
all experiments. All DNA sequences were prepared in TE
buffer and stored at −20 °C.

The absorbance was recorded on an Enspire® multimode
plate readers (Perkin Elmer, USA) using a 96-well plate. The
absorption spectra of the solution were measured at wave-
lengths from 400 to 470 nm. The absorbance was obtained
at 420 nm.

Investigation of feasibility

To investigate feasibility of the method in assaying ALP ac-
tivity, two types of samples (mixtures A and B) were prepared.
In the first sample (mixture A; 35 μL), 60 nM DNA Probe,
10.5 mM NaCl, and 3.5 mM HEPES were first added into
29.5 μL of ultrapure water. The mixture was then heated to
80 °C for 2 min and cooled down to room temperature for
30 min. The second sample (mixture B; 35 μL) was prepared
by mixing 4 × 103 U.L−1 ALP, 700 μM.L−1 PPi, 400 μM.L−1

Cu2+ in 31 μL tris buffer, and was then incubated at 37 °C for
about 30 min. After that, mixtures A and B were mixed and
incubated at 25 °C for 15min, and 1 μL of 100 μMhemin was
subsequently added and incubated at 25 °C for 30 min to
allow the DNA probe to properly fold and form G-
quadruplex/hemin complex. Finally, 15 μL each of 20 mM
H2O2 and 20 mM ABTS was added into the mixture. After
10 min, the absorption spectra from 400 to 470 nm was mea-
sured. Samples, in which ALP were not added, were done in
parallel for comparison.

Optimization of analysis conditions

Various concentrations of DNA probe (10–200 nM), PPi
(100–800 μM), and Cu2+ (100–1000μM)were tested in order
to find an optimal condition.

ALP activity assay

Twelve samples were prepared in the assay of ALP
activity under an optimized condition. Mixture A in a
reaction buffer (29.5 μL H2O, 3.5 mM HEPES,
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10.5 mM NaCl) containing 60 nM DNA probe, and
mixture B in a reaction buffer (10 mM Tris-HCl,
700 μM.L−1 PPi, 400 μM.L−1 Cu2+, pH 7.5) containing
various amounts of ALP were first mixed, and 1 μL of
100 μM, 15 μL of 20 mM H2O2, and 15 μL of 20 mM
ABTS were then added. The detailed reaction conditions
were the same as that used in the investigation of
feasibility.

Determination of ALP activity in human serum
samples

ALP activity was assayed under the optimal experimental
conditions. Human serum samples (1%) and different ALP
activities (in the working range of this method) were thor-
oughly mixed, and the reaction was allowed to take place
at room temperature for 3 min. While mixture A was

Fig. 1 a The structure of the DNA porbe. b Schematic illustration of ALP activity detection principle
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prepared according to that for the ALP activity assay, mix-
ture B was in 10 mM Tris-HCl (pH 7.5), 700 μM.L−1 PPi,
400 μM.L−1 Cu2+, and different activities of ALP.
Subsequent procedures and absorbance measurements
were carried out following the ALP activity assay.
Recoveries of ALP from the serum samples were calculat-
ed by the regression equation using the absorbance and the
activity of ALP.

Results and discussion

Experimental principles

Principle of the proposed detection method is illustrated
in Fig. 1b, and the structure of the DNA porbe is
shown in Fig. 1a. The DNA probe consists of three
main components: domain III represents the DNA-
cleaving Cu2+-dependent DNAzyme; domain II contains
the sequence of HRP-mimicking DNAzyme, which can
give colorimetric signal readout; and domain I is the
substrate of DNA-DNAzyme. In the absence of ALP,
PPi can strongly chelate and form stable complex with
Cu2+ ion. As a result, the activity of DNAzyme, which
catalyzes the cleavage of DNA probe substrate, is
inhibited, leading to a low absorbance background in
the assay system. On the other hand, when APL is
present, it catalyzes the hydrolysis of PPi into phos-
phate, causing the release of free Cu2+ cofactor, which

thus activates DNAzyme to catalyze the cleavage of
DNA probe substrate. The released G-rich sequence
(domain II) folds into a G-quadruplex that can interca-
late hemin and form catalytically active HRP-mimicking
DNAzyme, resulting in an increased absorbance of the
ABTS-H2O2 system, in which ALP levels can subse-
quently be determined by the variations of absorbance
intensity.

Feasibility of the proposed strategy

To verify whether or not the proposed strategy is feasi-
ble, two samples were prepared: sample A containing
DNA probe, Cu2+, and PPi; and sample B containing
DNA probe, Cu2+, PPi, and ALP. Fig. 2 shows the ab-
sorption spectra of the detection system in the presence
(curve b) and absence (curve a) of ALP. The data
showed that when ALP is absent (curve a), the absor-
bance is markedly lower than that when ALP is present,
suggesting that Cu2+ may be reduced by PPi and no G-
quadruplexes are formed. As displayed in Fig. 2b, absor-
bance is significant increased in the presence of ALP
(4 × 103 U.L−1) compared with that in the absence of
ALP, indicating that ALP blocks PPi from chelating
Cu2+, and in turn G-quadruplexes are formed and led to
such enhancement of colorimetric signal. Finally, these
results demonstrated that the proposed ALP detection
strategy was feasible.

Fig. 2 Absorbance spectra in the
absence (a) and presence (b) of
ALP
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Optimization of method

The following parameters were optimized: (a) DNA
probe concentration; (b) Cu2+ concentration; (c) PPi
concentration. Respective data and figures are given in
the Fig. S1. The following experimental conditions are
found to give best results: (a) A DNA probe concentra-
tion of 60 nM; (b) A Cu2+ concentration of 400 μM;
(c) A PPi concentration of 700 μM.

Quantification of ALP activity

Under the chosen optimal conditions, performance of
the proposed strategy, in terms of ALP activity detec-
tion, was systematically investigated, in which the ac-
tivities of ALP are varied from 0 to 3000 U.L−1 (0.07,

1, 5, 30, 50, 70, 100, 300, 500, 1200, 2000, and
3000 U.L−1). As shown in Fig. S2, the absorbance in-
creased with increasing activity of ALP and plateaued at
2000 U/L. The inset of Fig. 3 showed that the absor-
bance has a linear correlation (R2 = 0.9946) with ALP
activity ranges from 0.07 to 300 U.L−1. The detection
limit is estimated to be 0.07 U.L−1 according to the 3σ
rule, which is comparable to or better than those of
other methods (Table 1).

Selectivity

A series of enzymes, including UDG, hoGG1, Lambda
Exo, and PNK, each at a concentration of 2 × 103 U.L−1,
were tested. Some other molecules, such as lysozyme,
BSA, streptavidin (SA), glycine, alanine, arginine, serine,
tryptophane, glutamic acid, L-histidine, C6H12O6 and
ATP, each at a concentration of 0.5 μM, were also tested.
Fig. 4 shows that none of these proteins led to increased
absorbance, in contrast to ALP. The results demonstrate
that the method has good selectivity.

ALP activity inhibition assays

The inhibition of ALP is closely associated with drug
screening and disease therapy; validity of the proposed
assay in evaluation of ALP inhibition was thus investigat-
ed. Na3VO4 as a common ALP inhibitor was employed
for inhibiting assays [35]. Fig. 5 shows that the relative
activity of ALP drastically decreased with increasing

Fig. 4 Selectivity of the proposed assay. Absorbance of ALP in
comparison with those of interference molecules: UDG, hoGG1, BSA,
Lambda Exo, PNK, lysozyme, SA, glycine, alanine, arginine, serine,
tryptophane, glutamic acid, L-histidine, C6H12O6 and ATP. (n = 3)

Table 1 Comparison of different methods for the detection of ALP
activity

Method Linear range (U.L−1) LOD (U.L−1) Reference

Cu(II)-phenanthroline 0–200 3.5 [33]

BSA-AuNCs 1–200 0.05 [8]

Thioflavin T 1–200 1 [34]

Graphitic C3N4 0.1–1000 0.08 [9]

Carbon Quantum Dots 6.7–782.6 1.1 [23]

Copper nanoparticles 0–8 0.1 [2]

Quantum Dots 0–3 0.1 [12]

Colorimetric method 0.07–100 0.07 This work
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Fig. 3 ALP assay: linear curve of the enhanced absorbance to activity of
ALP. The inset shows the linearity of the absorbance respect to ALP
activities. (n = 3)
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Na3VO4 concentration with an IC50 value of 0.9 mM.
This result shows that the proposed strategy is suitable
for the identification and characterization of enzymatic
inhibitors.

ALP activity assays in biological samples

To investigate practical use of the method, ALP was
tested in 1% human serum. Table 2 shows the recovery
amount of ALP detected by the proposed assay when
ALP of 10, 20, and 50 U.L−1 were added into the bio-
logical sample. The recovery rates were 100.6%,
102.5%, and 91% from sample added with 10, 20, and
50 U.L−1 of ALP, respectively. These results show that
the proposed method is highly potential for practical
detection in biological systems.

Conclusions

In summary, a convenient colorimetric method based on
Cu2+-modulated G-Quadruplex-based DNAzymes, is suc-
cessfully developed and applied for ALP activity detec-
tion. The method exhibites high sensitivity to ALP with a
detection limit of 0.07 U.L−1 under optimal conditions.
Moreover, the proposed method is highly selective and

successfully applied in quantitative determination of
ALP in human serum samples with satisfactory result.
This method does not require complicated synthesis and/
or modification of the probes. Thus, the present strategy
may have potential applications for ALP detection in an-
alytical practice.
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