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Abstract Gold nanoparticles (AuNP) were deposited on
the surface of multiwalled carbon nanotubes (MWCNT)
by in-situ thermal decomposition of gold acetate under
solvent and reducing agent free conditions to obtain a
nanohybrid of AuNP-MWCNT. A glassy carbon electrode
(GCE) was then modified with the nanohybrid and used
for amperometric determination of hydrazine. The modi-
fied GCE showed an improved electrocatalytic effect to-
wards hydrazine oxidation at a working potential of about
0.30 V (vs Ag|AgCl,KClsat). The calibration plot for hy-
drazine is linear in two concentration ranges, viz. from
0.1–100 μM and 0.2–1 mM. The respective sensitivities
are 4.98 and 4.00 μA μM−1cm−2, and the limit of detec-
tion (at S/N = 3) is about 30 nM.

Keywords Chemicallymodified electrode . Electrocatalytic
oxidation . Nanohybrid . Thermal decomoposition .

Electrochemical detection

Introduction

Hydrazine, N2H4, is a highly reactive base and reducing agent
which has a wide range of industrial, medical, agricultural and
military applications [1]. Hydrazine has been also recognized
as a neurotoxic and carcinogenic substance. Thus, develop-
ment of new methods for the sensitive determination of hy-
drazine has attracted the interest of many researchers.
Electrochemical methods including amperometry and volt-
ammetry are promising methods for the determination of hy-
drazine due to its simplicity, high reliability, high sensitivity
and selectivity, low detection limit, low cost, compatibility for
miniaturization, and ease of use. However, the oxidation of
hydrazine at ordinary solid electrodes is kinetically slow and
needs large overpotential. Several types of materials, includ-
ing organic [2] and inorganic mediators [3, 4], metal nanopar-
ticles [5–7], and carbonaceous nanomaterials [5, 8] have been
used to modify the electrode surface in order to accelerate the
rate of hydrazine oxidation and to decrease the extent of
overpotential.

Nanohybrid materials as the result of the combination of
two or more families of nanomaterials can greatly facilitate the
rate of electron transfer, decline the extent of overpotential and
increase the analytical current signal. These materials provide
an efficient electrically conductive network with a much
higher and more effective surface area. Among nanohybrid
materials, hybrid of noble metal nanoparticles (NPs) with car-
bon nanotubes has received a great deal of attention for their
use in the area of chemicallymodified electrodes. The intrinsic
and unique properties of carbon nanotubes such as high elec-
trical conductivity, good chemical stability, hollow geometry
and a large surface area make them very fascinating materials
which can be used as a support and/or a skeleton for the
formation of metal nanoparticles assemblies [9]. On the other
hand, the existence of the noble metal NPs causes a further
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increase on the effective surface area and the improvement of
electron transfer rate due to their unusual electronic properties
arisen by activated electron hopping and high catalytic activ-
ity. Noble metal nanoparticles such as Au, Ag, Pt and Pd
together with CNTs have been successfully applied for the
fabrication of new modified electrodes for the determination
of hydrazine at the reduced redox potentials and low concen-
tration levels [10–14].

Our previous report [14] revealed that PdNPs decorated
MWCNTs nanohybrid had a significant enhancing effect on
the electrochemical oxidation of hydrazine. Hence, it was
meaningful to investigate and compare the synergetic effect
of AuNP and MWCNTon the electro-oxidation of hydrazine.
In the present work, AuNP were decorated on the surface of
MWCNT by a low cost and solvent-free method which was
similar to that used for the preparation of PdNPs-MWCNTs
hybrid. After that, the surface of a glassy carbon electrode
(GCE) was modified with AuNP-MWCNT using a simple
casting method. The electrocatalytic behavior of AuNP-
MWCNT/GCE was investigated towards hydrazine oxidation
by cyclic voltammetry. The modified electrode was then used
for detection of hydrazine by hydrodynamic amperometry and
differential pulse voltammetry. The fabricated sensor showed
improved electroanalytical performance in terms of linear dy-
namic range, sensitivity, response time and stability.

Experimental

Reagents and chemicals

High quality grade chemicals were used without further treat-
ment. Gold(III) acetate, hydrazinium dichloride, sulfuric acid,
sodium hydroxide and dimethylformamide (DMF) were ob-
tained from Merck (Darmstadt, Germany, www.merck.com).
Multi-wall carbon nanotubes (MWCNTs, 95% purity, OD =
10–30 nm, ID = 5–10 nm and length = 0.5–500 μm) were
obtained from Aldrich (Steinheim, Germany, www.
sigmaaldrich.com).

Apparatus

Voltammetric and amperometric measurements were per-
formed using an Autolab potentiostat-galvanostat model
PGSTAT30 (Utrecht, The Netherlands) with a convention-
al three-electrode set-up in which AuNP-MWCNT/GCE,
an Ag|AgCl,KClsat electrode and a platinum rod served as
the working, reference and auxiliary electrodes, respec-
tively. The working potential was applied to the AuNP-
MWCNT/GCE in the standard way using the potentiostat
and the output signal was acquired by Autolab GPES
software. For chronoamperometric studies, 10 mL of
phosphate buffer (0.1 M, pH = 7) containing different

concentrations of hydrazine (0.1–1 mM) were transferred
into an electrochemical cell. Then, the anodic current re-
sponse was measured at the potential of +0.350 V by the
use of AuNP-MWCNT/GCE in the stationary condition
for 30 s. For hydrodynamic amperometric measurements,
the accurate volume of hydrazine standard solution was
successively added into a cell containing 10 mL of phos-
phate buffer (0.1 M, pH = 7). The solution was then
stirred by a rod stirrer of a Metrohm (663 VA stand) with
a speed of 2000 rpm and the anodic current response was
measured at the potential of +0.350 V. Differential pulse
voltammetry was performed by the sweep of potential in
the range between 0.0 and 0.6 V with the scan rate of
0.01 V s−1, pulse height of 25 mV and pulse width of
0.05 s. Electrochemical impedance spectroscopy (EIS) ex-
periments were carried out using a Zahner Zennium work-
station in a solution containing 5 mM Fe(CN)6

3−/4- couple
and 0.1 M KCl. The excitation signal with the amplitude
of 5 mV and frequency between 100 kHz and 0.1 Hz was
applied and the output signal was acquired with the
Thales Z (Zennium release) software.

Transmission electron microscopy (TEM) was performed
using a Philips CM 120 Cryo-TEM instrument (Eindhoven,
The Netherlands) at 120 kV. A Metrohm 691 pH meter was
used for pH adjustments. All measurements were performed at
room temperature.

Preparation of the AuNP-MWCNT

MWCNTs decorated with gold nanoparticle were prepared
according to the method reported previously [15, 16]. In brief,
the treatment of MWCNTs (500 mg) was conducted by
refluxing with 70% HNO3 (25 mL) for 16 h, followed by
filtering and thorough washing of the material with deionized
water until pH of 7. The acid-treated MWCNTs were dried in
a vacuum oven for 1 h. 100 mg of the dried MWCNTs (ca.
8 mmol carbon equivalent) was dry mixed with the powdered
Au(CH3COO)3 (3 mg, 0.08 mmol) using a mortar and pestle
under ambient condit ions for 15 min. The sol id
Au(CH3COO)3/MWCNTs mixture was then transferred to a
glass vial and heated in a nitrogen oven to 300 °C for 1 h and
held isothermally for 3 h. The product was then collected as
AuNP-MWCNT.

Fabrication of the AuNP-MWCNT/GCE

The surface of a glassy carbon electrode (GCE) was polished
successively with 0.3 and 0.1 μm alumina paste (Struers,
Copenhagen, Denmark) to obtain a mirror finish and then
cleaned in water under ultrasonication. One milligram of
AuNP-MWCNTwas dispersed in 2 mL DMF with ultrasonic
agitation for an hour to achieve a well dispersed suspension.
5 μL of the AuNP-MWCNT suspension was placed on the
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surface of GCE and dried in an oven at 50 °C. For comparison,
MWCNT/GCE was prepared through a similar procedure.

Results and discussion

Characterization of AuNP-MWCNT

TEM image of AuNP-MWCNT (Fig. 1) revealed the forma-
tion of Au nanoparticles on the outer walls of carbon nano-
tubes with an average diameter of about 12 nm. When AuNP-
MWCNTwas immobilized on the surface of a bare GCE and
its cyclic voltammogram was recorded in 0.5 M H2SO4 solu-
tion at the scan rate of 100 mV s−1, a typical anodic peak due
to the oxidation of gold in the forward scan (starting at about
1.2 V) and cathodic peak in the reverse scan (at about 0.9 V)
were observed similar to those reported previously [17, 18]
(Fig. S1). In addition, a pair of oxidation-reduction peaks was
appeared at about 0.4 V corresponding to the quasi-reversible
electrochemical reaction of quinone-type carbon-oxygen
functionalities on the surface of acid-treated MWCNTs
[16–18] (Fig. S1). The results clearly confirmed that the ther-
mal decomposition of Au(CH3COO)3 successfully created
uniform AuNP on the outer surface of MWCNTs.

Electrochemical impedance spectroscopy (EIS) was also
done to investigate the interfacial properties of the bare and
modified electrodes. Fig. S2 shows the Nyquist plots (Zim vs.
Zre) of the EIS experiments sketched for the bare GCE,
MWCNT/GCE and AuNP-MWCNT/GCE. Charge-transfer
resistance (Rct) values for Fe(CN)6

3−/4- redox couple (5 mM
in 0.1 M KCl) at bare GCE (190 Ω) was much higher than at
MWCNT/GCE (34 Ω) and at AuNP-MWCNT/GCE (17 Ω).
The results demonstrate that the modification of the GCEwith
MWCNTs and AuNP-MWCNT nanohybrid causes a signifi-
cant decrease in Rct, indicating that the hybrid of AuNP and
MWCNTs is an excellent electrically-conducting material and
decoration of AuNP on the MWCNTs enhances the rate of
charge transfer compared with that of MWCNTs.

Electrocatalytic activity of AuNP-MWCNT/GCE towards
hydrazine

Figure 2 demonstrates cyclic voltammograms of a bare GCE
(a, dotted line), MWCNT/GCE (b, dashed line) and AuNP-
MWCNT/GCE (c, solid line) recorded in phosphate buffer
(0.1 M, pH = 7) containing 1 mM hydrazine in the potential
range between 0 and 1 V versus Ag|AgCl,KClsat at the scan
rate of 50 mV s−1.

As seen in Fig. 2, a well-defined and pronounced oxidation
peak is observed for hydrazine with the peak potential (Ep) at
+0.303 V on AuNP-MWCNT/GCE. But, no obvious oxida-
tion peak on bare GCE and a typical broad oxidation peak at
Ep = +0.640 V on MWCNT/GCE were recorded for hydra-
zine. It seems that the well distribution of AuNP on the surface
of MWCNTs together with the formation of an efficient elec-
trical network caused by direct binding of AuNP with
MWCNTs create more active sites with the improved electro-
catalytic activity for hydrazine oxidation [14]. Moreover, due
to the increase of electroactive surface area, the charging cur-
rent density was obviously enhanced by modification of GCE
with MWCNTs and AuNP-MWCNT.

Figure S3 shows cyclic voltammograms recorded for hy-
drazine with the various concentrations on AuNP-MWCNT/
GCE. As seen, the oxidation peak current intensity increases
with increasing the concentration of hydrazine. At the same
time, the increase of hydrazine concentration caused the oxi-
dation peak potential shifted to the more positive potential
which confirmed the catalytic effects of AuNP-MWCNT on
hydrazine oxidation [19].

The influence of pH on electrocatalytic oxidation of hydra-
zine was investigated in the range between 5.5 and 8 by cyclic
voltammetry (Fig. S4a). As seen in Fig. S4b, the peak current
density increases with the increase of pH from 5.5 to 6.5 and
then levels off. The decline of peak current density at pH less
than 6.5 is attributed to the protonation of hydrazine as the
protonated form is less electroactive [20]. Also, the oxidation
peak potential of hydrazine shifted to more negative value

Fig. 1 TEM image of the AuNP-MWCNT nanohybrid

Fig. 2 Cyclic voltammograms for a bare GCE (a), MWCNT/GCE (b)
and AuNP-MWCNT/GCE (c) in the presence of 1 mM N2H4.
Conditions: supporting electrolyte, phosphate buffer (0.1 M and
pH = 7); scan rate, 50 mV s−1
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with increasing pH, indicating that protons participated in the
electrode reaction process (Fig. S4c). The observed potential
shift was about 0.0736 V pH −1 in the pH range between 5.5
and 8, which was close to the expected value of 0.0737 V
pH −1 for a 4e−/5H+ redox process [14].

Figure S5a shows cyclic voltammograms recorded for
1 mM hydrazine in phosphate buffer (0.1 M, pH = 7) using
AuNP-MWCNT/GCE at different scan rates (v). The peak cur-
rent density (jp) for hydrazine oxidation increased linearly with
v1/2, which revealed the presence of a diffusion-controlled pro-
cess (Fig. S5b). Tafel slope for a totally irreversible diffusion
controlled process [21] was determined using eq. 1:

Ep ¼ b
2
logν þ constant ð1Þ

The plot of Ep versus log ν (Fig. S5c) showed a linear rela-
tionship with a Tafel slope, b = 2.3RT/αnαF, of about 145 mV

decade−1, which indicated that the rate-determining step of
electro-oxidation reaction was a one-electron transfer process,
i.e. nα = 1, assuming a transfer coefficient of α = 0.59.

The electrocatalytic oxidation of hydrazine on AuNP-
MWCNT/GCE was also studied by chronoamperometry.
Fig. S6a represents the current density (j)-time profiles
recorded for the various concentrations of hydrazine on
AuNP-MWCNT/GCE at a working electrode potential of
+0.350 V vs. Ag|AgCl,KClsat. The plot of j versus t-1/2

(Fig. S6b) for different concentrations of hydrazine
showed a series of straight line with different slopes.
The plot of slopes versus hydrazine concentration provid-
ed a line (Fig. S3c) which from its slope, using Cottrell
eq. [19] and assuming n = 4, the value of diffusion coef-
ficient (D) for hydrazine was calculated. The calculated
value (2.05 × 10−5 cm2 s−1) was in good agreement with
the values reported in the literature [22].

Electroanalytical characteristics of the fabricated
hydrazine sensor

Figure 3 shows the current density-time plot obtained at
the applied potential of +0.350 V for the successive addi-
tion of hydrazine solution using AuNP-MWCNT/GCE.
The relationship between current density and hydrazine
concentration was linear in two concentration ranges of
0.1–100 μM (Fig. 7Sa) and 0.2–1 mM (Fig. 7Sb) with
the correlation coefficients better than 0.9995. The slope
of calibration curves for the first and second concentration
range was 4.98 and 4.00 μA μM−1 cm−2, respectively.
The detection limit for hydrazine measurement (S/N = 3)
was estimated to be 30 nM. The relative standard devia-
tion (RSD) for ten times determination of 1 μM hydrazine
was better than 4%. The response time of the fabricated
hydrazine sensor was less than 1 s. The current signal of
the sensor for 50 μM hydrazine was extremely stable and
no decrease in signal was observed after 30 min.

The analytical characteristics of the proposed hydrazine
sensor were also evaluated using differential pulse volt-
ammetry (DPV). For this purpose, DPV responses were
recorded in phosphate buffer (0.1 M, pH = 7) containing
hydrazine at different concentration (Fig. 4). The relation-
ship between peak current density and hydrazine concen-
tration was linear in the concentration range between 0.06
and 1 mM (Fig. 4, inset) with a correlation coefficient
better than 0.9995. The slope of calibration curve and
the limit of detection (S/N 3) for hydrazine were
0.21 mA mM−1 cm−2 and 23 μM, respectively. The ana-
lytical features for the determination of hydrazine by hy-
drodynamic amperometry were better those obtained by
DPV. The advanced analytical features of the hydrody-
namic amperometry were attributed to the hydrodynamic
condition of measuring method. However, DPV is

Fig. 3 Typical current density-time responses of AuNP-MWCNT/GCE
to the successive addition of N2H4 (a;0.1, b;1, c;10, d;100 μM).
Conditions: supporting electrolyte, phosphate buffer (0.1 M and
pH = 7); operating potential, +0.350 V versus Ag|AgCl|KClsat; rotating
speed, 2000 rpm

Fig. 4 Differential pulse voltammograms of AuNP-MWCNT/GCE in
0.1 M phosphate buffer (pH = 7) containing different concentrations of
hydrazine (from inner to outer 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9 and 1 mM). Inset: The plot of the peak current density versus
N2H4 concentration. Conditions: pulse height, 25 mV; scan rate, 0.01 V
s−1; pulse width of 0.05 s; supporting electrolyte, phosphate buffer (0.1 M
and pH = 7)
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superior to the hydrodynamic amperometry when
electroactive interfering compounds with the redox poten-
tials close to hydrazine oxidation potential are present in
the measuring medium. Table 1 summarizes the analytical
characteristics reported for some electrodes modified with
different nanomaterials and those achieved in this study
for the measurement of hydrazine.

The effect of the presence of potent interfering cations
and anions in water samples such as Na+, K+, NH4

+,
Ca2+, Mg2+, Cl−, NO3

−, NO2
−, SO4

2− and C2O4
2 on the

signal intensity of the fabricated sensor was investigated.
A series of solutions containing 10 μM hydrazine plus
potent interfering compounds (100 folds) were prepared.
The response of test solutions were recorded and com-
pared with that of standard hydrazine solution (10 μM).
At 5% error criterion, no obvious interference was ob-
served from the mentioned species.

The fabricated modified electrode was successfully applied
for determination of hydrazine in tap and mineral water sam-
ples under optimized conditions. Tap and mineral samples
were mixed with phosphate buffer (0.1 M and pH = 7.0) and
spiked with certain amount of hydrazine and analyzed using
the fabricated sensor. Recovery for the each spiked sample
was calculated by comparing the results obtained in the

absence and presence of certain amount of hydrazine. The
recovery of the analysis was better than 95%.

Conclusions

A glassy carbon electrode was modified with the nanohybrid
material of AuNP-MWCNT which had been prepared by a
thermal method without using any extra chemicals. The syn-
ergistic effect between AuNP and MWCNTs caused to ob-
serve an improved electrocataltyic property towards hydrazine
oxidation at the reduced potential. The modified electrode was
successfully used as a sensor for the determination of hydra-
zine by hydrodynamic amperometry and differential pulse
voltammetry methods with the improved electroanalytical
features.
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Table 1 Analytical parameters reported for some modified electrodes towards hydrazine determination

Modified electrode Ep (mV)a LDR (μM) DL (μM) Sensitivity
μA μM−1 cm−2

Refs

WP-PAni/AgNP/GCE +500 0.01–10,000 0.0028 12.5 [7]

PVP-AgNC/GCE +400 5–460 1.1 NR [23]

AG/AuNP/SPCE +150 0.002–936 0.00057 0.54 [24]

GC/Au-MSM +147 5–18,000 0.11 0.0232 [25]

Au/ZnO/GCE +450 0.2–200 0.242 0.873 [26]

AuNP/SWCNT/GCE +197 5–3345 1.1 0.0591b [27]

AuNP/CNT-ErGO/GCE +210 0.3–319 0.065 9.73 [28]

nano-Au/ZnO-MWCNT/GCE +300 0.5–1800 0.15 1.42b [29]

GCE/RGO/ZnO–Au +147 0.05–5 0.018 5.54 [30]

AC/Au nanocomposite/GCE +130 0.44–208 0.0063 4.936 [31]

Au@NPC/GCE +400 0.08–466.28 0.008 2.035 [32]

AuNP/rGO/GCE +300 5–900 0.08 NR [33]

CNT-PdPt nanocomposite/GCE +247 550–1200 280 0.0424b [11]

PdNP-MWCNT/GCE −150 0.1–10 0.016 0.147b [14]

PCV/SWCNT/GCE +347 0.15–400 0.15 0.281 [34]

Fe3O4/PPy/GO/GCE +367 5–1275 0.03 0.0749 [4]

GO/AgND/GCE +21 0.1–670 0.033 2.077 [35]

AuNP-MWCNT/GCE +303 0.1–100
200–1000

0.03 4.98
4.00

This work

a , peak potential (from voltammetric studies, vs. Ag|AgCl,KClsat);
b , μA μM−1 ; NR, not reported; DL, detection limit; AC, activated carbon; AG,

activated graphite; AgNC, Ag nanocubes; AgND, silver nanodentrites; Au@NPC, AuNP encapsulated in N-doped porous carbon; ErGO, electrochem-
ical reduced graphene oxide; MSM, mesoporous silica microspheres; PAni, polyaniline; PCV, pyrocatechol violet; PPy, polypyrrole; PVP, poly(vinyl-
pyrrolidone); RGO and rGO, reduced graphene oxide; SWCNT, single walled carbon nanotubes; WP, tungstophosphate
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