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Abstract The authors describe an optical assay for determi-
nation of mercury(II) ion by making use of gold nanorods
(AuNRs) which are found to aggregate after addition of 6-
mercaptopurine (6-MP) by forming a covalent Au-S bond.
Aggregation is accompanied by a color change to blue.
However, the 6-MP induced aggregation is inhibited in the
presence of Hg(II) results because of the formation of a more
stable Hg-S bond. The different degrees of aggregation of the
AuNRs is indicated by variations in the absorption spectra and
accompanied by a color change from blue to brown. Under the
optimal conditions, the ratio of absorbances at 780 and 665 nm
varies in the 1–100 nM Hg(II) concentration range. The effect
can also be detected with bare eyes. The limit of detection is
0.48 nM. The method is rapid, sensitive, and does not require
sophisticated instrumentation. It was successfully applied to
the determination of Hg(II) in spiked water samples.
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Introduction

The contamination by heavy metals has aroused extensive pub-
lic concern since the exposure of the Minamata event in the
1950s. Mercury ion (Hg2+), the most stable inorganic form of
mercury, is a hazardous environmental contaminant due to its
accumulative and high toxic properties [1]. The maximum al-
lowable level of Hg2+ defined by United States Environmental
Protection Agency (EPA) is 10 nM in drinking water [2]. The
methods for determination of Hg2+ include high performance
liquid chromatography (HPLC) [3], inductively coupled plas-
ma mass spectrometry (ICPMS) [4], and atomic absorption
spectrometry (AAS) [5]. Although these methods provide ade-
quate qualitative and quantitative determination of Hg2+, the
sample preparation is complication and the cost of the equip-
ment is high. An inexpensive, sensitive and rapid analytical
method is required and many rapid detection methods for de-
termination of Hg2+ have been reported. These include fluores-
cent detection methods [6, 7] colorimetric methods [8], electro-
chemical sensingmethods [9, 10] and surface-enhanced Raman
spectroscopy methods [11, 12]. The fluorescence quencher [13,
14], oligonucleotide [15], DNA enzyme [16], and colorimetric
probe [17–19] are used as the probe to determination of Hg2+.
Among these probes, the colorimetric probe is paid more atten-
tion due to Hg2+ can be determined based on a color change
without using special equipment.

Colorimetric sensors of gold nanoparticles (AuNPs)
attracted a great deal of interest for their optical properties
[20]. Such as large absorption coefficients, and that characters
are depended on the size, shape, and local environment of the
nanoparticles [21, 22]. When the distance between AuNPs is
shorter than the average diameter of the nanoparticles, the
color of the AuNPs is changed, which will cause the change
of the absorption spectrum of the AuNPs [23]. Recently, sev-
eral AuNPs based colorimetric probes have been designed for
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determination of Hg2+ by modifying nanoparticle surfaces
with aptamers [24], peptides [25], proteins [26], fluorophores
[27], and others [28, 29]. The preparation of these ligands is
easy and inexpensive; the use of commercially available li-
gands is more desirable for production of cost effective and
practical colorimetric assays by eliminating synthesis steps
[30]. For instance Hg2+ can specifically bind to two thymine
bases (T) and mediated the formation of stable DNA duplexes
through T–Hg2+–T coordination, various methods have been
reported for Hg2+ detection based on this recognition system
[31, 32]. For gold nanorods (AuNRs),two absorption bands
can be observed, one associated with the transverse mode
(~520 nm) and the other with the longitudinal mode (usually
>600 nm) [33]. The longitudinal plasmon wavelengths are
more sensitive to the changes in the dielectric properties of
the surroundings and the sensitivity increases with the aspect
ratio of the nanorods [34, 35].

In this work, AuNRs were used as colorimetric probe to
determination of Hg2+ in water. 6-mercaptopurine (6-MP) can
be strongly adsorbed on the surface of AuNRs by –SH and
induce the aggregation of AuNRs. However, in the presence
of Hg2+, 6-MP induced aggregation of AuNRs was inhibited
and the aggregation degree is related to the concentration of
Hg2+. The separation and concentration of the analyte are not
required. Hg2+ can be determined with a UV-vis-NIR spectro-
photometer and any specialized equipments were not re-
quired. This method can be applied to the determination of
Hg2+ in environmental samples. The experimental results in-
dicated that this method has some benefits, such as sensitivity,
simplicity, speediness and stability.

Experimental

Materials

Tetrachloroauric acid (HAuCl4·4H2O, 99.99%), sodium boro-
hydride (NaBH4, 99%), silver nitrate (AgNO3, 99%), ascorbic
acid (AA, 99.7%), cetyltrimethylammonium bromide (CTAB,
99%) and 6-mercaptopurine (6-MP) were purchased from
Beijing Ding Guo Biotech. Co. Ltd., China (http://www.
bioon.com.cn/show/index.asp?id=123197). The metal salts
of analytical reagent grade (>99%) were purchased from
Beijing Chemical Reagent Company (Beijing, China, http://
www.crc-bj.com/). The stock solution of Hg2+ was prepared
by dissolving HgCl2 in ultrapure water with several drops of
concentrated hydrochloric acid (HCl). The working solution
of Hg2+ was prepared by diluting the stock solution with
ultrapure water. Britton-Robinson (BR) buffer was used to
control the acidity of the sample solution. Aqua regia solution
was used to clean the glassware. Other chemicals used here
were of analytical reagent grade and all the solutions used in
this study were prepared with ultrapure water.

Equipments

Absorption spectra were recorded on an Australian GBC
Cintra 10e UV-vis-NIR spectrophotometer (http://www.
quasi-s.com.sg/) in the wavelength range of 400 to 950 nm.
The transmission electron microscope (TEM) image was ob-
tained with a Hitachi H 800 transmission electron microscope
(http://www.labbase.net/) operated at an accelerating voltage
of 200 kV. The sample was prepared by dropping the
analytical solutions on the carbon-coated copper grid and
dried at room temperature.

Preparation of AuNRs

AuNRs were synthesized by seed-mediated growth method
improved by El-Sayed [36, 37] with slight modification.
5.0 mL of 0.2 M CTAB solution and 5.0 mL of 5 × 10−4 M
HAuCl4 solution were mixed in a round bottom flask. Then,
0.6 mL of 0.01 M freshly prepared ice-cold NaBH4 solution
was added into the flask. The color of the solution changed
from dark yellow to brownish yellow immediately after adding
NaBH4, which indicated the formation of gold seeds. The
mixed solution was vigorously stirred for 2 min and the flask
was placed in a water bath at 25 °C. After 2 h, this seed solution
was used for the synthesis of AuNRs. Figure 1a shows the
TEM image of gold seeds. The gold seeds were of near
monodispersion and homogeneous. The shape of gold seed
was spherical and the size of gold seed was between 3 to 5 nm.

3.0 mL of 4 mM AgNO3 solution was added into 50.0 mL
of 0.2 M CTAB solution under gentle stirring at 25 °C in a
flask. After that, 50.0 mL of 1 mM HAuCl4 solution was
added into this solution with gently mixed and the resulted
solution was referred as growth solution. Then, 0.7 mL of
0.1 M AA was added into the growth solution under gentle
stirring. The color of the growth solution changed from dark
yellow to colorless. Finally, 240 μL of the gold seed solution
was added into the growth solution at 27–30 °C. The gold
seed started growing and as the new atoms join the nanocrys-
tal lattice, they were protected by the surfactant monomers
from the solution. Silver ions were adsorbed on the surface
of gold nanoparticle in the form of AgBr and restricted the
growth on the local surface of the gold nanoparticle. The
nanorods were not prepared in the absence of silver ions
[37]. Excellent tuning of aspect ratios was achieved by
changed the content of AgNO3 in the growth solution [38].
The color of the solution gradually changed within 10–
20 min. The resulting solution was kept at 27–30 °C for
24 h to ensure the AuNRs reached full growth. The solution
was then centrifuged at 14000 rpm for 20min twice to remove
the excess surfactant CTAB. The resulting deposition contain-
ing the rods was redisposed in ultrapure water via the ultra-
sound and AuNRs solution was obtained.
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Preparation of water samples

The tap and lake water were collected from the laboratory and
Xinyue Lake (Jiaozuo, China), respectively. All the samples
collected were spiked with a suitable amount of standard so-
lution of Hg2+. These samples were filtered through a 0.22μm
membrane to remove the suspended particles.

Determination of Hg2+

AuNRs solution was mixed with BR buffer in 5 mL colori-
metric tube. 6-MP and the sample solution were added into the
colorimetric tube. The obtained solution was diluted to 2.0 mL
with ultrapure water and mixed thoroughly with gentle shak-
en. The resulted solution was incubated for appropriate time at
room temperature and the absorption spectrum of the solution
was recorded with 1 cm path-length cell.

Results and discussion

Sensing mechanism

Figure 2 show the sensing mechanism of this method. The
AuNRs were of monodispersion and the color of the AuNRs
appears brownish. After addition of 6-MP into the AuNRs

solution in the absence of Hg2+, 6-MP was adsorbed on the
surface of AuNRs by the strong covalent interaction between
Au and –SH, which destroyed the bilayer structure of
AuNRs and caused the aggregation of AuNRs in the solu-
tion. The color of the AuNRs solution changed from brown-
ish to blue which can be observed with bare eye. However,
in the presence of Hg2+, the color of AuNRs solution
changed back to brownish gradually. The absorption spectra
of 6-MP-AuNRs remain almost unchanged in the presence
of high concentration of Hg2+. The changes in the solution
color and UV–vis spectra, induced by the competitive inter-
actions of 6-MP with AuNRs and Hg2+, allowed the colori-
metric determination of Hg2+ in aqueous solution by bare
eyes or UV–vis–NIR spectroscopy.

In this system, 6-MP and Hg2+ played the role of aggrega-
tion reagent and anti-aggregation reagent, respectively. The
aggregation of AuNRs was reversible after adding the 6-MP
followed by Hg2+. That is because the covalent bond formed
between Hg and sulfur is stronger than that between Au and
sulfur. In the presence of Hg2+, 6-MP firstly preferred binding
to Hg2+ through Hg–S bond and lost the ability to induce the
aggregation of AuNRs. The formation of covalent bond of
Au-S and Hg-S can be further confirmed by UV-vis spectra
(Fig. 3). As shown in Figs. 3 and 6-MP had two absorption
bands located at 227 nm and 323 nm, respectively. After ad-
dition of 6-MP into the AuNRs solution, the absorbance at

Fig. 1 TEM images of gold
seeds (a), AuNRs (b), 6-MP-
AuNRs (c) and 6-MP-AuNRs-
Hg2+ (d) system. Concentration
of Hg2+, 100 nM; Concentration
of 6-MP, 1.5 μM; pH, 5.0
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323 nm was increased and the absorption bands located at
227 nm was disappeared, which indicated the formation of
covalent bond of Au-S. After addition of 6-MP into the
AuNRs solution in the presence of Hg2+, the absorbance at
323 nm decreased with a blue shift to 297 nm and the absorp-
tion bands located at 227 nm was disappeared. The UV-vis
spectrum indicated the formation of covalent bond of Hg-S
and when in the presence of Hg2+, 6-MP firstly preferred
binding to Hg2+.

The TEM images (Fig. 1) of AuNRs provides direct
evidence of the sensing mechanism. The AuNRs were
synthesized by the seed-mediated growth method. CTAB
molecule formed bilayer structure on the surface of the
AuNRs. In the bilayer structure, two inner and outer layers
of surfactants were present. Presumably the inner layer
was bound to the gold surface via the headgroups and
connected to the outer layer through hydrophobic interac-
tions, while the headgroups of the outer layer were in the
aqueous medium [37]. The prepared AuNRs were of near

monodispersion and homogeneous (Fig. 1b). After addi-
tion of 6-MP, 6-MP caused the aggregation of AuNRs in
the solution and the aggregation had two modes: end-to-
end and side-to-side. CTAB molecules had different ad-
sorption ability to different part of the AuNRs. Because
CTAB bound to the side was more strongly than to the end
of AuNRs, the end of AuNRs had less protection, 6-MP
molecules can be easily bound to the ends of AuNRs.
After addition of 6-MP, the AuNRs were preferentially
assembled in an end-to-end mode to form linear and
branched chains (Fig. 1c). However, AuNRs were of near
monodispersion in the presence of 6-MP and Hg2+

(Fig. 1d), which supported Hg2+ inhibit the 6-MP induced
aggregation of AuNRs.

Figure 4 shows the absorption spectra of this system. As
shown in Fig. 4, the absorption spectra of the prepared
AuNRs exhibit two well defined absorption bands: the
transverse plasmon band located at 514 nm and the longi-
tudinal plasmon band located at 665 nm. After the addition

Fig. 3 The absorption spectra of 6-MP (a), 6-MP-AuNRs (b) and 6-MP-
AuNRs-Hg2+ (c) system. Concentration of 6-MP, 2 μM; Concentration of
Hg2+, 100 nM; pH, 5.0

Fig. 2 The schematic mechanism of colorimetric determination of Hg2+ based on the inhibition of the aggregation of AuNRs coated with 6-MP

Fig. 4 The absorption spectra and the corresponding photographs of
AuNRs (1), 6-MP-AuNRs (2) and 6-MP-AuNRs-Hg2+ (3–7) system.
Concentrations of Hg2+: (1) 0.0, (2) 0.0, (3) 1.0, (4) 5.0, (5) 10.0, (6)
50.0 and (7) 100.0 nM; Concentration of 6-MP, 1.5 μM; pH, 5.0
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of 6-MP, a new peak located at 780 nm was observed in the
absorption spectra which indicated the aggregation of
AuNRs. The absorbance at 780 and 665 nm are related to
the amounts of aggregated and dispersed AuNRs, respec-
tively. So, the ratio of the absorbance at 780 nm to that at
665 nm (A780/A665) was used to express the molar ratio of
aggregated to disperse AuNRs. After addition of 6-MP in
the presence of Hg2+, the absorbance at 780 nm decreased
with a blue shift with the increase of Hg2+ concentration.
However, the absorbance at 665 nm increased with the
increase of Hg2+ concentration. The changes between the
ratios of absorbances in the absence ((A780/A665)0) and
presence (A780/A665) of Hg

2+ (ΔA780/A665 = (A780/A665)0–
A780/A665) was referred to analytical signal. The real pho-
tographs of 6-MP-AuNRs-Hg2+ system were shown in the
inset of Fig. 4. The color change of 6-MP-AuNRs induced
by 1.0 nM Hg2+ can be viewed with bare eye and the color
of AuNRs solution changed back to brownish gradually
with the increase of Hg2+ concentration.

Optimization of method

The following parameters were optimized: (a) Sample pH
value; (b) 6-MP concentration and (c) incubation time.
Respective data and Figures are given in the Electronic
Supporting Material. We found the following experimental
conditions to give best results: (a) sample pH value of 5.0
(Fig. S1, ESM); (b) 6-MP concentration of 1.5 μM (Fig. S2,
ESM) and (c) incubation time of 10 min (Fig. S3, ESM).

The selectivity of the method

To evaluate the selectivity of this method, the change of the
absorption ratio in the presence of Al3+, Ba2+, Ca2+, Ce2+,
Co2+, Cr3+, Fe3+, Fe2+, Mg2+, Mn2+, and Ni2+ (all at such as
6 μM), Ag+, Cd2+, Cu2+, and Pb2+ (all at such as 3 μM), was
tested under the same experimental conditions when Hg2+

concentration was 0.03 μM. The inset of Fig. 5 shows the
photographic images of 6-MP-AuNRs solution in the pres-
ence of various metal ions and Hg2+. The 6-MP-AuNRs solu-
tion remained aggregated with a blue color except for Hg2+.
The color of the 6-MP-AuNRs kept brownish after addition of
Hg2+ due to Hg2+ inhibited the aggregation of 6-MP-AuNRs.
Figure 5 shows the A780/A665 value of 6-MP-AuNRs system in
the absence and presence of various metal ions. As shown in
Fig. 5, the A780/A665 values were similar to that of the blank in
the presence of other metal ions, an obvious decrease of A780/
A665 value only found in the presence of Hg2+ relative to that
of the blank, which indicating this method had good selectiv-
ity for Hg2+ detection. Hg2+ exhibits much stronger thiophilic
tendency than other metal ions. Though the concentration of
Hg2+ in real water samples was lower or nearly equal to the

concentration of other metal ions, Hg2+ can be determined by
this method.

The sensitivity of the method

The capability of this method for quantitatively detecting
Hg2+ was evaluated by the obvious changes in color and ab-
sorption spectrum of 6-MP-AuNRs towards Hg2+. Under the
optimum conditions, the calibration curve for determination of
Hg2+ was constructed. It can be seen from Fig. 6 that the
ΔA780/A665 increases linearly with the increase of Hg2+ con-
centration and there is a direct correlation betweenΔA780/A665

and the concentration of Hg2+ ranging from 1.0 to 100.0 nM.
The regression equation is ΔA780/A665 = 0.04298 +
0.0099 × 109 C. The corresponding correlation coefficient is
0.997, which indicates that there is good linear relationship
between theΔA780/A665 and Hg

2+ concentration. The limit of

Fig. 6 Relationship between the ΔA780/A665 and Hg2+ concentration.
Concentration of 6-MP, 1.5 μM; pH, 5.0

Fig. 5 Photographs (a) and A780/A665 (b) of 6-MP-AuNRs systems in the
absence (blank) and presence of various metal ions. Concentration of Al3+,
Ba2+, Ca2+, Ce2+, Co2+, Cr3+, Fe3+, Fe2+, Mg2+, Mn2+, and Ni2+, 6 μM;
Concentration of Ag+, Cd2+, Cu2+, and Pb2+, 3μM;Concentration of Hg2+,
0.03 μM. The colors of all systems except for that in the presence of Hg2+

are blue, the color of the system in the presence of Hg2+ is brownish
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detection (LOD), which corresponds to signal-to-noise ratio 3,
is 0.48 nM. The sensitivity and linear range of other methods
for determination of Hg2+ are listed in Table 1 for comparison.
It can be seen that our colorimetric Hg2+ sensor showed a
superior sensitivity and broader linear range. Compared to
AuNPs, the sensitivity of AuNRs was higher.

Analysis of samples

In order to examine the applicability and accuracy of themeth-
od, two water samples were collected and analyzed. The water
samples were spiked with Hg2+ at two concentration levels
and the experimental results are listed in Table 2. The recovery
values were satisfied (96.7–102.4%) and the RSDs are lower
than 3.6%. The results agreed reasonably well with those ob-
tained by ICP-MS (Agilent 7500) measurements, which dem-
onstrates that the method is suitable for Hg2+ detection in
environmental samples.

Conclusions

In summary, a simple system for colorimetric determination of
Hg2+ at room temperature based on the inhibition of the ag-
gregation of AuNRs caused by 6-MPwas demonstrated. Hg2+

can be detected based on the change of the absorbance ratios.
This method had a wide linear range of 1 to 100 nM and with a
0.48 nM detection limit. The applicability of this probe has
been successfully proven in real samples with good recovery
percentages. This method also shows excellent selectivity and

the experimental procedure is quite simple. The samples can
be analyzed without previous separation and concentration.
This method can be applied for the determination of Hg2+ in
environmental samples. This detection scheme can also be
used to other ions if respective aptamers are available.
Therefore, the method holds a great potential for environmen-
tal monitoring various metal ions.
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