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Abstract Hemoglobin–stabilized gold nanoclusters
(Hb–AuNCs) were prepared by using hemoglobin as both
reducing and stabilizing agents. The Hb–AuNCs display a
strong catalytic effect on the chemiluminescence (CL) reac-
tion of luminol with NaIO4. The CL mechanism is discussed
and the experimental variables are examined. It is found that
dopamine strongly inhibits CL. This finding is exploited in a
CL–based dopamine assay that works in the range between
0.3 and 9.0 nM and has a 0.1 nM detection limit. The relative
standard deviation is 3.1% at a 5 nM dopamine level (for
n = 11). The method was applied to the determination of
dopamine in spiked human plasma with satisfactory results.
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Introduction

Chemiluminescence (CL) has been extensively explored to
analyze different trace substances in a veracity of samples
[1–3]. The study of CL systems has been diverting from mo-
lecular systems to nanomaterial–assisted systems with the

purpose to improve the properties of sensitivity, selectivity,
and stability owing to the rapid development of nanoscience
[4–6]. The catalytic behavior of nanomaterials in CL reactions
is strongly dependent on their sizes [7], surface charge [8] and
morphology [9–11].

Metal nanoclusters (NCs) are composed of several to tens
of atoms with sizes between atoms and small nanoparticles
that have attracted enormous attention since their discovered
[12]. This can be witnessed by an explosive growth in publi-
cations concerning the application of metal NCs as fluorescent
probes in biosensing and bioimaging [13, 14]. Besides of their
famous fluorescent property, their catalytic activity has also
attracted analytical scientist′s interest. For example, Chen
et al. used metal NCs to catalyze the luminol CL reaction with
H2O2 [15, 16] or KMnO4 [17] as the oxidants. Periodate
(IO4

−) is colorless, thus avoiding emission absorption prob-
lems. Additionally, periodate is more stability than H2O2 and
hypohalites and related oxidants. Periodate can oxidize
luminol in an alkaline solution to produce CL [18, 19]. Up
to date, there is no report with regard to the periodate–luminol
CL system catalyzed by metal NCs.

Dopamine (3,4-dihydroxyphenethylamine) is one of the
most important neurotransmitter and plays significant roles
in the function of human metabolism, central nervous, renal
and hormonal system. The level of dopamine in human body
is an important biomarker for the diseases of schizophrenia
and Parkinson. Therefore, it is of very urgent to develop sen-
sitive and selective method for the determination of dopamine
in biological fluid [20]. A variety of techniques have been
reported for the detection of dopamine, including spectropho-
tometry [21, 22], fluorescence [23, 24], electrochemical
methods [25–27], and chemiluminescence [28–32]. Among
them, CL methods have the advantages of simple and inex-
pensive instrumentation, high sensitivity, and wide linear dy-
namic range.
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In this work, hemoglobin–stabilized gold nanoclusters
(Hb–AuNCs) were prepared through a biomineralization pro-
cess by revisiting the previous work of Shamsipur et al. [33].
The reaction time is shortened from 30 days to 1.5 days (36 h)
by increasing the reaction temperature from 37 °C to 60 °C.
The prepared Hb–AuNCs exhibits a significant catalytic effect
on the luminol–periodate CL reaction. This system is devel-
oped as a sensitive CL method for the determination of dopa-
mine which strongly inhibits the CL signal. The practicability
of the method is evaluated by the determination of dopamine
in spiked human plasma samples.

Experimental

Apparatus

All CL measurements were conducted on an IFFM–D flow–
injection CL analyzer (http://www.chinaremex.com, Xi′an
Remax, China) equipped with a CR105 photomultiplier tube
(http://www.hamamatsu.com.cn, Hamamatsu Photonics
(China) Co., Ltd). Fluorescence spectra and CL spectra were
obtained on a F–2700 fluorescence spectrophotometer (http://
www.hitachi-hightech.com, Hitachi, Japan). Absorption
spectra were recorded with a U–3900 UV–Visible
spectrophotometer (http://www.hitachi-hightech.com,
Hitachi, Japan). Transmission electron microscopy (TEM)
was performed on a JEM–2100 transmission electron micro-
scope (http://www.jeol.co.jp/cn, Japan Electronic Company,
Japan) at an accelerating voltage of 200 kV. The X–ray
photo electron spectrum (XPS) was measured on UltraDLD
X–ray photoelectron spectrometer (http://www.kratos.com,
Kratos, Britain) using Al–Kα as the exciting source (1486.
6 eV) and C1s at 284.8 eV for binding energy calibration.

Chemicals

All chemicals used were of analytical–grade; water was pro-
duced fromMilli–Q reference ultra–pure water system (http://
www.astk.com.cn, Beijing ASTK Technology Development
Co., Ltd., China). Dopamine was purchased from Shanghai
Aladdin Bio–Chem Technology Co. Ltd. (http://www.
aladdin-e.bioon.com.cn, Shanghai, China). Chloroauric acid
(HAuCl4•4H2O) was obtained from Shanghai Chemical
Reagent Factory (http://www.shiyicr.com.cn, Shanghai,
China). Hemoglobin (Hb) was offered by Beijing Solarbio
Science & Technology Co., Ltd. (https://solarbio.en.alibaba.
com, Beijing, China). Luminol was purchased from Tianjin
Fuchen Chemical Reagents Factory (http://www.tjfch.com/en,
Tianjing, China). Sodium periodate (NaIO4) was bought from
Tianjing Kemiou Chemical Reagent Co., Ltd. (http://www.
tjkermel.com, Tianjing, China). Other chemicals were

obtained from Xi’an Chemical Reagent Factory (http://www.
crc-xa.com, Xi’an, China).

A 10.0 mM dopamine stock solution was prepared by dis-
solving 94.8 mg dopamine in 50 mL water. More dilution
solutions of dopamine were prepared by diluting this stock
solution before use. All dopamine solutions were protected
from the light and stored in a refrigerator. Luminol stock so-
lution (25 mM) was prepared by dissolving 0.2214 g luminol
solid in 50 mL of 0.1 M NaOH solution. Luminol working
solutions were prepared by diluting the luminol stock solution
with a suitable concentration of NaOH solution. HAuCl4 so-
lution (10.0 mM) and NaIO4 solution (10.0 mM) were pre-
pared in water.

Synthesis of Hb–AuNCs

All glassware were soaked in concentrated HNO3 solution for
12 h, rinsed thoroughly with water, and then dried for use. The
preparation of Hb–AuNCs was similar to the previous proce-
dure of Shamsipur et al. [33] with some modification. In brief,
aqueous HAuCl4 solution (2.8mM, 5mL) was mixed with Hb
solution (50 mg/mL, 5 mL) at 60 °C with vigorously stirring.
Ten min later, 1 mL of 1 M NaOH solution was added and the
reaction was performed at 60 °C for 36 h. The resultant solu-
tion was centrifuged at 12000 rpm for 10 min to remove any
large size of particles. The blackish green solution (Hb–
AuNCs) was collected and stored in a refrigerator for further
use.

CL measurement

Figure 1 shows the schematic diagram of CL flow system
used. Hb–AuNCs solution (50 μL) was injected into the car-
rier H2O via a six–way injection valve, which was then
merged with the combined stream of luminol solution and
NaIO4 solution just prior to the flow cell. The CL signal pro-
duced in the flow cell was monitored by the photomultiplier
tube biased a high voltage at 800 Vand recorded as I0. In the
case of dopamine, the carrier H2O was replaced by dopamine
standard/sample solution and the responding CL signal was
taken as I. The relative CL signal (ΔI), calculated by

Fig. 1 Schematic diagram of CL flow system. PMT: photomultiplier
tube; HV: high voltage; COM: computer
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subtracting I from I0, was used to optimization, calibration,
and quantification of dopamine.

Results and discussion

Revisiting the synthetic conditions of Hb–AuNCs

In the work of Shamsipur et al. [33] for the synthesis of Hb–
AuNCs, 30 days was needed to complete the reaction. To
shorten the reaction time, the synthesis conditions, including
reaction temperature and reaction time, was revisited.

The effect of reaction temperature was examined in the
range of 37 °C–80 °C. The reaction efficiency increased with
increasing the reaction temperature as indicated by the rapid
increase in the fluorescence intensity of Hb–AuNCs at 450 nm
(upon excitation at 365 nm) (Fig. S1). When the reaction
temperatures were above 60 °C, the fluorescence intensity
remained a platform indicating the complete of the reaction.

The effect of reaction time was studied from 4 h to 48 h by
fixing the reaction temperatures at 60 °C. As shown in Fig. S2,
the fluorescence intensity increased as the reaction time was
increasing from 4 h to 36 h. When the reaction time was
longer than 36 h, the fluorescence intensity remained essen-
tially constant, indicating the complete of the reaction.
Therefore, the reaction temperatures of 60 °C and the reaction

time of 36 h were employed for the preparation of the Hb–
AuNCs.

The prepared Hb–AuNCs were characterized with UV–vis,
fluorescence, TEM, and XPS. The Hb–AuNCs have a wide
absorption band centering at 350–400 nm and lack typical
surface plasmon resonance peak at 520 nm (Fig. 2a). The
TEM image confirms the Hb–AuNCs are spherical in shape
with a diameter about 3 nm (Fig. 2b). The XPS suggests the
presence of Au(0) and Au(I) in the Hb–AuNCs (Fig. 2c). Upon
excitation at 365 nm, the Hb–AuNCs emits blue emission with
a maximal emission at about 450 nm (Fig. 2d), which was
consistent with that of Shamsipur et al. [33]. All of these con-
firmed the successful preparation of the Hb–AuNCs.

Enhancement of the luminol–NaIO4 CL system
by Hb–AuNCs

The effect of the Hb–AuNCs on luminol–NaIO4 CL system
was investigated by a batch method. Into reaction cell, 0.5 mL
of H2O, 0.5 mL of 0.5 mM luminol solution, and 0.5 mL of
1:10 dilution Hb–AuNCs solution were added successively.
After homogeneous, 0.5 mL of 0.1 mM NaIO4 solution was
introduced to initiate the CL reaction. As shown in Fig. 3a, the
CL signal of luminol–NaIO4 reaction is obviously enhanced
when the Hb–AuNCs is present in the system (curve a and b).
To rule out possible catalytic activity from Hb, a control

Fig. 2 a UV–vis absorption spectrum, b TEM image, c XPS and d fluorescence spectrum of the Hb-AuNCs
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experiment was conducted by replacing Hb–AuNCs with Hb.
Hb displays weak catalytic effect on the luminol–NaIO4 sys-
tem (curve c), but it is much lower that of Hb–AuNCs (curve
b). Therefore, the catalytic activity originates from the Hb–
AuNCs not from Hb. Further investigation indicates dopa-
mine significantly inhibits the CL signal of luminol–NaIO4–
Hb–AuNCs reaction (curve d).

To elucidate the enhancing mechanism of the Hb–AuNCs
on luminol–NaIO4 reaction, the CL spectra were investigated.
To obtain the CL spectra, the CL flow cell was placed before
the emission window of F–2700 fluorescence spectrophotom-
eter with the excitation source turned off. The CL reagents
were continuously driven into the flow cell by peristaltic
pumps. The CL signal was recorded by the photomultiplier
tube biased the high voltage at 700 V. As shown in Fig. 3b, the
CL spectra of two reactions have the same spectrum profile
and maximum emission wavelength, suggesting that they
share the same CL emitter. The maximum emission wave-
length locates at 425 nm, which is the typical emission of

luminol reaction. Therefore, the CL emitter is still the excited
sate 3–aminophthalate anions, the oxidation product of
luminol [34]. The presence of the Hb–AuNCs does not alter
the CL emitter, just enhances the CL intensity. Therefore, the
enhancing mechanism is therefore attributed the catalytic ef-
fect of the Hb–AuNCs on the luminol–NaIO4 reaction.

Superoxide anion was reported to be generated from the
reaction between periodate and dissolved O2 in alkaline solu-
tion [35]. The superoxide anion can oxidize luminol to pro-
duce CL emission [36]. In the presence of the Hb–AuNCs, the
reaction between periodate and dissolved O2 is accelerated
and more amounts of superoxide anion is produced. As a
result, stronger CL emission is recorded. Dopamine belongs
to polyhydroxy compounds. Such kind compounds have
strong reducibility and can be used as scavenging agents of
reactive oxygen species. Thus, in case of dopamine, the pro-
duced superoxide anion is eliminated and the CL signal is
inhibited.

Optimization of CL conditions

Hb–AuNCs concentration has a critical influence on the CL
reaction. The Hb–AuNCs concentration is expressed as the
dilution ratio of the Hb–AuNCs with water. Figure 4a shows
the relationship between the dilution ratio and the relative CL
intensity. The relative CL intensity continues to decrease with
the increase in the dilution ratio of the Hb–AuNCs.
Considering the sensitivity and reagent consumption, the
Hb–AuNCs in 1:20 dilution ratio is employed.

As the CL reagent, the concentration of luminol has impor-
tant influence on the sensitivity. The effect of luminol concen-
tration on the CL reaction was studied in the range of 10–
750 μM and the results are shown in Fig. 4b. A maximum
relative CL intensity is observed at 50 μM luminol. Higher or
lower concentrations of luminol cause a decrease in the rela-
tive CL intensity. Thus, 50 μM luminol is selected as the
optimum.

Luminol CL reaction occurs in an alkaline condition.
The alkalinity of the reaction is controlled by NaOH
added into luminol solution. The relative CL intensity
increases as the concentration of NaOH was increasing
from 0.01 M to 0.25 M, (Fig. 4c). The relative CL
intensity decreases with the increase in the concentration
of NaOH above 0.25 M. The relative CL intensity has a
maximum at 0.25 M NaOH and this concentration of
NaOH is employed.

Figure 4d shows the influence of the concentration of
NaIO4 on the relative CL intensity. The relative CL intensity
increases with increasing the concentration of NaIO4 up to
0.1 mM. Further increase in the concentration of NaIO4 results
in a decrease in the relative CL intensity. Therefore, 0.1 mM
NaIO4 is selected.

Fig. 3 a CL profiles of the luminol–NaIO4 reaction catalyzed by Hb–
AuNCs and b the responding CL spectra. (a) luminol–NaIO4 reaction, (b)
luminol–NaIO4–Hb–AuNCs reaction, (c) luminol–NaIO4–Hb reaction
and (d) luminol–NaIO4–Hb–AuNCs–dopamine reaction
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Response of the system to dopamine

Under above selected conditions, the response of the system
for different concentrations of dopamine was investigated.
The logarithm of the relative CL intensity (logΔI) was found

to be linear related with the logarithm of concentrations of
dopamine (log c) from 0.3 to 9.0 nM (Fig. S3). The linear
equation can be expressed log ΔI = 2.96 + 0.69 log c (nM)
(r2 = 0.9921). The limit of detection is 0.1 nM. In comparison
with other previously reported methods for the detection of

Fig. 4 Effect of a dilution ratio of Hb–AuNCs, b luminol concentration, c NaOH concentration, and d NaIO4 concentration on relative CL intensity

Table 1 Comparison with
different methods for dopamine
determination

Methods Chemicals used Linear range (nM) Detection
limit (nM)

Reference

Colorimetry AgNPRs/chloride 0.5–100 0.16 21

AuNPs/melamine 33–3.33 × 106 33 22

Fluorescence Resorcinol 10–2.0 × 104 1.8 23

l-cys ZnS:Mn QDs 150–3000 7.8 24

Electrochemical RNA aptamer 100–1000 62 25

ET-SDBS-NPPy/RGO 100–1.0 × 105 20 26

Imprinted silica/poly(aniline boronic acid) 50–5.0 × 105 18 27

KMnO4/HCHO 31–1.7 × 104 10 28

Ce(IV)/thiosulfate/C–dots 2.5–2.0 × 104 1.0 29

Luminol/H2O2/HKUST–1 10–700 2.3 30

Lucigenin/thiourea dioxide 20–800 14.7 32

K3Fe(CN)6/g–CNQDs 10–2000 4.7 31

Luminol/NaIO4/Hb–AuNCs 0.3–9.0 0.1 This work
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dopamine, this method has higher sensitivity (Table 1). The 11
consecutive measurements of 5.0 nM dopamine solution pro-
duced a relative standard deviation of 3.12%, indicating the
precision of the method is acceptable.

Interference study

In order to apply the method to the determination of dopamine
in human plasma, the effect of some potential interfering spe-
cies was investigated on the determination of 5.0 nM dopa-
mine. The interfering species include 5.0 μM K+, Ca2+, Na+,
glucose, uric acid, ascorbic acid, 0.5 μM lysine, lactate, oxa-
late, cysteine, ascorbic acid, Zn2+, 10.0 nM adrenaline and
norepinephrine. Figure 5 shows the relative CL intensities of
dopamine alone and of the mixture of dopamine with interfer-
ing species. In contrast to the CL intensity of dopamine alone,
the CL intensities changed negligibly in the presence of inter-
fering species, indicating the present CL system has good
selectivity for dopamine. It should be indicated that 1000–fold
is the highest tolerable ratio that we examined. The actual
tolerable ratios for some interfering species are possible higher
than this tolerable ratio.

Determination of dopamine in spiked human plasma
samples

In order to verify the practicality, the method was applied to
the determination of dopamine in spiked human plasma sam-
ples. Human plasma samples from three health persons were
obtained from Xi′an Community Hospital. The protein in
plasma samples was removed by centrifuging at 12000 rpm
for 10 min. The supernatant was transferred into a test tube
and used as sample. Into 0.5 mL of sample, a known amount

of dopamine standard was added and diluted to 10.0 mL with
water for detection. The content of dopamine in the sample
was determined by standard addition method. As shown in
Table S1, the method gave rise to good recoveries and accept-
able precision, thus demonstrating the practicality of this
method in the determination of dopamine in practical samples.

Conclusions

In summary, Hb–AuNCs were prepared by incubating HAuCl4
and Hb at 60 °C for 36 h through a biomineralization process.
The Hb–AuNCs significantly catalyze the CL reaction of
luminol with periodate and dopamine strongly inhibits the signal.
The method allows to the measurement of dopamine in the
concentration range of 0.3–9.0 nM. The method is very sensitive
and can analyze dopamine in spiked human plasma. Beside
adrenaline and norepinephrine also inhibit the CL signal.
Further work is in progress aiming at on the determination of
other catecholamine with this CL system.
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