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into a nanohybrid composed of reduced graphene
oxide and Nafion

Norazriena Yusoff1 & Perumal Rameshkumar1,2 & Muhammad Mehmood Shahid1
&

Sheng-Tung Huang3 & Nay Ming Huang4

Received: 8 March 2017 /Accepted: 26 May 2017 /Published online: 6 June 2017
# Springer-Verlag Wien 2017

Abstract The authors show that the electrocatalytic perfor-
mance toward the detection of nitric oxide (NO) can be en-
hanced by making use of gold nanoparticles (AuNP) in a
matrix consisting of reduced graphene oxide and Nafion
(rGO-Nf). The rGO-Nf@Au nanohybrid was synthesized
via a hydrothermal method. The spherical AuNP have diam-
eters in the range from 50 to 200 nm as proven by field emis-
sion scanning electronmicroscopy (FESEM). A glassy carbon
electrode (GCE)modified with the nanohybrid displays excel-
lent electrocatalytic activity towards NO oxidation compared
to other kinds of modified electrodes. Best operated at a volt-
age of +0.8 V (vs. SCE), the amperometric response was
linear in the 1 μM to 0.16 mM nitrite concentration range,
with 0.5 μM detection limit (at an S/N ratio of 3). The high

surface area of the AuNP along with the synergistic effect of
AuNP and rGO-Nf film on the signal current is believed to
cause the enhanced electrocatalytic activity of the nanohybrid.
The sensor is not interfered by dopamine (DA), ascorbic acid
(AA), uric acid (UA), glucose, urea, and NaCl even in 5-fold
higher concentrations. In our perception, the rGO-Nf@Au
modified electrode is a promising tool for highly sensitive
and selective amperometric sensing of NO.
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Introduction

Nitric oxide (NO) is one of the labile free radicals and hydro-
phobic molecules that are being produced by the human body.
In 1987, a research led by Ignarro had discovered that NO is
responsible for the vascular smooth muscle relaxation elicited
by endothelium-derived relaxing factor [1]. Later research
successfully proved the involvement of NO in a range of
defence stress responses and its ability to alleviate the
deleterious effects of regulating reactive oxygen species
(ROS) by regulating ROS production and degradation [2].
Moreover, NO is also used for communication between cells
and is involved in the regulation of blood pressure, the im-
mune response, platelet aggregation and clotting, and neuro-
transmission [3]. The concentration of NO in exhaled breath is
also used as a biomarker for several diseases such as asthma
[4], ulcerative colitis and Crohn’s disease [5]. The determina-
tion of NO is significant because the abnormality of its pro-
duction and bioavailability may led to several diseases such as
obesity, diabetes (both type I and II), atherosclerosis,
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hypertension, and heart failure [6, 7]. Therefore, the fabrica-
tion of a sensor which has a compact design and highly sen-
sitive and selective toward NO is important as it can make a
great contribution to disease diagnosis.

One of the effective ways to determine NO is by using
electrochemical technique [8]. Electrochemical detection has
been a primary method for monitoring neurotransmitters
in vivo due to its simplicity, long term high stability, fast re-
sponse, low cost, and higher level of sensitivity and selectivity.
NO is an electro active molecule and can be detected electro-
chemically. Graphene incorporated with metal/metal oxide
nanoparticles has attracted much attention for modifying the
electrode surface because these nanocomposites exhibit
unique properties which cannot be found in conventional ma-
terials [9, 10]. Hu et al. successfully synthesized reduced
graphene oxide-ceria (rGO–CeO2) nanocomposite nanostruc-
tures which offered a facile and reliable platform to in situ real-
time detect bio-signal NO molecules released by living cells
[11]. The improvement in the sensing performance was be-
lieved to the synergical effect from high catalytic activity of
the specifically shaped CeO2 nanocrystal and good conductiv-
ity and high surface area of rGO. Our research group had used
reduced graphene oxide-cobalt oxide nanocube@platinum
(rGO–Co3O4@Pt) nanocomposite as the active material for
the detection of in situ generated NO [12]. The high catalytic
effect of the rGO–Co3O4@Pt nanocomposite was attributed to
the synergistic effect of Co3O4 nanocubes and Pt nanoparticles
present in the rGO matrix, which then contributed to a better
sensing performance.

In this study, one step hydrothermal method was employed
to obtain rGO-Nf film doped with AuNP. The rGO-Nf@Au
nanohybrid has been used as the active material for modifying
the GCE. This modified electrode was used in detecting NO
using electrochemical method. Three different concentrations
of HAuCl4.3H2O were used in order to study the effect of
AuNP content on the electrochemical sensing performance.

Experimental

Materials

Graphite flakes was purchased from Asbury Graphite Mills,
Inc. (www.asbury.com). Sulphuric acid (H2SO4, 95 ~ 97%),
phosphoric acid (H3PO4), hydrochloric acid (HCl, 37%), urea,
3-hydroxytyraminium chloride, and ammonia solution
(NH4OH) were received from Merck (www.merck.com).
Potassium permanganate (KMnO4) was obtained from R&M
chemicals (www.evergainful.com.my). Nafion (200 mesh)
was purchased from Ion Power, Inc. (www.nafionstore.com).
Gold(III) chloride trihydrate (HAuCl4.3H2O) was purchased
from abcr.Gmbh & Co. KG (www.abcr.de). Hydrogen
peroxide (H2O2) and ethanol were received from Systerm

(www.haiousaintifik.com). Sodium phosphate monobasic
(NaH2PO4), disodium phosphate dihydrate (Na2HPO4.
2H2O), sodium nitrite (NaNO2), uric acid (UA), glucose,
sodium chloride (NaCl), and L(+)-ascorbic acid were
obtained from Sigma-Aldrich (www.sigmaaldrich.com).
Aqueous solutions were prepared in double distilled water.
All chemicals and solvents were used without any further
purification unless otherwise stated.

Characterization techniques

The crystalline phases of the samples were collected with X-
ray diffraction (XRD; PANalytical Empyrean), using copper
Kα radiation (λ = 1.5418 Å) at a scan rate of 0.02 s−1 (www.
dksh.com). Raman spectrum of the nanohybrid was collected
using a Renishaw inVia Raman microscope linked to the
514 nm line of an argon ion laser as the excitation source
and performed at room temperature (www.renishaw.com).
X-ray photoelectron spectroscopy (XPS) was measured at
the beam-line, BL3.2 (a) of the Synchrotron Light Research
Institute in Thailand using a Thermo VG Scientific-Alpha110
electron energy analyzer (www.thermofisher.com). It was
operated under the condition of photon energy of 600 eV
with 0.1 eV kinetic energy steps. The morphologies and the
energy-dispersive X-ray (EDX) analyses of the samples were
examined using a Hitachi SU8030 field emission scanning
electron microscope (FESEM) which equipped with EDX,
operated at 5.0 kV (www.hitachi-hightech.com). The
nanohybrid materials were drop-casted on a silicon wafer,
which was used as the substrates for FESEM characterization.

Synthesis of rGO-Nf@Au nanohybrid

The rGO-Nf@Au nanohybrid was prepared using hydrother-
mal method. In the first step, GO-Nf solution was prepared
using ultrasonication method according to the procedure re-
ported previously [13]. Next, the aqueous mixture was pre-
pared by mixing 20 mL of GO-Nf solution and 2 mL of
HAuCl4.3H2O solution. Above mixture was then stirred for
15 min at room temperature. For a control experiment, three
different concentrations of HAuCl4.3H2O (4, 8, and 12 mM)
were used. Then, 13 mL of NH4OH were slowly added into
the solution while stirring to avoid sudden agglomeration.
Prior to transferring to a Teflon-lined autoclave, the solution
mixture was homogeneously stirred for 20 min. The hydro-
thermal synthesis was carried out at temperature of 180 °C for
16 h and subsequently cooled down to room temperature nat-
urally after the reaction. Afterwards, the black precipitate was
collected by centrifugation and washed with distilled water
and ethanol for several times, and dried at 60 °C in the oven
for 24 h. Ammonia acted as the reducing agent for the forma-
tion of AuNP and rGO at a given temperature. The powder
was labelled as rGO-Nf@Au4, rGO-Nf@Au8, and rGO-
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Nf@Au12 nanohybrids which referred to the usage of 4, 8 and
12 mM of HAuCl4.3H2O, respectively.

Fabrication of GC/rGO-Nf@Au modified electrode

The GCE was polished with 0.05 μm alumina slurry on a
polishing cloth for a few times before rinsed with distilled
water. Then, the electrode was undergone pretreatment by
running 20 cycles of cyclic voltammetry (CV) at potential
between +1 and −1 V in 0.1 M H2SO4 solution. A 5 mg of
rGO-Nf@Au nanohybrid powder was dispersed in 5 mL of
water with the aid of ultrasonic agitation to create a homoge-
neous suspension. After the cleaning process, a 5 μL of sus-
pension was dropped onto the surface of GCE (dia. 3 mm) and
the electrode was dried in air to form GC/rGO-Nf@Au mod-
ified electrode.

Electrochemical measurements

The electrochemical experiments were performed with a
VersaSTAT 3 by Princeton Applied Research using a conven-
tional three-electrode system (www.princetonappliedresearch.
com). The GC/rGO-Nf@Au modified electrode was used as
the working electrode, a saturated calomel electrode (SCE) as
the reference electrode and platinum wire as the counter elec-
trode. 0.1 M phosphate buffer with pH 2.5 was used as the
supporting electrolyte and NaNO2 was used as the precursor
to generate the NO in the acidic solution. All electrochemical
experiments were performed at room temperature. The sche-
matic illustration for synthesizing rGO-Nf@Au nanohybrid
and the fabrication of GC/rGO-Nf@Au modified electrode
are shown in Scheme S1. For electrochemical impedance
spectroscopy (EIS) measurement, the experiment was carried
out in a solution containing 5 mMK3[Fe(CN)6]

3−/4- and 0.1M
KCl within the frequency range from 0.01 Hz to 100 KHz.

Real sample analysis

The water samples used in this study were tap and lake water,
which were collected from Low Dimensional Materials
Research Centre’s laboratory and University of Malaya’s lake.
Standard addition method was used to perform the recovery
experiment. Before determination, the water samples were
filtered to remove the suspended solid substances. A stock
solution of NO2

− was prepared by adding a known amount
of NaNO2 in 5 mL of real water samples and sonicated for
15 min. A known amount of those samples were spiked into
0.1 M PBS (pH 2.5) and the concentration of NO was deter-
mined from the current response obtained by amperometry
experiment at an applied potential of +0.8 V (vs. SCE).

Results and discussion

Choice of materials

Inspired by the large surface area and unique conductivity of
reduced rGO and the excellent electrocatalytic activity of
AuNP, a nanohybrid consisting of rGO-Nf and AuNP was
synthesized for the study of highly sensitive and selective
electrochemical NO sensor. The use of Nafion as an ion ex-
change membrane enhances the surface area scaffold for the
deposition and stabilization of AuNP and provides the ion
conductive pathway during the electrochemical reaction.

Characterization of rGO-Nf@Au nanohybrid

The crystalline nature of rGO-Nf@Au nanohybrids with dif-
ferent Au content was analyzed using XRD and the results
were shown in Fig. 1. In general, the XRD pattern for GO
shows a characteristic diffraction peak at around 11 ° with
an interlayer d-spacing of 8.36 Å (Fig. 1a) [14]. Upon the
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hydrothermal treatment, this peak disappeared and a new
broad peak emerges at round 25 ° which corresponds to the
(0 0 2) plane of hexagonal graphene structure and thus, con-
firmed the formation of rGO. The band at 43 ° which appeared
in XRD pattern for rGO corresponded to the turbostratic band
of disordered carbonmaterials [15]. The decrease in d-spacing
after hydrothermal reaction was due to the removal of the
oxide functional groups in GO and to the restoration of the
crystal structure of graphite after the reduction of GO via
hydrothermal treatment. The XRD patterns for three different
rGO-Nf@Au nanohybrids were displayed in Fig. 1b. The dif-
fraction peaks observed at 38.29 °, 44.48 °, 64.68 °, and 77.68
° were assigned to the (1 1 1), (2 0 0), (2 2 0), and (3 1 1) planes
of Au, respectively [16]. All the peaks were well matched and
consistent with the standard database (JCPDS card: 65–2870),
and thus confirmed the existence of AuNP on the surface of
rGO-Nf sheets. As can be seen, no rGO peak was observed in
all XRD patterns of nanohybrids. This observation may have
been due to the relatively lower diffraction intensity of rGO
compared to AuNP. It suggested that the surface of the rGO-
Nf was fully covered with AuNP. All the peaks are sharp, with
high intensities and without impurity peaks. This proves the
higher crystallinity and purity of the nanohybrid. The only
notable difference between the XRD patterns of all three
rGO-Nf@Au nanohybrids was the intensity of their peaks that
increased with the increase in AuNP content from 4 to 12mM.
This result indicated that the existence of AuNP became dom-
inant in the nanohybrid. This is because more AuNP were
formed on the surface of rGO-Nf sheets when higher concen-
tration of AuNP precursor was used.

A Raman scattering study was performed to confirm the
presence of rGO in the nanohybrids. The detailed information
was provided in the Supporting Information (Fig. S1). The
presence of functional groups on the surfaces of rGO-
Nf@Au nanohybrids were evaluated by XPS and the results
are shown in Fig. 2. Fig. 2a shows the XPS peak

deconvolution of C1s core levels of the rGO-Nf@Au
nanohybrids. It was noted that two characteristic peaks of C-
C and C-F were observed at binding energy of 284.5 and
291.1 eV, respectively. They attributed to the presence of
rGO and Nafion in the nanohybrid material. One can also
notice that the intensity of C-C peak for rGO-Nf@Au8
nanohybrid was the highest compared to other nanohybrids.
The results demonstrated that the rGO in this nanohybrid has
higher degree of reduction due to effective removal of oxygen
functional groups after hydrothermal process. Fig. 2b presents
the XPS spectrum of Au 4f core level in the rGO-Nf@Au
nanohybrids. The deconvoluted peaks located at the binding
energies of 83.8 and 87.5 eVwere assigned to the Au 4f7/2 and
Au 4f5/2, respectively [17]. Therefore, the XPS results further
confirmed the formation of AuNP on the rGO-Nf surface.

The morphology of the rGO-Nf@Au nanohybrids was
characterized using FESEM analysis. The detailed discussion
on the results is provided in the Supporting Information
(Fig. S2). The energy dispersive X-ray (EDX) elemental map-
ping analysis was employed to reveal the distribution of var-
ious elements present in the rGO-Nf@Au8 nanohybrid
(Fig. 3). The elemental mappings of C (green), O (blue), F
(black), and Au (red) were observed, which reveal that these
elements were uniformly distributed in the rGO-Nf@Au8
nanohybrid. The large area covered by red color indicated
the successful deposition and distribution of Au in the rGO-
Nf film. The strong signals of C, O, F, and Au elements in
EDX spectrum further confirm the formation rGO-Nf@Au8
nanohybrid (Fig. S3).

Electrochemical oxidation of NO

A detailed discussion on the electrochemical impedance spec-
troscopy (EIS) analysis and CV characteristics of rGO-
Nf@Au nanohybrid modified GCE are provided in the
Supporting Information (Fig. S4). The electrocatalytic NO
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oxidation at the rGO-Nf@Au nanohybrid modified electrode
was investigated by recording the CV response. In order to
produce NO in acidic solution, sodium nitrite (NaNO2) was
used as the precursor where it undergoes disproportionation
reaction in acidic solution (pH ≤4) to generate free NO
(Eq. (1) and (2)) [18]. The concentration of NO was deter-
mined by controlling the concentration of the NaNO2 injected
into the bulk electrolyte solution at pH 2.5.

2NaNO2 þ H2SO4→2HONOþ Na2SO4 ð1Þ
3HONO→HþNO−

3 þ 2NOþ H2O ð2Þ

Figure 4 compares the CV curves of all the modified elec-
trodes investigated in this work towards the oxidation of
1 mM NO2

− in 0.1 M phosphate buffer (pH 2.5) with the rate
of 50 mV.s−1. Upon the addition of 1 mM NO2

− in the solu-
tion, an anodic peak current occurred in CV curves for bare
GC and other modified electrodes. Each electrodes shows
different amount of current response and peak position
(Fig. 4a). This anodic peak was assigned to the oxidation of
NO at the surface of sensor electrode. As can be seen in
Fig. 4b, the GC/rGO-Nf@Au8 modified electrode shows
higher anodic peak current for the oxidation of NO compared
to bare GC and other modified electrodes. This observation
suggested that the incorporation of 8 mMAuNP with rGO-Nf

has significantly improved the performance of the electrode
toward NO oxidation. The current response for each sensor
electrode increased follows the order of: GC/GO < GC/
Nf < Bare GC < GC/rGO < GC/rGO-Nf < GC/rGO-
Nf@Au4 < GC/rGO-Nf@Au12 < GC/rGO-Nf@Au8. The
low current response shown by GC/GO and GC/Nf compared
to bare GC can be explained by the weak electrical conduc-
tivity of GO and Nf which affecting the rate of electron trans-
fer. The high current response was due to the enhancement in
the electron transfer kinetics at the GC/rGO-Nf@Au8. It was
driven by the excellent electrical conductivity of rGO and
AuNP as well as large amount of active surface area on the
modified electrode. There was no apparent oxidation peak in
the CV curve of rGO-Nf@Au8 was observed in the absence
of NO in the solution as shown in Fig. 4b. The effects of
changing concentration of NO2

− and scan rate on the
electrooxidation of NO at the nanohybrid modified electrode
are discussed in Supporting Information (Fig. S5 & S6).

Amperometric detection of NO

The information on repeatability, reproducibility, and stability
of the sensor electrode is provided in Supporting Information
(Fig. S7). The electrochemical NO sensors were fabricated
and tested accordingly in order to examine the application of
the rGO-Nf@Au nanohybrids. For an explicit comparison, the
amperometric responses were recorded at different modified
electrode in 0.1 M phosphate buffer (pH 2.5) with successive
addition of 50 μM NO2

− and plotted in Fig. 5. After the ad-
dition of 50 μM NO2

−, an increase in the current response
with increasing NO2

− concentration was detected for all mod-
ified electrode as can be seen in Fig. 5a. This result reveals that
the GC/rGO-Nf@Au8 modified electrode provides more am-
plified responses than bare GC and other modified electrodes.
The calibration plots from the amperometric responses were
presented in Fig. 5b. The enhancement of analyte interaction
surface area and high electrical conductivity provided by rGO-
Nf@Au8 nanohybrid contribute to the improvement in sens-
ing performances of the GC/rGO-Nf@Au modified electrode
over the other modified electrodes. However, the overloaded
AuNP content in the nanohybrid (rGO-Nf@Au12), the AuNP
may form agglomeration and increase the diffusion layer
thickness, therefore reducing the electron transfer rate, thus
lower the sensitivity of the sensor electrode. To put these re-
sults in perspective, the sensitivity of GC/rGO-Nf@Au8 mod-
ified electrode is the larger than other modified electrode.
Therefore, this sensor electrode was chosen for further study
in determine the low detection limit for NO in acidic solution.

The amperometry was performed at an applied potential of
+0.8 V (vs. SCE) for different NO2

− concentrations in order to
investigate the concentration detection limits for GC/rGO-
Nf@Au8 modified electrode and was plotted in Fig. 5c.
Figure 5c shows an excellent amperometric response with
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successive additions of different NO2
− concentration for every

60 s recorded at GC/rGO-Nf@Au8 modified electrode. Upon
the injection of NO2

− in the solution, a significant increase in
the current response with increase in the concentration of
NO2

− was observed. The current response against the NO2
−

concentration in the response time ranging from 200 to 850 s
was shown in inset of Fig. 5c. Interestingly, the response time
of the modified electrode was recorded to be within a second.
It indicates the rapid diffusion of NO on the GC/rGO-
Nf@Au8 modified electrode surface; thereby this sensor elec-
trode can be used for real time measurements. It can also be
notices that the oxidation current increases linearly with the
successive addition of NO2

− into phosphate buffer (Fig. 5d).
The calibration curve between the peak currents and different
NO2

− concentrations in the range from 1 to 10 μM were
showed in the inset of Fig. 5d. The linear regression equation
was expressed as I ¼ 0:062 NO−

2

� � þ1:037E−8 (R2 = 0.994)
with the limit of detection of 5.0 × 10−7 M (S/N = 3). Table 1
presents the performance of the GC/rGO-Nf@Au8 modified
electrode in comparison with other amperometric sensors for
the detection of NO. By comparison, the NO sensor presented
in this work exhibits a comparable sensing performance with
other sensor electrodes. It was believed that the good syner-
getic effect between rGO-Nf and AuNP in forming the
nanohybrids leads to the improvement in conductivity. As a
result, the electron transfer resistance will reduce; hence in-
crease the efficiency of the electron transfer between electrode
and electrolyte. Moreover, the enhancement of the active sur-
face area provided by rGO-Nf@Au8 nanohybrids allowed

more analyte molecules to be interacted. These factors give a
positive effect in sensing performance of GC/rGO-Nf@Au8
modified electrode especially in increase its sensitivity toward
detecting of NO. The low detection limit and high sensitivity
with fast response time demonstrated by GC/rGO-Nf@Au8
modified electrode shows the potentiality of the GC/rGO-
Nf@Au8 as the alternative material for fabricating a sensor
electrode for determining NO in biological analysis.

Selectivity of the sensor electrode

Some possible coexisting components such as DA, AA,
UA, glucose, NaCl, and urea were examined in order to
evaluate the selectivity of the constructed GC/rGO-
Nf@Au8 modified electrode. Figure 6 shows the ampero-
metric responses of GC/rGO-Nf@Au8 modified electrode
for the successive additions of 1 μM NO2

− and 10 μM DA,
AA, UA, glucose, NaCl, and urea in 0.1 M phosphate buffer
(pH 2.5). It was recorded at a regular interval of 60 s and an
applied potential value of +0.8 V (vs. SCE). It can be seen
that the aforementioned interference species did not pro-
duced any amperometric responses signals despite higher
concentrations had been used. However, the apparent cur-
rent increase can be observed with the instantaneous addi-
tion of NO2

− in the same solution. This observation attests
that GC/rGO-Nf@Au8 modified electrode exhibits favor-
able selectivity characteristics toward the detection of NO.
These results suggest that rGO-Nf@Au8 showed potential
applications for the detection of NO in real sample analysis
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NO2

− in a step of 1, 5, and 10 μM.
Inset shows the I-t response from
200 to 850 s. d The corresponding
calibration curve of current versus
concentration of NO2

−. Inset
shows the enlargement of the
calibration curve from 1 to 10 μM
of NO2

− concentration
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owing to its immunity against the common interfering
species.

Recovery test with real water samples

In order to certify the practicability of the GC/rGO-
Nf@Au8 modified electrode in analytical applications, it
was applied to detect NO in real water samples by the
standard addition method. The water samples were used
in real sample analysis in order to validate the sensor
performance by calculating recovery % of known concen-
tration of NO. The recoveries of different concentrations
(10, 50, and 100 μM) of NO2

− were detected in the tap
and lake waters which were sampled from University of
Malaya. The recovery values for three parallel measure-
ments were calculated to evaluate the accuracy of the
sensor and the results were listed in Table 2. It is clear
that the sensor shows satisfactory results with the recov-
ery in the range of 89–100.8% and RSD values in the
range of from 0.6 to 2.1%, indicating that this method
can be efficiently applied to determine in situ generated
NO with good accuracy.

Conclusions

To sum up, the rGO-Nf@Au nanohybrids has been success-
fully synthesized by hydrothermal method and has been used
tomodify GCE before further applied to quantify NO in acidic
solution (0.1 M phosphate buffer, pH 2.5). All the GC/rGO-
Nf@Au (4, 8 and 12 mM) modified electrodes exhibit a good
electrocatalytic activity towards the oxidation of NO. Among
these electrodes, the GC/rGO-Nf@Au8 modified electrode
displayed the best sensing performance for determination of
NO. The GC/rGO-Nf@Au8 modified electrode has strong
and sensitive current responses to NO with an amperometric
detection limit of 5.0 × 10−7 M (S/N = 3) and a wide linear
response ranging from 1 μM to 0.16 mM. It is noteworthy that
this modified electrode is also highly resistant toward com-
mon interfering species such as DA, AA, UA, glucose, NaCl
and urea, making it highly selective toward NO. Besides that,
this modified electrode also demonstrating an acceptable re-
producibility, repeatability, and excellent stability, which can
be used as an amperometric sensor for determination of NO.
The NO sensor presented in this work stands for its cost-
effective synthesis of nanohybrid, easy fabrication of sensor
electrode, interesting detection limit and selectivity compared
to the other previously reported sensor electrodes. An excel-
lent sensing performance shown by rGO-Nf@Au8
nanohybrids were attributed to the high conductivity and sur-
face area provided by rGO-Nf sheets as well as the interface-
dominated properties owned by AuNP. The strong synergistic
effect between rGO-Nf and AuNP was further enhancing the
sensing performance as it leads to the effective electron trans-
fer, hence improved the sensitivity of the sensor electrode. The
satisfactory results for NO analysis in tap and lake waters
suggest that the sensor is suitable for practical applications.
In view of the above results, it has proven that the rGO-
Nf@Au8 nanohybrid has a great potential for the develop-
ment of new electrochemical sensing devices especially for
the in situ detection of NO.
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