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Abstract The preparation of a highly water stable and porous
lanthanide metal-organic framework (MOF) nanoparticles
(denoted SUMOF-7II; SU refers to Stockholm University) is
described. SUMOF-7II was synthesized starting from the
tritopic linker of 2,4,6-tri-p-carboxyphenyl pyridine (H3L2)
and La(III) as metal clusters. SUMOF-7II forms a stable dis-
persion and displays high fluorescence emission with small
variation over the pH range of 6 to 12. Its fluorescence is
selectively quenched by Fe(III) ions compared to other metal
ions. The intensity of the fluorescene emission drops drops
linearly in 16.6–167 μM Fe(III) concentration range, and
Stern-Volmer plots are linear. The limit of detection (LOD)
is 16.6 μM (at an S/N ratio of >3). This indicator probe can
also be used for selective detection of tryptophan among sev-
eral amino acids. Compared to the free linker H3L2, SUMOF-
7II offers improved sensitivity and selectivity of the investi-
gated species.
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Introduction

Ferric ion acts as an important metal center in catalysis
and biotechnology, and plays a pivotal role in biology [1].
An appropriate level of Fe(III) intake/uptake prevents cer-
tain diseases such as heart, pancreas, Parkinson, Alzheimer
and liver diseases [2]. However, when the concentration of
free Fe(III) species exceeds the capacity of the organisms,
they become harmful, although they can be detoxified via
siderophores [2]. Therefore, the detection or sensing of
Fe(III) is important for biomedical and environmental con-
cerns [3]. Traditional analytical techniques such as induc-
tively coupled plasma mass spectrometry (ICP-MS) pro-
vide accurate quantitative measurements of the metals.
However, it lacks of selectivity and can only detect the
total amount of Fe ions without discrimination among
their different oxidation states (i.e. Fe(III) vs Fe(II)).
They are expensive, time-consuming, and require pretreat-
ment or preconcentration compared to other techniques
such as luminescence spectroscopy [4, 5].

Amino acids play an important role in the biochemistry of
mammalian cells [6]. Biosensing of amino acids has been
investigated for UV-vis absorption [7], or electrochemical
methods [8]. These methods show high sensitivity and selec-
tivity toward amino acids. However, they require expensive
chemicals such as enzyme, and long acquisition time. On the
other hand, fluorescent biosensors are simple, sensitive and
cheap [9], but it is hard to develop fluorescent biosensors for
detection and recognition of individual amino acids due to the
high similarity in their chemical structures [10].

Metal-organic frameworks (MOFs) constitute a group of
attractive hybrid materials with interesting applications such
as gas separation [11] and storage [12], extraction/
preconcentration [13], sensing [14, 15], drug delivery [16],
and catalysis [17]. They have also been explored for
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luminescence applications [18]. MOFs contain both organic
and inorganic moieties, and have diverse structures and topol-
ogies [19]. They can offer sharp and clear emissions, high
optical purity with high quantum yields and relatively long
lifetime [20–24]. The luminescence of MOFs can be turned
off by certain metal ions such as Fe(III) species, which is
promising for chemosensing [25, 26]. Wei et al. reported that
rigidified fluorescent linker effectively tunes the frontier orbit-
al energy gap and thus improves the photoluminescence [19].
One drawback of organic molecules as fluorescence probes
for metal ions is that they suffer from self-quenching and have
low quantum yields. One solution to overcome this drawback
is to incorporate the organic fluorophores as the linkers in a
MOF to rigidify the molecules. There are two distinct advan-
tages for such an approach. First, the linkers can adopt some
special conformations that would otherwise be difficult; hence
they may have different fluorescence or absorption energies
[19]. Second, the linker in a MOF is separated from one an-
other, which promotes photoluminescence and reduces self-
quenching [19]. A desired fluorescence emission can be
achieved by combining an optimum metal center and an ef-
fective organic linker. Lanthanide-based MOFs offers many
advantages such as variable coordination geometries, multi-
emission, and high structure stability. These advantages of
MOFs compared to traditional probes advanced the applica-
tions of sensing and biosensing [15, 27].

A series of new isostructural lanthanide-based MOFs,
SUMOF-7I to –IV using different tri-topic linkers (L1-
L4) was reported [28]. The family of SUMOF-7 series
exhibits high thermal and chemical stability. They are
stable in water and organic solvents and in both acid
and basic aqueous solutions. The materials show prom-
ising luminescence properties. SUMOF-7II(La) (denote
SUMOF-7II) was selected to study its potential applica-
tions for sensing metal ions and amino acids. SUMOF-
7II is built from La—O chains connected by 2,4,6-tri-p-
carboxyphenylpyridine linkers (H3L2), and has large 1D
channels (11.3 Å) that are accessible for small guest
species. SUMOF-7II exhibits high selectivity and sensi-
tivity for the detection of Fe(III) ions among many oth-
er metal ions. It can distinguish between different oxi-
dation states of iron (Fe(II) and Fe(III)) and discriminate
among solutions of various Fe(III) salts such as chlo-
rides, acetate, nitrates and sulfates. It can also detect
tryptophan among other selected amino acids.

Experimental

All chemicals were purchased from Sigma Aldrich (www.
sigmaaldrich.com/sweden.html) and used without any
purification.

Instrumentation

Fluorescence and UV-vis absorption spectra were recorded on
Varian Cary Eclipse Fluorescence and Perkin Elmer spectro-
photometer, respectively. The fluorescence spectrophotometer
experiments were performed at room temperature with a
photomultiplier voltage of 700 V, a scan speed of medium,
an excitation slit width of 5 nm, and an emission slit width of
5 nm. The fluorescence emission spectra were recorded in the
wavelength range of 300–800 nm upon excitation at 285 nm.
Fourier transform infrared (FT-IR) spectra (4000–400 cm−1)
were recorded on a Varian 610-IR FT-IR spectrometer (UK).
Powder X-ray diffraction (PXRD) patterns were recorded on a
PANanalytical X’Pert PRO diffractometer coupled with Cu
Kα1 radiation (λ = 1.5406 Å). Thermogravimetric analysis
(TGA) was performed in air from 25 °C to 650 °C with a
heating rate of 2 °C/min using thermogravimetric analyzer
(Perkin Elmer TGA 7). Scanning electron microscopy
(SEM) was performed on JEOL JSM-7000F and JEOL
JSM-7401F at an accelerating voltage of 10.0 kV and 2 kV,
respectively. The crystals were ground and dispersed in etha-
nol (10 mL), and then 10 μL was placed on a carbon film and
dried before the analysis. The size distribution of the dispersed
SUMOF-7II was estimated from the dynamic light scattering
(DLS, Zetasizer nanoseries, Malvern, UK).

X-ray absorption spectroscopy (XAS) was performed at
MAX IV Laboratory, Lund University, Sweden. The data
was collected in fluorescence mode. The experiment was con-
ducted at 3.0 GeVand 50 to 100mA, with the use of a Si (220)
double-crystal monochromator that was detuned by 50%, and
a Fe foil for internal calibration with the first inflection point
defined as 7111.2 eV. The XAS data were extracted using the
software EXAFSPAK and plotted using Origin 9.

Sample preparation for PXRD and XAS

A 30 mg of SUMOF-7II powder was dispersed in 2 mL of
Fe(III) solutions (Fe(AcO)3 or FeCl3) with a high concentra-
tion (100 mM). The suspension was then centrifuged at
5000 rpm for 15 min to collect SUMOF-7II powder. After
washing with deionized water, the SUMOF-7II powders were
analyzed using PXRD and XAS.

Synthesis and characterization of [La(L2)(H2O)]
·solvent (SUMOF-7II)

SUMOF-7II was prepared according to our previously report-
e d p r o t o c o l [ 2 8 ] . A m i x t u r e o f 2 , 4 , 6 - t r i - p -
carboxyphenylpyridine (H3L2, Fig. S1a, 0.1 mmol,
43.0 mg), LaCl3·7H2O (0.1 mmol, 37.2 mg), N,N-
dimethylformamide (DMF, 5 mL), cyclohexane (2.5 mL)
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and H2O (1.25 mL) was sealed in a 20 mL glass vial and
heated at 85 °C for 16 h. The reaction mixture was slowly
cooled down to room temperature. Yellow crystals of
SUMOF-7II were isolated, washed with DMF (10 mL) and
ethanol (2×10 mL).

Preparation of SUMOF-7II suspension, H3L2
solution and stock solutions

A suspension of SUMOF-7II (2 mg·mL−1) was prepared by
dispersing 20 mg of ground SUMOF-7II in ethanol (10 mL)
followed by ultrasonication for 10 min. A solution of organic
linker H3L2 (2 mg·mL−1) was prepared by dissolving 20 mg
of H3L2 in DMF (10 mL).

Series of stock solutions (1.0 mM) for the metal ions were
prepared in deionized water. This includes solutions of differ-
ent Fe(III) salts, such as Fe(AcO)3, FeF3·3H2O, FeCl3·6H2O,
Fe(NO3)3·9H2O, Fe2(SO4)3, metal salts such as Ca(NO3)2·
3H2O, Mg(NO3)2·6H2O, Ni(NO3)2·6H2O, Zn(NO3)2·6H2O,
LaCl3, AlCl3, NaF, FeSO4·7H2O, K2CO3, NaI, NaH2PO4,
various acids and base HCl, HCOOH, AcOH, NaOH, and
selected amino acids L-asparagine, L-glutamine, L-histidine,
L-leucine, L-methionine, and L-tryptophan.

UV-vis absorption and fluorescence spectroscopy

Analyte solutions of Fe(III) or tryptophan with various con-
centrations were prepared by using different volumes (5–
1500 μL) of the stock solution (1 mM). SUMOF-7II suspen-
sion (50 μL) or H3L2 solution (50 μL) was added to the
analyte solution, and the volumewas completed to 3 mL using
aqueous phosphate buffer saline (PBS, pH value of 7.4). The
experiments were carried out at the excitation wavelength
285 nm. Four different Fe(III) salts; Fe(AcO)3, FeF3, FeCl3
and Fe(NO3)3 were investigated.

For the measurement of the selectivity, 500 μL of the stock
solution from an analyte (1 mM) was mixed with 50 μL of
SUMOF-7II suspension (2 mg·mL−1) or H3L2 solution
(2 mg·mL−1). The mixture was completed to 3 mL using
aqueous phosphate buffer saline (PBS, pH 7.4). The same
procedure was followed for Fe(III) solutions of different salts
using 200 μL instead of 500 μL of the stock solutions to
investigate the sensitivity of SUMOF-7II to Fe(III) salts.

Results and discussion

Material characterization of SUMOF-7II nanoparticles

The phase purity of SUMOF-7II was confirmed by
comparing the experimental and simulated PXRD

patterns (Fig. 1a), and also from the morphology shown
from SEM images (Fig. S2). FT-IR spectra (Fig. 1b)
show peaks of the asymmetric (υas (COO)) and sym-
metric (υs (COO)) stretching at 1554 and 1364 cm−1,
respectively that are formed due to coordination of the
carboxylic groups with lanthanum (La) metal clusters
[29]. The broad peak at 3450 cm−1 refers to O—H
stretching of the coordinated or absorbed water. The
peak at 480 cm−1 is assigned as La—O stretching. No
peak corresponding to the C—O—H stretching of the
free linkers at 1227 cm−1 is observed, which indicates
there is no unreacted linkers inside the pores of
SUMOF-7II. Results of DLS (Fig. S3) and SEM
(Fig. S4) reveal that the particle sizes of SUMOF-7II
are 40–80 nm with an average size of 60 nm.

Luminescence properties of SUMOF-7II and H3L2

The suspension of SUMOF-7II displays two UV absorp-
tion peaks at 285 and 316 nm, whereas the linker of
H3L2 shows maximum absorption peaks at 288 and
317 nm (Fig. 1c). Upon the excitation at wavelength
285 nm, SUMOF-7II shows a higher emission than
H3L2 (Fig. S5). This enhancement may be due to in-
creased rigidity of the organic moieties and ligand-to-
metal charge transfer (antenna effect) [19]. The fluores-
cence emission of dispersed SUMOF-7II using different
excitation wavelengths is shown in Figs. 1d and S6.
The emission intensity increases with the increase of
the excitation wavelength, and reaches the maximum at
285 nm (Fig. 1d). Further increase of the excitation
wavelength leads to the saturation of the emission of
SUMOF-7II (Fig. S6). The emission of SUMOF-7II
produces a narrow peak with the maximum fluorescence
emission at 375 nm (Fig. 1d), and a large Stokes shift
(excitation wavelength λex of 285 nm, emission wave-
length λem of 375 nm, Stokes shift of 90 nm). This data
implies that the emission of SUMOF-7II can be tuned
for biological applications where auto-fluorescence
causes interference [30]. The fluorescence signal is near-
ly constant over a wide pH range of 6–12 (Fig. S7).
The fluorescence emission signals show a small change
for different synthesis batches (Fig. S8). This is because
the fluorescence signals are due to ligand-to-metal
charge transfer (antenna effect). The fluorescence emis-
sion of SUMOF-7II dispersed in ethanol remained un-
changed during at least three months, which reveals the
high photostability of SUMOF-7II (Fig. S9).

The high dispersion of SUMOF-7II together with its
large pore size (11.3 Å) can enhance MOF-guest inter-
actions for small analyte species. The potential applica-
tions of SUMOF-7II as a sensor to metal ions and ami-
no acids were investigated.
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Selectivity and sensitivity of SUMOF-7II towards Fe(III)
ions

To explore the potential of SUMOF-7II for detection of
metal ions, the responses of the fluorescence emission
of SUMOF-7II to different cations (Fig. 2a) and anions
(Fig. 2b) were investigated. SUMOF-7II only shows
significant responses to Fe(II) and Fe(III) among the
tested metal ions (Fig. 2a). The presence of Fe(III) ions
(FeCl3 or Fe(AcO)3) dras t ica l ly decreases the

fluorescence emission of SUMOF-7II. Aqueous Fe(II)
species also show fluorescence quench on SUMOF-7II.
This is due to the presence of Fe(III) impurities caused
by auto-oxidation of Fe(II). The quenching of SUMOF-
7II due to Fe(III) reveals that the fluorescence emission
of SUMOF-7II can be selectively turned off in the pres-
ence of Fe(III). SUMOF-7II has a higher selectivity for
Fe(III) compared to Fe(II). Significant differences in the
response to different Fe(III) salts are observed. The so-
lution of ferric acetate (Fe(AcO)3) exhibits a higher
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quenching effect compared to the solution of ferric chlo-
ride (FeCl3). This is because acetate ions (AcO−) con-
tribute to the quenching (Fig. 2d). All other tested an-
ions do not make significant changes in the fluorescence
emission of SUMOF-7II. The interaction of various met-
al ions with SUMOF-7II was studied using UV-vis ab-
sorption (Fig. S10). The changes of UV-vis absorption
of SUMOF-7II are due to the interaction of the metal
ions with SUMOF-7II. In summary, SUMOF-7II shows
high selectivity to Fe(III) ions.

The sensitivity of SUMOF-7II towards FeCl3 and
Fe(AcO)3 was investigated using fluorescence spectrosco-
py and UV-Vis absorption spectroscopy (Figs. 3a-c). The
fluorescence emission of SUMOF-7II decreases with the
increase of the Fe(III) concentration as shown in Fig. 3a
for Fe(AcO)3 and Fig. 3c for FeCl3. The fluorescence
signal shows a linear relationship with the concentration
of Fe(III) in the range of 16.6–167 μM for Fe(AcO)3
(Fig. 3b, R2 = 0.99) and 26.6–167 μM for FeCl3
(Fig. 3d, R2 = 0.99). The quenching rate (QR)
(QR = (I0 − I)/I0, where I0 and I are the fluorescence
intensities of SUMOF-7II with and without the presence
of Fe(III), respectively) does not change much with time
and depends on Fe(III) salts (Fig. S11). This indicates that
SUMOF-7II can be used to discriminate among these
salts. The Stern-Volmer quenching constant (Ksv), calculat-
ed using the Stern-Volmer equation (I0/I = 1 + Ksv[Q],
where [Q] represents the Fe(III) concentration), is
4.3 × 103 M−1 for Fe(AcO)3 and 2.1 × 104 M−1 for
FeCl3 (Fig. S12). These values reveal a high quenching
capability of Fe(III) ions due to the dynamical quenching.

In addition, the fluorescence response of SUMOF-7II to
Fe(III) is very fast (< 2 min), more than 5 times faster
than that of MIL-53(Al) (> 10 min, MIL refers to
Materials Institute Lavoisier) caused by cation exchange17.
The analytical parameters of limit of detection (LOD),
limit of quantification (LOQ) and linear range are tabulat-
ed in Table 1.

Selectivity of SUMOF-7II towards amino acids

The selectivity of SUMOF-7II towards selected amino acids,
whose absorption or emission matches with the absorption or
emission of SUMOF-7II, such as L-histidine, L-asparagine,
L-glutamine, L-leucine, L-methionine and L-tryptophan were
tested (Figs. 4 and S13). While other amino acids enhance the
fluorescence emission of SUMOF-7II, only tryptophan causes
selective quenching of SUMOF-7II (Fig. 4a). The fluores-
cence emission of SUMOF-7II shows a linear response with
the concentration of tryptophan (Fig. 4b), which agrees with

Fig. 3 Fluorescence response of
SUMOF-7II (0.03 mg·mL−1) up-
on addition of Fe(AcO)3 (a) and
FeCl3 (c) at pH value of 7.4
(λex = 285 nm), and as a function
of the Fe(III) concentration for
Fe(AcO)3 (b) and FeCl3 (d)

Table 1 Analytical parameters of Fe(III) for SUMOF-7II and H3L2

Probe Analyte LOD
(μM)

Linear Range
(μM)

R2 LOQ
(μM)

SUMOF-7II Fe(AcO)3 16.6 16.6–167 0.99 16.6

FeCl3 26.6 26.6–167 0.99 26.6

Tryptophan 167 167–500 0.98 167

H3L2 FeCl3 26.6 26.6–167 0.99 26.6

Tryptophan 26.6 26.6–500 0.98 26.6

LOD limit of detection, LOQ limit of quantification
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the Stern Volmer equation and gives a Ksv constant of
1.69 × 103 M−1 (Fig. S14). The high selectivity of SUMOF-
7II toward tryptophan is due to dynamic quenching and ener-
gy transfer. It is important to stress that both SUMOF-7II and
tryptophan have similar absorbance at 285 nm. Thus, trypto-
phan causes selective quenching to the emission intensity of
SUMOF-7II.

Because the linker H3L2 is the energy receptor and
the source of fluorescence emission of SUMOF-7II, we
also studied the fluorescence emission of H3L2 towards
metal ions and selected amino acids (Fig. 5). H3L2 of-
fers selectivity towards Fe(III) among the selected metal
ions (Fig. 5a). However, SUMOF-7II offers significantly
higher sensitivity than H3L2 (Table 1). For example, the
quenching rate for Fe(AcO)3 is ~89% for SUMOF-7II
and ~34% for H3L2 (Figs. 2b and 5c). Furthermore,
different from SUMOF-7II, H3L2 does not show any
selectivity between Fe(AcO)3 and FeCl3 (Fig. 5a and
c). SUMOF-7II shows a wider linear concentration
range of the fluorescence emission towards FeCl3

(Figs. 3d and 5d). H3L2 only shows a slightly high
selectivity towards tryptophan among the selected amino
acids (Fig. 5b).

Characterization of SUMOF-7II after interactions
with Fe(III) species

Powder X-ray diffraction shows that the crystallinity of
SUMOF-7II is retained in the presence of Fe(III) salts
(Fig. 6a). X-ray absorption spectroscopy shows that the Fe
K-edge (7.112 keV) of FeCl3 and FeCl3@SUMOF-7II are
the same (Fig. 6b), which indicates that the oxidation state
of iron (+3) is remained in FeCl3@SUMOF-7II. A strong
interaction of Fe(AcO)3 with SUMOF-7II is observed from
the FT-IR spectra in Fig. 6c, indicating that Fe(AcO)3 plays an
important role in quenching SUMOF-7II compared to other
Fe(III) species. The peaks at wavenumber of 2990 and
1100 cm−1 refer to C—H and C—O from acetate and
SUMOF-7II, respectively. The peak of La—O shifted from
480 cm−1 to 450 cm−1 in the presence of acetate ions

Fig. 4 The fluorescence response
of SUMOF-7II (a) in the presence
of selected amino acids (167 μM)
showing the selectivity of
SUMOF-7II towards tryptophan
and (b) at different concentrations
of tryptophan and c) linear
relationship.
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(AcO−). The interaction with acetic acid (AcOH) was record-
ed as a control experiment (Fig. 6c). The peak splitting of
(COO)as indicates that acetate (AcO−) coordinated to the
framework metal La (III). SUMOF-7II shows higher thermal
stability (up to 500 °C) compared to the organic linker H3L2
(200 °C), although the adsorption of Fe(AcO)3 or AcOH
causes a slight decrease of the stability (Fig. 6d). The high
thermal stability of SUMOF-7II is important for storage,
transportation and sensing at high temperatures.

It is important to mention that conventional organic
fluorophores are usually insoluble in water (for instance,

H3L2 is soluble in DMF). In contrast, SUMOF-7II is well-
dispersed in ethanol and forms a stable suspension over a long
time period (Fig. S9). SUMOF-7II shows a narrow peak (350–
425 nm) compared to organic fluorophore. This feature is
attributed to the low flexibility of the organic linker inside
MOFs. SUMOF-7II offers ultra-sensitivity and shows a good
linear relationship in concentration range 16.6–167 μM
(Table 2). SUMOF-7II can be used for quantification and
qualitative analysis with higher selectivity and better sensitiv-
ity compared to other probes (Table 2). It was performed in
aqueous solution (pH = 7) without the requirement of acidic
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Fig. 6 (a) PXRD of SUMOF-7II
without and with FeCl3 or
Fe(AcO)3, (b) XAS spectrum of
Fe K-edge (E = 7112 eV) of
FeCl3@SUMOF-7II, (c) FT-IR
spectra of the interactions be-
tween SUMOF-7II and AcOH,
FeCl3 and Fe(AcO)3, and (d)
TGA curves

Table 2 An overview on
reported nanomaterial-based
methods for fluorometric deter-
mination of ferric ion

Fluorophore Probe conc.
(mg·mL−1)

LOD
(μM)

Linear range
(μM)

Response time
(min)

pH
range

Ref.

CPDs 0.05 0.1 0.2–10 30 3 [31]

B-CDs 0.5 0.242 0–16 1 ND [32]

NA-GQDs ND 0.1 0.5–500 5 7 [33]

MIL-53(Al) 0.05 0.90 3–200 7 4–10 [20]

Eu-MOF 4 ND ND > 320 7 [23]

Eu-MOF 1 0.33 ND 30 ND [22]

UMCM-1-NH2 0.2 1000 ND ND ND [24]

SUMOF-7II 0.03 16.6 16.6–167 < 1 6–12 Here

H3L2 0.03 26.6 26.6–167 < 1 7.4 Here

ND not detected, Carbon polymer dots, CPDs, Boron doped carbon dots, B-CDs Nitrogen-doped and
amino acid functionalized graphene quantum dots, NA-GQDs UMCM-1-NH2, University of Michigan
Crystalline Material-1
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solution (pH = 3) [31]. SUMOF-7II offers a wide linear range
compared to other probes such as boron doped carbon dots (B-
CDs) [32]. It also requires no chelating agents [33]. SUMOF-
7II can be applied in a wide pH range of 6–12, requires low
concentration of the probe and shows fast response time
(Table 2).

Conclusions

A highly stable and porous lanthanide metal-organic frame-
work nanoparticle (SUMOF-7II) was synthesized using sim-
ple grinding and ultrasonication of synthesized SUMOF-7II.
Aqueous Fe(III) ions and tryptophan show selective
quenching of the fluorescence emission of SUMOF-7II. The
suspension of SUMOF-7II nanoparticles (~ 60 nm on aver-
age) shows a narrower peak (350–425 nm) with higher emis-
sion signals compared to organic fluorophore (H3L2).
SUMOF-7II (La) offers a direct and label free method for
the detection of Fe(III) and tryptophan. SUMOF-7II presents
a new platform for future sensing and biosensing applications.
More efforts are required to further increase the sensitivity and
selectivity of the material.
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