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Abstract Laser desorption-ionization mass spectrometry
(LDI-MS) is used to determine Hg(II) ions by using
thymine-modified chitosan-coated magnetic nanoparti-
cles (TCTS). TCTS nanoparticles are characterized
using transmission electron microscopy, X-ray diffrac-
tion, UV-vis absorption, infrared spectroscopy and
LDI-MS. TCTS acts as a preconcentration probe, sup-
ports surface enhanced LDI-MS (SELDI-MS) and acts
as a capping agent for Hg(II). The separation of Hg(II)
via this method combined with SELDI-MS provides a
sensitive and selective tool for inexpensive and fast (5
min) detection of Hg(II) with limit of detection down
to 0.05 nmol for environmental samples such as tap and
sea water.

Keywords Mercury . Laser desorption ionizationmass
spectrometry .Magnetic nanoparticles . Thymine . Chitosan

Introduction

Mercury (Hg) is one of the most toxic and dangerous heavy
metal elements in the environment [1, 2]. Mercury
species cause serious diseases/syndromes such as neurological
damage resulting in symptoms such as mental retardation,
seizures, vision and hearing loss, delayed development, lan-
guage disorders and memory loss [1, 2]. The World Health
Organization (WHO) states the maximum allowable level of
inorganic mercury as no more than 6 ppb (30 nM) in drinking
water. In USA, approximately 50 tons of mercury is released
into the atmosphere annually from coal-fired power plants
(represents one third of the U.S. anthropologic mercury
emissions) [3]. Release of mercury to the environment is a
serious problem due to the persistence in the environment
and the circulation between air, water, sediments, soil and
living creatures. Mercury species travel long distances to areas
far from the area of production or use. Lamborg et al. reported
approximately 150% an increase in the amount of mercury in
thermocline waters and have tripled the mercury content of
surface waters compared to pre-anthropogenic conditions [4].
The release of mercury emission should be reduced and mon-
itored carefully [5]. Thus, analytical tools that provide sensi-
tive, selective and fast monitor for mercury ions (Hg(II)) are
highly required.

Toward this high demand, there are many methods for the
detection of mercury(II) ions including, for example, atomic
absorption spectroscopy (AAS) [6], inductively coupled plas-
ma mass spectrometry (ICP-MS) [7], atomic fluorescence
spectrometry (AFS) [8] and others [9–11]. However, these
techniques require complicated procedure for the sample
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preparation, are expensive, require bulky instruments and
professionally trained person. Alternative techniques include
fluorescence [12–14], plasmonic gold nanoparticles, aptamer
based colorimetry [15, 16], surface enhanced Raman spec-
troscopy (SERS) [17, 18] and mass spectrometry (MS) were
reported [19]. Nanoparticle based technologies improved and
enhanced the limit of detection [20–22]. The detection limit
of time of flight mass spectrometry (TOF-MS) with ioniza-
tion process is often ppb or less. The limit of detection can be
improved using simple preconcentration nanoprobe such as
magnetic nanoparticles. Magnetic nanoparticles based nano-
composite (xanthate functionalized magnetic graphene oxide
(Fe3O4-xGO) were reported for mercury separation [23].
These new technologies provided selective separation or
sensing for mercury species. Applications of functionalized
magnetic nanoparticles [24] and magnetic chitosan compos-
ites (MCCs) [25] for the removal of toxic metal and dyes
from aqueous solutions were reviewed.

Herein, we report on a simple, specific, sensitive and fast
method for separation and specific detection of mercury(II)
ions from aqueous media. Thymine modified chitosan mag-
netic (Fe3O4) nanoparticles (TCTS nanomagnets) were syn-
thesized and characterized using TEM, XRD, FTIR, and UV-
vis absorption. TCTS nanomagnets offered a selective, sensi-
tive and fast platform for the detection of Hg(II) ions using
surface enhance laser desorption/ionization mass spectrome-
try (SELDI-MS). TCTS offered a selective nanoprobe for
preconcentration; served as platform for surface enhanced
LDI-MS (SELDI-MS) and capping agents for Hg(II) ions.
TCTS provided selective and sensitive platform for Hg(II)
ions in tap and sea water. Furthermore, magnetic nanoparticles
could work as a soft ionization method for low mass range
(50–500 m/z) where conventional organic matrix causes inter-
ferences at the interested mass range.

Materials and methods

Chitosan (molecular weight > 75,000 g·mol−1), sulfuric acid,
nitric acid were purchased from Baker (India, http://jtbaker.
com/). KMnO4, FeCl2·4H2O, Cu(NO3)2, Mg(NO3)2,
Ni(NO3)2, HgCl2, NaCl, KCl, AlCl3, and SnCl4 and FeCl3·6
H2O, were purchased from Riedel-de Haën (Seelze, Germany,
h t tp : / /www. r i ede ldehaen .com/ ) . 2 ,5 -DHB (2 ,5 -
dihydroxybenzoic acid) and natural graphite (−20 + 84 mesh,
99.9%) were purchase from Alfa Aeser (Great Britain,
https://www.alfa.com/en/). Methanol (HPLC grade) and
potassium permanganate were purchased from Merck. Co
(USA, http://www.merck.com/index.html). Deionized water
obtained from a Milli-Q Plus water purification system
(Millipore, Bedford, MA, USA, https://www.merckmillipore.
com) was used for all experiments.

Synthesis of chitosan modified magnetic nanoparticles
(TCTS)

Chitosan modified magnetic nanoparticles (TCTS) were syn-
thesized with the modification of our previous report [26].
FeCl2·4H2O (0.63 g), and FeCl3·6H2O (1.73 g) were added
to chitosan solution (0.2 g, 25mLH2O, 1 mL acetic acid). The
mixture was stirred for 12 h at room temperature. Then, the
solution was purged with nitrogen gas and stirred in water
bath at 90 °C for 3 h (pH was adjusted to 9 using NH4OH).
The precipitate was separated by external magnets and was
dried in a vacuum oven. The material was re-dispersed in
solution of thymine (2 g, 25 mL H2O) and was stirred for
12 h. The material was collected using external magnetic field
and washed with water (2 × 30 mL).

Synthesis of graphene oxide and graphene

Graphene oxide was synthesized using the Hummers method
[27, 28]. The material was reduced using hydrazine solution
and applied for graphene assisted laser desorption/ionization
mass spectrometry (GALDI-MS) as described in our previous
report [19]. The material was characterized using TEM, SEM,
EDX, Raman spectroscopy, fluorescence, and UV-vis absorp-
tion, as mentioned in our previous papers [29, 30].

Instruments

UV-vis absorption measurements were undertaken in an UV
spectrophotometer (Perkin Elmer 100, German). Fourier
transform infrared (FT-IR) spectra of chitosan and TCTS were
recorded on a FT-IR spectrometer (Spectrum 100, Perkin
Elmer, USA). The size and morphology of magnetic nanopar-
ticles were determined using transmission electron micro-
scope (TEM, JEOL-301, Tokyo, Japan). Matrix assisted laser
desorption/ionization time of flight mass spectrometry
(MALDI-TOF-MS) analysis were performed by employing
positive mode on a time-of-flight mass spectrometer
(Microflex, Daltonics Bruker, Bremen, Germany).
Instrumental parameters were described in our previous re-
ports [31–36]. The spectra were calibrated using DHB peaks
(M. Wt 154 g·mol−1, [DHB + Na]+ at 177 Da and [DHB-
H2O + H]+ at 137 Da). All experiments were repeated at least
three times to confirm the reproducibility.

Selectivity measurement

Metal ions such as Fe(III), Fe(II), Cu(II), Mg(II), Ni(II),
Hg(II), Na(I), K(I), Al(III), and Sn(IV), were mixed in one
solution (1 mg for each metal, Vtotal 10 mL). Simply, 10 μL
of this solution was mixed with thymine (20 μL). Then, 10μL
of this mixture was mixed with nanoparticles (10 μL) prior to
spotting on MALDI plate. Another 10 μL of the metal
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solution was mixed with thymine (20 μL), nanoparticles
(10 μL) and DHB matrix (10 μL, 50 mM, methanol:water
50:50 (vol:vol)). Then, 10 μL was spotted on MALDI plate.
The same experiment was performed without nanoparticles
and in the presence of DHB. The experiment was repeated
for monovalent, divalent and trivalent metal species.

Sensitivity measurement

To investigate the sensitivity of the present protocol, Hg(II)
ions with concentration (1, 10, 50, 100, 500, 1000, 2000,
3000 μM) were investigated. 10 μL of TCTS nanomagnet
was added to the previous solutions individually and separated
using external magnetic field. The separated species re-
dispersed in 10 μL of highly distilled water and was spotted
on MALDI-MS standard stainless plate.

Analysis of real sample

Two different samples (tap and sea water) were used as real
samples. Different volumes (1, 10, 50, 100, 500, 1000, 2000,
3000 μL) of Hg(II) (10 mM) were spiked in tap and sea water
(3 mL). Then, 10 μL of TCTS solution was added and sepa-
rated using external magnetic field. The separated material
was re-dispersed and spotted in MALDI-MS plate as de-
scribed above. The experiments were repeated with and with-
out DHB matrix (50 mM, methanol:water ratio was 1:1
(vol:vol)).

Results and discussion

Material characterizations

Thymine modified chitosan magnetic nanoparticles (TCTS)
was synthesized using hydrothermal method as shown in
Fig. 1a. The function groups of chitosan serve as chelating
agents for the ions of Fe(II) and Fe(III) that were used to
prepare magnetic nanoparticles (Fe3O4). These function
groups are also able to coordinate to thymine molecules. The
material was characterized using TEM (Fig. 1(b-c)), XRD
(Fig. 2a), FTIR (Fig. 2b), UV-vis absorption (Fig. 2c), and
laser desorption/ionization mass spectrometry (LDI-MS,
Fig. 2d). TEM images for chitosan modified magnetic nano-
particles (CTS@Fe3O4, Fig. 1b) and thymine chitosan
nanomagnets (TCTS nanomagnets, Fig. 1c) reveal the size
and morphology of the prepared materials. Data shows that
the size of magnetic nanoparticles within chitosan modified
magnetic nanoparticles (CTS@Fe3O4, Fig. 1b) is about
10 nm. The magnetic nanoparticles undergo aggregation after
the modification with thymine molecules due to the interac-
tions within the material (Fig. 1c). XRD (Fig. 2a) confirms the
formation of magnetic nanoparticles modified with chitosan.

Figure 2a shows good agreement of the experimental pattern
with the simulated diffraction pattern. The five characteristic
peaks of Fe3O4 at Bragg angles (2θ) of 30.12°, 35.57°, 37.08°,
43.13°, and 47.27° were indexed using Joint Committee on
Power Diffraction Standards database (File No. 250540) to the
indices (220), (311), (222), (400), and (331), respectively. The
absence of chitosan diffraction peak at Bragg angle (20.1°)
may be due to the low concentration or the absence of
crystallinity.

FTIR spectra reveal the differences in the chemical func-
tion groups of chitosan, as well as for the materials after cap-
ping of magnetic nanoparticles. FTIR (Fig. 2b) shows the
characteristic peaks of chitosan before and after modification
with magnetic nanoparticles. Chitosan has a broad peak at
3440 cm−1 corresponding to N—H stretch (overlapped with
O—H stretch), 2800 cm−1 (C—H stretching vibration),
1659 cm−1 (amide band I), 1591 cm−1 (amide II band, N–H
stretch), 1217 cm−1 (can be attributed to C—N stretching vi-
bration, amino group band), 1096 cm−1 (the stretching vibra-
tion mode of the hydroxyl group) and 1378 cm−1 (C—H sym-
metrical angular deformation). The increase of the sharpness
of amide peak at 1659 cm−1 due to the modification and in-
teractions of chitosan function groups with thymine. Chitosan
function groups show changes after capping with the core of
magnetic nanoparticles. In addition to the characteristic ab-
sorption bands of the functional groups of chitosan, a new
peak at 660 cm−1 is observed and that refers to Fe—O band.
This observation proves the successful formation of magnetic
nanoparticles embedded inside chitosan nanoparticles.. The
surface of iron oxide is charged by negative charges that in-
teracts with the positive charge of TCTS (—NH3

+ groups,
electrostatic forces) [37, 38]. The presence of O—H groups
in chitosan backbone and N—H groups in thymine reinforce
the interactions through hydrogen bonds.

UV-vis absorption of thymine modified chitosan
nanomagnets (TCTS@Fe3O4) was investigated as shown in
Fig. 2c. UV-vis absorption (Fig. 2c) shows broad absorption at
200–700 nm with maximum absorption at 200 nm and
250 nm. The material offers absorption at wavelength of
337 nm that matches with the laser wavelength of MALDI-
MS (N2 laser, 337 nm). This absorption provides useful appli-
cations of TCTS nanomagnets for LDI-MS such as surface
enhanced laser desorption/ionization mass spectrometry
(SELDI-MS).

The presence of thymine (T) in the chitosan nanomagnets
is further confirmed using laser desorption/ionization mass
spectrometry (LDI-MS) via direct spotting in the standard
plate of conventional MALDI (Fig. 2d). Thymine has chem-
ical formula (C5H6N2O2) with molecular weight of 126 g·
mol−1. LDI-MS shows peaks at 127, 149, 253, 275 and
291 Da corresponding to [T + H]+, [T + Na]+, [2 T + H]+,
[2 T + Na]+, and [2 T + K]+, respectively. The peak assign-
ments are tabulated in Table S1. Detection of T-T complex
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reveals the high softness of TCTS nanomagnets as surface for
the applications of SELDI-MS. This property reveals the
promising of the current method for mercury biosensing using
thymine as chelating agent.

Selectivity and sensitivity

Natural Hg isotopes are a potent neurotoxin and were consid-
ered as the most highly toxic element. Mercury detection in
the environment is reported as marker for pollution. The major
challenge of mercury detection or sensing is that the element
concentration is low and below the limit of detection (LOD)
for many analytical techniques. A technique based on mass
spectrometry such as MALDI-MS suffers from the matrix
interferences in the low molecular weight region (50–
500 m/z). Overall view of the separation of mercury ions
(Hg(II)) using thymine modified chitosan nanomagnets
(TCTS nanomagnets) and detection using LDI-MS is repre-
sented as shown in Fig. 3.

Chitosan is aminopolysaccharide of β-(1–4)-linked D-
glucosamine (deacetylated unit) and N-acetyl-D-
glucosamine (acetylated unit). It has many function groups

which served as chelating groups for transition metals. It
serves as good stabilizing agent for magnetic nanoparticles
and prevents aggregation via dipole-dipole interactions.
Chitosan has been used for metal adsorption with high capac-
ity. Thermodynamic analysis of Hg(II) chitosan interactions
revealed that the adsorption is a spontaneous, fast and pre-
ferred process (ΔG° < 0, ΔH° > 0, ΔS° > 0) [39]. However,
chitosan lacks of selectivity. Thus, we modified chitosan
nanomagnets with thymine (T) that has specific interaction
with mercury (Hg(II)) as shown in Fig. 3. The non-covalent
modification of chitosan with thymine is a request for LDI-
MS. Mercury interaction with 10 bases pair double-stranded
DNA duplex was investigated using extended X-ray absorp-
tion spectroscopy (EXAFS) [40]. EXAFS data showed that
mercury Hg atom binding directly to a six-member ring, with
a slight preference for the binding being to the N atom in
thymine’s pyrimidine ring. Moreover, EXAFS lacks of the
clear distinguish between N or O atom in thymine ring.
Nuclear magnetic resonance (NMR), electrospray ionization
mass spectrometry (ESI-MS) and elemental analysis were
used to study the interactions of Hg(II)-DNA duplexes [41].
Data revealed that thymine residues bind to Hg(II) through

Fe3+

Fe2+

Fe3O4

a)

b) c)

Fig. 1 a Schematic representation the synthesis of TCTS nanomagnets and TEM image for b CTS nanomagnets (CTS@Fe3O4) and cTCTS
nanomagnets (TCTS@Fe3O4)
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covalent N—Hg bonds [41]. The elemental analysis of this
complex showed that two HCl molecules disappear during the
process for complex formation [41]. Hg(II) ions binds directly
to N3 of thymidine in place of the imino proton and bridges
two thymidine residues to form the T-Hg-T pair [41].

A comparison between conventional organic matrix (2,5-
DHB), thymine modified chitosan nanomagnets and combi-
nation of 2,5-DHB with thymine modified chitosan
nanomagnets is shown in Fig. 4. MALDI-MS using conven-
tional matrix (2,5-DHB) usually form undesirable interfer-
ences in low mass range (50–500 m/z). Furthermore, the ma-
trix acidity destroys non-covalent and weak interactions in
metal complexes. 2,5-DHB has chemical formula (C7H6O4)
with molecular weight 154 g·mol−1. Self-ionization of 2,5-
DHB in the presence of T-Hg-T complexes shows peaks at
177 and 137 m/z corresponding to [DHB + Na]+ and [DHB-
H2O + H]+ (Fig. 4). Data shows complexation of Hg(II) with
T using DHB however of its acidity. This observation is due to
the strong interaction of T-Hg-Tcomplex. Furthermore, TCTS
nanomagnets offers soft ionization and reveal complexation
peak at 491 m/z corresponding to [Hg(T)2(H2O)2 + H]+

(Fig. 4). TCTS shows absence of T peak at 127 m/z that refers
to [T + H]+ compared to DHB or DHB and TCTS
nanomagnets. This observation is due to the formation of

[Hg(T)2(H2O)2 + H]+. Chemical structures of DHB, T and
its complexes with Hg(II) ions are represented in Fig. S1.
TCTS nanomagnets could be used as matrix for LDI-MS be-
cause its UV-vis absorptionmatches with the laser wavelength
ofMALDI-MS instrument (337 nm). The large surface area of
magnetic nanoparticles serves as surface for SALDI-MS. The
combination between large surface area and UV absorption
(337 nm) are preferable coined as SELDI-MS.

Using TCTS nanomagnets as preconcentration nanoprobe
and matrix, detection of Hg(II) in standard solution are repre-
sented as shown in Fig. 5a. Data shows characteristic peaks at
491 and 455m/z that are assigned to [Hg(T)2(H2O)2 + H]+ and
[Hg(T)2 + H]+, respectively. In presence of other metals such
as Fe (III), Fe (II), Cu (II), Mg (II), Ni (II), Hg(II), Na (I), K (I),
Al (III), and Sn (IV), thymine binds specifically to Hg(II).
This observation agree with other reports that showed high
selectivity of Hg(II) to thymine base of DNA [41]. This meth-
od offers high sensitivity. Data shows that limit of detection
(LOD) is 10 fmole which lower than the maximum contami-
nant level (MCL) of mercury(II) recommended for drinking
water, i.e., 2 and 6 ppb, as established by U.S. Environmental
P r o t e c t i o n A g e n c y ( E PA , h t t p : / / w a t e r . e p a .
gov/drink/contaminants/index.cfm#List) and the World
Health Organization (WHO, 2011), respectively. Analysis of
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T-Hg-T using DHB in the presence of T and TCTS
nanomagnets combination with DHB was reported as shown
in Fig. S2 and Fig. S3, respectively. Data support the high
performance of TCTS nanomagnets compared to the direct
spotting of T with Hg(II) and using DHB as matrix.

Comparison between the current approach (thymine modi-
fied chitosan nanomagnets) and our previous technique
(graphene assisted laser desorption/ionization mass spectrome-
try, GALDI-MS) is shown in Fig. 6. Mercury has seven stable
isotopes with the following abundances according to the

MALDI-MS
Hg2+Thymine

Fig. 3 Schematic representation of Hg2+ biosensing using TCTS nanomagnets followed by analysis using SELDI-MS
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National Institute of Standards and Technology (NIST)
Standard References Material (SRM) 3133: 196Hg, 198Hg,
199Hg, 200Hg, 201Hg, 202Hg, and 204Hg with percentage of
0.16%, 10.04%, 16.94%, 23.14%, 13.17%, 29.73%, and
6.83%, respectively [42]. Based on simulated mass spectrum
(Fig. 6b), ionization of thymine complex with Hg(II) ions
shows peaks at 484, 485, 486, 487, 488, 489 , 490, 491, 492,
493, 494 with intensity 0.1, 0.5, 0.1, 31.8, 57.5, 80.1, 51.8, 100,
12.8, 23.2, 2.9, 0.4, respectively. The chemical formula of this
complex is C10H16HgN4O6 with molecular weight and mono-
isotopic mass equal to 488.86 and 490.08 g·mol−1, respectively
that in good agreement with the simulated mass pattern
(Fig. 6a). TCTS nanomagnets (Fig. 6b) and GALDI-MS
(Fig. 6c) show good agreements with the simulated mass spec-
trum (Fig. 6a). TCTS nanomagnets assisted laser desorption/
ionizationmass spectrometry technique shows lower resolution
than GALDI-MS. However, the former is softer than the latter
method. This claim is confirmed from the high intensity of T-
Hg-Tcomplex i.e. [Hg(T)2(H2O)2 +H]

+ (Fig. 6). It is supported
from the absence of peak at 470 m/z corresponding to
[Hg(T)2(H2O) + H]+ that is the parent peak in GALDI-MS

spectrum (Fig. 6c). TCTS nanomagnets offer separation facil-
ities using simple magnetic field that is absent for GALDI-MS.

Analysis of real samples

Two different real samples; tap and sea water were used to
approve the technique applicability. TCTS nanomagnets are
useful as nanoprobe for preconcentration and as surface for
SALDI-MS applications. Analysis of tap water (Fig. S4) and
sea water (Fig. S5) using spike of standard mercury ions were
investigated. Data shows successful detection of Hg as T-Hg-
T (Fig. S4-S5). Limit of detection for tap water and sea water
is 0.1 pmol and 1 pmol, respectively (Fig. S4-S5). Sea water
has high salinity, so that it form clusters ions of K (I) and Na
(I) as shown in Fig. S5 (peak at 553 m/z is assigned as
[Hg(T)2(H2O)2 + K + Na]+).

Because of the dangerous character of Hg(II) ions for hu-
man being, monitoring technology should be fast, sensitive,
and selective. The criterion of speed means that the results can
be obtained in very short time. LDI-MS analysis using TCTS
takes place in very short time (< 5 min). This technology
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Fig. 6 Simulated peak mass pattern for peak [Hg(T)2(H2O)2 + H]+ at 491 m/z a and [Hg(T)2(H2O) + H]+ at 472 m/z, comparison between b TCTS
nanomagnets and c GALDI-MS

Table 1 Comparison among TCTS nanomagnets and other reported techniques

Material Technique LODa Linearitya Time Disadvantages Mechanism Ref

ODN–CDs Fluorescence 2.6 5–200 Lack of high
stability

Required expensive
ODN

The fluorescence of resultant
ODN–CDs was quenched
by GO via fluorescence
resonance energy transfer.
In the presence of Hg (II),
the fluorescence was
recovered

[14]

DNAzyme 2.4 2.4–20 > 8 min Time dependent
Expensive
Require UO2

2+

DNAzyme biocatalytic
activity

[50]

Oligonucleotide
functionalized
magnetic silica
sphere (MSS)
@Au nanoparticles

SERS 10 0.1–1000 > 270 min Interference from
other ions

Detect complexes based on
T-Hg-T

[17]

Laser breakdown time
of flight mass
spectrometry

Laser breakdown
time of flight mass
spectrometry

~30000 Require high energy
and expensive

Atomic emission
spectroscopy

[49]

Reduced graphene oxide LDI-MS 2000 < 5 min Require internal
standard for
quantification
analysis

Detect T-Hg-T complex [19]

TCTS nanomagnets 1 < 5 min Here

a, nM; CDs-labeled oligodeoxyribonucleotide (ODN–CDs); oligonucleotide-functionalized magnetic silica sphere (MSS)@Au nano,: SERS. surface
enhanced Raman spectroscopy; MALDI-MS, matrix assisted laser desorption/ionization mass spectrometry;
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offers high throughput as over than 96 samples can be analysis
in each single experiment. This technology (TCTS
nanomagnets enhanced LDI-MS) requires very small volume
(1–10 μL). TCTS nanomagnets enhanced LDI-MS shows
high sensitivity and offers limit of detection levels of Hg(II)
contamination below regulated dangerous human health
levels. Finally, this technology shows highly selectivity in
the sense of responding positively only to the targeted element
e.g. Hg(II) ions. According to thermodynamic analysis (ΔG0,
ΔH0, ΔS0), the process of interactions of Hg(II) and CTS is
spontaneous and preferable process [43]. These interactions
are higher for TCTS compared to CTS. This method requires
no DNA or any amplification [44]. It is important to mention
that this method can be applied at various pH values because
the addition of Hg stabilized duplex formation for the entire
pH range tested [41].

MALDI-MS provides a simple analytical methods com-
pared to many other techniques [45–48] . There are many
methods and technique in literature for mercury detection or
sensing. Comparison among the present method and other
reported methods was tabulated in Table 1. Laser breakdown
time of flight mass spectrometry was used for the detection of
mercury and iodine [49]. This method is rapid and showed
limit of detection equal to 0.82 ppb. However, this method is
based on atomic emission spectroscopy and required high
energy. Catalytic DNA sensors showed high selectivity using
the appropriated DNA sequence that offered a very high af-
finity to Hg(II) ions [50]. However, it required expensive
DNA and fluorophore. It requires perfect matches to form
stable base pairs. These requirements are not important for
our protocol. TCTS nanomagnets offers simple and easy sep-
aration method that make it promising for detection [51].

Conclusions

Thymine modified chitosan nanomagnets (TCTS
nanomagnets) was successfully synthesized and applied for
Hg(II) biosensing via the selective formation of T-Hg-T com-
plex. TCTS nanomagnets served as nanoprobe for specific
capture of Hg(II) ions, preconcentration probe and a surface
for surface enhanced laser desorption/ionization mass spec-
trometry (SELDI-MS). This method is specific for Hg(II)
compared to other ions. It is simple, required small volume,
offers low limit of detection, and high throughput. The current
approach is require no expensive reagents such as DNA,
aptamers or others. The spectra of MS offers many peaks
related to Hg(II) ions that provides precisely detection of these
species. The current approach is applicable for real sample
analysis.
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