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Abstract The authors report on a robust method for the syn-
thesis of gold nanorods (AuNRs) with tunable dimensions and
longitudinal surface plasmon resonance. The method relies on
seed-mediated particle growth in the presence of
benzalkonium chloride (BAC) in place of the widely used
surfactant cetyltrimethyl ammonium bromide (CTAB).
Uniform AuNRs were obtained by particle growth in solution,
and BAC is found to stabilize the AuNRs for >1 year. The
SERS activity of the resulting AuNRs is essentially identical
to that of CTAB-protected nanorods. The SERS activity of the
BAC protected nanorods was applied to the quantitative anal-
ysis of potato virus X (PVX). The calibration plot for PVX is
linear in the 10 to 750 ng⋅mL−1 concentration range, and the
detection limit is 2.2 ng⋅mL−1.
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Introduction

Chemical and physical behaviors of metal nanostructures are
different from bulk materials because of quantum size effect
resulting in specific electronic structures and these properties
are dependent of their shape and size [1, 2]. The types and
ratios of stabilizing agent, reducing agent and other chemicals
determine these tunable properties in chemical synthesis of
nanostructures. Among metal nanoparticles, gold nanoparti-
cles have special interest and wide range of applications in-
cluding biological applications like sensing, delivering and
labeling [3–5]. Due to tunability of localized plasmon reso-
nances of gold nanorods (AuNR), the synthesis of monodis-
perse novel AuNR is an appealing field of research [6–8].
Several methods were reported to synthesize AuNR with con-
trollable size and aspect ratio utilizing seed –mediated growth
[9]. Especially stabilizing agents that surrounds gold nanopar-
ticles are essential in chemical and biological applications
[4, 10]. One of the most used stabilizing agent in gold nano-
particle synthesis is cetyltrimethyl ammoniumbromide
(CTAB) which yields stable gold nanoparticles [11]. In gen-
eral, use of an acidic and weak reducing agent on a spherical
gold nanoparticle (seed) in the presence of CTAB and silver
ions leads AuNR formation with different aspect ratio. It is
well documented that CTAB is a shape inducing agent
and provides colloidal stability via shielding to prevent
aggregation [12]. The exact mechanism involved in the
anisotropic growth of gold nanorods in the seeded growth
method is still lacking at a molecular level. However,
silver plays important role during growth by formation
of AgBr (bromide comes from CTAB) and getting depos-
ited on 110 facet of gold surface. This promotes directed
growth of gold nanorod from a facet which is less densely
covered [13, 14]. Surfactant has also contribution to this
unequal deposition on different facets. In this surfactant
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contribution, known as a zipping mechanism, the van der
Waals interactions between hydrophobic tails within the
CTAB bilayer would favor the longitudinal growth of the
nanorod [6, 10].

However, cytotoxicity of CTAB capped gold nanoparticles
is a concern in biological applications because CTAB has
acute toxicity in most human cells [15, 16]. In this study, we
offer an alternative cationic surfactant in gold nanorod synthe-
sis: benzalkonium chloride (BAC) which is cheaper and less
toxic than CTAB. BAC has been frequently used as a preser-
vative in drugs and disinfectant in various applications [17].
Especially in ophthalmic solutions, it is the most frequently
used preservative because it efficiently fights microbial con-
tamination in bottles and also permits antimicrobials and an-
tihypertensives to enter the anterior chamber by breaking cell-
cell junction in the corneal epithelium [18, 19]. In the AuNR
synthesis, concentrated CTAB has ability to form elongated
rod-like micellar structures [20] and BAC has also similar
tendency to form rod-like micelles [21]. The reported zipping
mechanism as proposed the longitudinal growth of AuNR
would favor identical nanorod growth [22]. Like CTAB,
BAC has quaternary ammonium group through which BAC
might interact with gold surfaces. Long alkyl chain and a
phenyl group connected to quaternary ammonium in BAC
can help stabilization of colloids.

Surface Enhanced Raman Spectroscopy (SERS) has great
potential in biological applications due to high sensitivity
which is sufficient for detection of trace biomolecules in com-
plex biological matrix or even single molecule detection [23].
Fabrication of novel gold nanostructures is also important in
SERS since SERS amplification strongly depends on plas-
mons on the surface of gold nanoparticles [24]. Recent studies
have explicitly demonstrated that gold nanoparticles possess
different optical properties and localized surface plasmon res-
onance that is essential in SERS [25]. In particular, anisotropic
nanoparticles, AuNR, have strong electromagnetic field en-
hancements due to sharp corners and SERS intensity of a
molecule at these sites has substantially increased [26]. The
contributions from both electromagnetic and chemical en-
hancement may promote stronger SERS activity of AuNR
than that of spherical gold nanoparticles [27]. Furthermore,
the probe molecules can be easily attached to the gold surface
via the gold-thiolate bonding, [28] which is essentially identi-
cal to the strong covalent bonding. Novel gold particles as
SERS substrates can be used to maximize signals for intended
analytes and makes the ultra-sensitive analysis possible with a
Raman spectrometer. However sensitivity is not only concern
for the fabrication of a new nanomaterials in SERS if it is
aimed to use them in a quantitative analysis, different issues
from colloidal stability to reproducibility should be taken into
account [23]. A major advance is demonstrated herein the
growth of BAC capped gold nanorods (BAC-AuNR) was
achieved using single – component surfactant system are

essentially identical to CTAB capped gold nanorods (CTAB-
AuNR). Replacement of CTAB by BAC surfactant during
AuNR synthesis results in monodisperse AuNR formation
with anisotropic optical properties. We also studied analytical
performance of the synthesized particle in the quantitative
analysis of potato virus X (PVX) by SERS. PVX is the type
member of the genus potexvirus and it is one of the most
useful model system studying different aspects of virus infec-
tions in plant virus research [29]. Surface modification effi-
ciencies of CTAB-AuNR and BAC-AuNR by thiol replace-
ment on the surfaces were also studied.

Material & method

Chemicals and instrumentation

N-Ethyl-N′-(3-dimethylaminopropyl)carbodiimide hydro-
chloride (EDC), N- Hydroxysuccinimide (NHS), ascorbic ac-
id, NaOH, HClO4, FeSO4, FeCl3, AgNO3, HAuCl4, phos-
phate buffered saline (PBS) tablets, ethanol, hydroxylamine
hydrochloride, CTAB, 5,5′-Dithiobis(2-nitrobenzoic acid)
(DTNB) were ordered from Sigma Aldrich (Germany,
http://www.sigmaaldrich.com). Benzalkonium chloride
solution (50%) was obtained from Tekkim (Bursa, Turkey,
http://www.tekkim.com.tr). PVX and PVX antibody were
purchased from Loewe Biochemica GmbH (Sauerlach,
Germany, http://www.loewe-info.com). Water was
ultrapurified by Mili-Q, Milipore system (18 MΩ cm).

Raman spectra were measured with DeltaNu Examiner
Raman Microscopy system (Deltanu Inc., Laramie, WY,
USA, https://www.sciaps.com) with a 785-nm laser source, a
motorized microscope stage sample holder, and a cooled
charge-coupled device (at 0 °C) detector. Instrument parame-
ters were as follows: 150-mW laser power, 30-s acquisition
time, 2-μm laser spot size and 20 × objective. UV-Vis spectra
were measured by Agilent Technologies Cary 60 spectropho-
tometer (Santa Clara, CA, USA, http://www.agilent.com).
Transmission electron microscopy (TEM) measurements
were conducted with a JEOL TEM instrument
(Peabody, MA, USA, http://www.jeolusa.com). Gold
and sulfur amounts were measured with a THERMO
ELECTRON X7 inductively coupled plasma-mass spec-
trometer (ICP-MS) (Waltham, MA USA, http://www.
thermofisher.com). IR spectra were measured with
Perkin Elmer Spectrum 400 FTIR/FTNIR (Waltham,
MA USA, http://www.perkinelmer.com)

Seed-growth synthesis of gold nanoparticles

The procedure for AuNR synthesis started with seed forma-
tion reducing 250 μL HAuCl4 (0.01 M) by freshly prepared
ice cold 600 μL NaBH4 (0.01 M) in the presence of 7.5 mL
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CTAB in an ice bath. Then, 1.15 mL HAuCl4.3H2O (0.01 M)
was added to 4.75 mL of BAC (10%) to get orange growth
solution in another vial. Then, 60 μL 0.01 M AgNO3 and
250 μL 0.1M ascorbic acid were added to the growth solution
subsequently. The resulting solution was colorless. Finally,
100 μL seed solution was added on growth solution and gent-
ly shaken for 10 s. After three hours of waiting, blue colored
solutions. Solutions were centrifuged for 10 min at
12,500 rpm (12,453 rcf) to remove excess BAC. After centri-
fugation, AuNR were suspended in deionized water or buffer
depending upon the intended purposes.

Synthesis of iron oxide core gold Shell magnetic
nanoparticle

Iron oxide core – gold shell magnetic nanoparticles (MGNP)
was used for magnetic nano-extraction of PVX in SERS ap-
plication of AuNR. For this aim, MGNP were prepared ac-
cording to our previous procedure [30]. Briefly, iron oxide
nanoparticles were formed by co-reduction of 5 mL FeCl3
(1.28 M) and FeSO4 (0.64 M) after dropwise addition of
1.0 M NaOH (125 mL). Iron oxide particles were collected
by amagnet andwashedwith deionizedwater. Then theywere
kept in 2 M HClO4 for 24 h and they were centrifuged at
10,000 rpm (8609 rcf) for 10 min. Iron oxide particles were
dried at room temperature and 10mg of themwas dissolved in
5 mL water. Then 0.5 g ethylenediaminetetraacetic acid in
5 mL NaOH was added. After centrifugation at 8000 rpm
(6887 rcf), 7 ml CTAB (0.1 M), 3 mL HAuCl4 (0.01 M),
0.35 mL NaOH (1 M), and 0.15 g hydroxylamine hydrochlo-
ride were added to iron oxide particles respectively. Wine-red
color formation indicated surface covering of iron oxide par-
ticle with gold shell.

Characterization of nanoparticles

Nanoparticles were characterized according to their colors,
UV-Vis absorption spectra and transmission electron micro-
scope (TEM) images. UV-Vis absorption measurements of
gold nanoparticles were measured between 400 and 800 nm.
Gold nanoparticle samples were prepared on carbon/formvar
coated copper grids and they were recorded on a TEM oper-
ated at 80 kV. Sulfur and gold amount in the nanoparticles
after modification with somemercapto-compounds were mea-
sured with an ICP-MS. Silver content of the nanorod was also
measured with the ICP-MS. Zeta potentials were measured for
testing stability of AuNR. IR spectra were measured to ob-
serve BAC on the surface of AuNR.

Surface modification with mercapto-compounds

Surfaces of BAC-AuNR and CTAB-AuNR were modified
with different mercapto-compounds; mercaptoundecanoic

acid, lipoic acid and mercaptophenyl boronic acid: 1 mL
BAC-AuNR and 1 mL CTAB-AuNR were centrifuged at
10000 rpm (14,000 rcf) for 10 min and washed with distilled
water for three times separately. After three times washing,
they were suspended in ethanolic solution of 20 mM 1 mL
mercapto compounds separately and they were incubated for
one night on a shaker. Then they were centrifuged and washed
for three times with ethanol. After suspending in 5 mL water,
finally Au and S amounts were measured with an ICP-MS.

SERS applications

Signal amplification of BAC-AuNR was firstly tested by
using a Raman tag, DTNB. Signal enhancements by BAC-
AuNR and CTAB-AuNR on DTNB were also compared. For
this aim, same concentrations of AuNR were washed with
water for three times after centrifugation at 1000 rpm for
10 min. Then they were suspended in ethanol containing
100 mM DTNB. After 1 h incubation at room temperature,
AuNR were washed with ethanol for three times for removing
excess DTNB and they were resuspended in ethanol. SERS
spectra were obtained after evaporation of 3 μL samples on
glass surface at room temperature. After signal enhancement
study, BAC-AuNR was used for determination of PVX in a
sandwich assay with MGNP. BAC-AuNR was modified with
DTNB and PVX antibody for Raman labeling, while MGNP
was modified with PVX-antibody for extraction.

BAC-AuNR solution was washed with water for three
times after centrifugations at 1000 rpm for 10 min. They were
suspended in ethanol and incubated for 1 h with a Raman
label, DTNB (100 mM). After washing excess DTNB,
carboxylate groups of DTNB were activated with EDC/NHS
(0.1 M) for modification with PVX-antibody. Then they were
incubated at 4 °C for one night with PVX-antibody. Excess
PVX-antibody was washed with PBS for three times.

For magnetic nanoextraction, the surface of 1 mL MGNP
wasmodifiedwith a linker; 20mM0.1mLmercaptoundecaonic
acid (MUA) in ethanol. The mixture was incubated for 30 min
and excess MUAwas removed by washing with ethanol. Then,
magnetic particles were re-suspended in 1 mL PBS, and carbox-
ylate group of MUA on the surface of MGNP was activated
using 0.2 mL EDC/NHS (0.1 M) for 30 min for antibody con-
jugation. After activation, they were incubated with 0.1 mL
100 μg/mL PVX-antibody at 4 °C for one night. Finally, they
were washed with PBS for three times to remove free antibodies
and they were re-suspended in 1 mL PBS.

PVX samples were prepared in PBS in different concentra-
tions between 10 and 750 ppb. 50 μL of PVX-antibody mod-
ified MGNP were added to 100 μL PVX samples and the
solutions were incubated for one hour at 4 °C. After three
times washing with PBS, the sandwich assay procedure with
DTNB labeled BAC-AuNR was applied: Firstly 100 μL 1%
ethanolamine (v/v) were added to PVX captured MGNP
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solutions and incubated for three hours to prevent non-specific
interaction. Then 50 μL DTNB labeled and PVX antibody
modified AuNR were added to the solutions. After one night
incubation at 4 °C, particles were collected with a magnet and
washed for three times. Finally, they were suspended in
100 μL PBS and 3 μL samples were dropped on aluminum
foil covered glass slides for Raman measurement. Three rep-
licates of PVX at 100, 300 and 500 ppb were prepared in PBS
and analyzed according to above procedure for three days for
analytical validation studies.

Results & discussion

It is well documented that the seedmediated growth procedure
is the most practical method for the synthesis of AuNR.
Generally, CTAB and gemini surfactants were used as shape
– directing agents in seed mediated growth procedure. The
resulting aspect ratio can be controlled by changing the con-
centration of HAuCl4 and seed. In the present study, we de-
scribe the use of BAC as the directing agent for seed mediated

growth of AuNR. BAC growth medium has some advantages
over traditional CTAB based growth systems like BAC is less
toxic and cheaper than CTAB. Although CTAB was used in
seed synthesis and at later steps it was removed from particles
so BAC is the primary surfactant for seeded growth of gold
nanorods. The FTIR spectrum of BAC-AuNR shows that
BAC exist on the surface of AuNR and CTAB which was
used in seed synthesis was removed in seed mediated growth
and washing procedures (Fig. S1–3). Although BAC and
CTAB have similar molecular groups in their structures, it is
possible to differentiate them in IR spectrum especially con-
sidering aromatic group of BAC and some other small differ-
ences in their spectra. Therefore, we employed FTIR spectros-
copy to confirm only BAC exist on the surface of AuNR.
Bands of BAC-AuNRmostly match with BACwhile it differs
more with CTAB. First and the most important IR absorption
is at 1628 cm−1 assigned to partial double bonds of aromatic
group in BAC and BAC-AuNR have also weaker form of that
band. Also IR absorption at 3002 cm−1 is seen in BAC and
BAC-AuNR spectra that is well known band for phenyl group
which does not exist in CTAB FTIR spectrum. Asymmetric

Table 1 Benzalkonium chloride
optimization (100 μL seed,
1000 μL HAuCl4
(1.86 × 10−3 M), 60 μL AgNO3

(0.01 M), 250 μL ascorbic acid
(0.1 M))

BAC concentration Size (nm) aspect ratio Shape

1% 19.6 ± 4.6 1.3 ± 0.4 anisotropic spherical and cube

2% 22.4 ± 2.8 1.2 ± 0.1 anisotropic spherical and cube

4% 27.7 ± 8.7 1.5 ± 0.6 anisotropic spherical and cube

6% 32.4 ± 10 1.8 ± 0.6 anisotropic spherical and cube

8% 49.5 ± 6.1 × 25.9 ± 12 2.4 ± 1.3 rod

10% 45.5 ± 2.6 × 19.3 ± 5.1 2.5 ± 0.6 rod

11% 49.8 ± 4.4 × 18.2 ± 3.7 2.8 ± 0.4 rod

13% 45.6 ± 6.2 × 16.8 ± 4.0 2.8 ± 0.6 rod

14% 51.5 ± 8.1 × 26.6 ± 9.7 2.2 ± 0.7 rod

15% 39.4 ± 2.7 × 16.4 ± 2.2 2.4 ± 0.3 rod

20% 27.3 ± 5.9 1.4 ± 0.2 Anisotropic triangle, icosahedra and cube

The data reported as average sizes of 10 particles measured at TEM images. Sizes for rods were reported as
longitudinal size x transverse size respectively

Table 2 Gold concentration optimization (100 μL seed, 10%
benzalkonium chloride, 60 μL AgNO3, 250 μL ascorbic acid)

Gold concentration Size (nm) Aspect ratio Shape

5.67 × 10−4 M 9.0 ± 1.1 1.1 ± 0.2 spherical

1.13 × 10−3 M 14.6 ± 1.4 1.0 ± 0.1 spherical

1.45 × 10−3 M 22.3 ± 2.5 × 11.6
± 1.3

2.0 ± 0.4 elliptical rod

1.85 × 10−3 M 27.9 ± 4.6 × 10.9
± 2.3

2.6 ± 0.5 elliptical rod

2.20 × 10−3 M 29.5 ± 3.6 × 14.8
± 2.7

2.1 ± 0.5 elliptical rod

The data reported as average sizes of 10 particles measured at TEM
images. Sizes for rods were reported as longitudinal size x transverse size
respectively

Table 3 Seed volume optimization (1.85 × 10−3 M Au, % 10
benzalkonium chloride, 60 μL Ag, 250 μL ascorbic acid)

Seed volume Size (nm) Aspect ratio Shape

50 μL 21 ± 3.0 1.5 ± 0.16 Spherical and rod

100 μL 30.8 ± 3.9 × 13.5 ± 1.9 2.2 ± 0.5 rod (dog-bone)

200 μL 17 ± 0.8 2.14 ± 0.22 spherical and rod

300 μL 21.5 ± 0.8 × 8.5 ± 0.9 3.6 ± 0.33 rod

400 μL 10.3 ± 0.7 3.1 ± 0.48 spherical and rod

600 μL 10.9 ± 0.8 1.72 ± 0.33 spherical and rod

The data reported as average sizes of 10 particles measured at TEM
images. For mixtures, the data for the particle with higher fraction is
reported. Sizes for rods were reported as longitudinal size x transverse
size respectively
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vibrations of CH3–N
+ in BAC exactly match with BAC-

AuNR 1457, 1467, 1476 cm−1 (νasym (CH3–N
+)) while

CTAB shows small differences having those peaks at 1462,
1473, 1486 cm−1. The peaks at 1430, 1407 and 1396 cm−1 of
CTAB are assigned to symmetric CH3–N

+ vibrations and
those vibrations can be seen at 1447 and 1378 for BAC and
BAC-AuNR. Stretching of hydrocarbon chain (sp3 C-H)
around 2900 cm−1 also shows small differences between
CTAB and BAC. This region of BAC-AuNR mostly matches
with BAC while it is a little more different from CTAB.
Finally, CTAB has strong bands at 912 and 961 cm−1 that do
not exist in BAC-AuNR spectrum.While most of the bands of
BAC can be clearly seen in BAC-AuNR, some bands were
weaker in BAC-AuNR FTIR spectrum and it might be due to
AuNR limits some vibrational and rotational modes of mole-
cules attached on its surface. On the other hand, bands of
CTAB do not coincide with BAC-AuNR bands.
Consequently, FTIR spectrum of BAC-AuNR displays only
BAC exist on the surface of AuNR. Therefore, as a surface
protecting agent, BAC determines some characteristics of
AuNR such as aggregation tendency, toxicity, etc.

Our approach to the formation of AuNR is to deposit Au+

ions on the surface of gold seed in a fashion similar to seeded
growth used in CTAB as a surface protecting agent. In this
study, the surfactant solution used is BAC and the addition of
gold chloride salt solution to a mixture of silver and BAC
leads to the formation of a complex involving both
benzalkonium ions (BA+) and Au3+ which appeared as a pale

– yellow. In consequence of reduction of Au3+ to Au+ by
ascorbic acid, Au+ ions were deposited on to the small
gold seeds in the presence of directing surfactant BAC
and silver ions. The resulting aspect ratio can be con-
trolled by changing the concentration of HAuCl4, seed,
BAC, silver and reducing agent.

Optimizations

The effect of BAC, HAuCl4, seed, AgNO3 and ascorbic acid
concentration on gold nanoparticle size and shape were stud-
ied. In the first set of experiments, we investigated the effect of
BAC concentration on aspect ratio. We observed remarkable
changes in size and shape when the amount of BAC changed
between 1 and 20% (Fig. S4). The change of shape in gold
nanoparticles depending on BAC concentration could be orig-
inated from the fact that BAC might have different binding
affinities to facets of gold nanoparticles. This may change the
order of free energies for different planes and it can cause
different growth rate in planes [31]. As a result, different
shapes can be observed rather than spherical particles. We
think that the increase of the amount of BAC can affect the
difference of growth rate in planes resulting different particle
shapes from spheres to rods. When BAC concentration in-
creased from 1% to 6%, size of anistropic spheres and cubes
increased from 20 nm to 40 nm (Table 1). After 8% BAC
concentration, we observed rod formation. Anisotropic trian-
gles, isocahedra and cubes were observed at 20% BAC

Table 5 Ascorbic acid (0.1 M)
volume optimization
(1.85 × 10−3 M Au, % 10
benzalkonium chloride, 100 μL
seed, 60 μL Ag)

Ascorbic acid volume Size (nm) Aspect ratio Shape

100 μL 19.7 ± 4.3 1.1 ± 0.1 anisotropic spherical

125 μL 26.8 ± 2.6 × 15.2 ± 4.1 1.8 ± 0.6 rod

150 μL 29.0 ± 4.1 × 9.2 ± 1.1 3.2 ± 0.7 rod

175 μL 31.5 ± 4.9 × 9.8 ± 0.5 3.2 ± 0.4 rod

200 μL 28.3 ± 2.4 × 9.6 ± 1.0 3.0 ± 0.2 rod

225 μL 23.6 ± 5.1 × 10 ± 0.1 2.4 ± 0.5 rod

250 μL 27.4 ± 3.7 × 11.3 ± 0.7 2.5 ± 0.3 rod

The data reported as average sizes of 10 particles measured at TEM images. Sizes for rods were reported as
longitudinal size x transverse size respectively

Table 4 Silver nitrate (0.01 M)
volume optimization
(1.85 × 10−3 M Au, % 10
benzalkonium chloride, 100 μL
seed, 250 μL ascorbic acid

Seed volume Size (nm) Aspect ratio Shape

15 μL 16.2 ± 2.1 1.1 ± 0.1 anisotropic spherical

30 μL 28.9 ± 2.9 × 14.2 ± 1.3 2.0 ± 0.3 rod

45 μL 25.0 ± 1.9 × 10.5 ± 1.0 2.4 ± 0.2 rod

60 μL 23.8 ± 3.0 × 10.0 ± 0.9 2.4 ± 0.5 rod

75 μL 23.4 ± 1.5 × 9.6 ± 0.5 2.4 ± 0.1 rod

100 μL 14.3 ± 0.5 2.5 ± 0.6 spherical and rod

The data reported as average sizes of 10 particles measured at TEM images. For mixtures, the data for the particle
with higher fraction is reported. Sizes for rods were reported as longitudinal size x transverse size respectively
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concentration. Among these concentrations, 10% BAC con-
centration was selected for further studies due to higher yield,
homogeneity, and repeatability.

We performed another set of experiment for gold concen-
tration optimization keeping other parameters unaltered. The
effect of gold concentration was investigated between
5.67 × 10−4 M – 2.20 × 10−3 M (Table 2). As expected, low
gold concentrations yield spherical particles while rod-shaped
particles were observed at higher concentrations of gold
(Fig. S5). UV-Vis absorption spectra (Fig. S9) confirms
TEM images by formation of a new band around 700 nm that
belongs to longitudinal band on rod. The transverse band is
around 530 nm. TEM image and a small shoulder of the trans-
verse peak show that small amount of spherical particles still
exists with rod shaped particles. Gold concentration was hold
at 1.85 × 10−3 M for further optimization experiments.

Seed concentration also affected particle shape and sizes
(Table 3). Seed volumes from 50 μL to 600 μL creates spher-
ical, rod and mixture of these particles (Fig. S6). According to
TEM images and UV-Vis absorption spectra (Fig. S10), we
decided to use 100 μL seed for further experiments.

AgNO3 amount, which was used to enhance yields in gold
nanorod synthesis, was optimized between 15 and 100 μL
(Table 4). After 30μL of AgNO3, rod formation was observed
in TEM images (Fig. S7) with formation of a new UV-
Vis absorption band (Fig. S11). 60 μL of AgNO3 which
yields more homogenous particle profile was selected as
optimum amount.

Finally, we studied the effect of reducing agent, ascorbic
acid in a range of 100–250 μL (Table 5). When 100 μL ascor-
bic acid was used, anisotropic spheres about 20 nm were ob-
served. After 125 μL ascorbic acid, we observed rod forma-
tions with aspect ratio from 1.5 to 3 observed (Fig. S8 and
Fig. S12). The final AuNR solution has blue color and zeta
potential of 27.8 mV.

Optimized AuNR contain a little silver in it and silver con-
tent was found as 1.4 μg·mL−1 by ICP-MS measurements.

Modification with mercapto-compounds

After the synthesis, the surface of AuNR should be modified
for intended application. For this purpose, the capping agent
has to be replaced effectively with a new agent that has higher
affinity to gold surfaces.We compared surface modification of
CTAB-AuNR and BAC-AuNR with frequently used surface
modifying agents, mercaptoundecanoic acid, lipoic acid and
mercaptophenylboronic acid. According to S/Au ratio, BAC-
AuNR has higher modification yield in mercaptoundecanoic
acid modification while CTAB-AuNR show higher yields in
lipoic acid and mercaptophenyl boronic acid modifica-
tion according to ICP-MS measurements (Table S1).
These results indicate that BAC-AuNR can be easily
modified like CTAB-AuNR.

SERS applications of BAC-AuNR

Amplification of the Raman signals by metal nanostructures
depends on hot spots created on sites of metal particles. These
intensified electric fields that is responsible for surface en-
hanced light scattering effect depends on fabrication tech-
niques of metal particles [26, 32]. Metal particles with differ-
ent synthesis routes can have different signal enhancement
effects in spectroscopy. We compared signal amplification of
BAC-AuNR and CTAB-AuNR on a Raman dye, DTNB.
SERS spectra (Fig. 1) show that BAC-AuNR has higher en-
hancement effect on DTNB than that of CTAB-AuNR. The
calculated enhancement factor (EF) for BAC-AuNR is
~1.7 × 104 (see Electronic Supplementary Material for EF

Fig. 2 TEM image of BAC-AuNR used in PVX determination

Fig. 1 Enhancements of DTNB Raman spectrum by CTAB-AuNR and
BAC-AuNR
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calculation). The results show that BAC-AuNR can be used
for SERS analysis of samples which requires high sensitivity.

We also tested analytical performance of BAC-AuNR in a
quantitative SERS analysis of a biologically important ana-
lyte, a virus. Fabrication of homogenous and stable nanostruc-
tures affects analytical parameters in quantitative SERS anal-
ysis because aggregated or heterogeneous particles have low
repeatability and reproducibility in SERS. We tested the ana-
lytical performance of BAC-AuNR (Fig. 2) on PVX determi-
nation by sandwich assay with using raman labeled BAC-
AuNR and MGNP. The strong peak at 1332 cm−1 in SERS
spectra (Fig. 3a) were used in the quantitative analysis. Range
was determined by observation of linear responses between
PVX concentration and peak intensities. Linear relationship in

the range of 10–750 ppb of PVX has high coefficient of de-
termination in the calibration graph (Fig. 3b). Detection and
quantitation limits were calculated as 2.2 ppb and 6.5 ppb
respectively from slope and intercept values of calibration
sets. Samples at three different concentration levels were an-
alyzed to test accuracy and precision. High recoveries be-
tween 97.7–103.3% shows that the assay has high accuracy.
Intra-day and inter-day precision were assessed by relative
standard deviations of samples (Table S2). Validation results
prove that BAC-AuNR can produce precise and accurate sig-
nals in SERS analysis.

Table 6 shows comparison of BAC-AuNRwith some other
SERS active particles in terms of application and enhance-
ment factors. It is clear that the developed BAC-AuNR is
not one of the best material in terms of enhancement factor
but still it provides high-sensitivity comparing other detection
techniques used in PVX detection such as UV absorbance in
ELISA [33] since SERS itself is a high sensitive technique that
even single molecule detection is possible with 107–108 en-
hancement factors. The enhancement factors of silver aggre-
gates can reach to level of 1010 [34] however precision is
generally low if they are used in quantitative analysis due to
non-uniform structure of aggregates. In consequence, BAC-
AuNR provides low toxicity, acceptable accuracy and preci-
sion for quantitative analysis and moderate sensitivity com-
paring other SERS active particles.

Conclusion

In this study, we developed a SERS active novel AuNR by
using BAC as a stabilizing agent. BAC was used as a shape –
directing agent in seed mediated growth procedure. The ef-
fects of chemicals-reducing agent, stabilizing agent, gold, and
silver-were observed for homogenous and stable AuNR fab-
rication. TEM images indicated that the monodisperse AuNR
were synthesized with a high yield. The high–yield

Table 6 Recent examples of
SERS active nanomaterials Material Analyte Matrices Enhancement

Factor
Reference

AgNP Formaldehyde Food samples and
environmental
waters

Not provided [35]

AuNF Dopamine Not provided [36]

AgNP Pesticides Food samples 1.2 × 108 [37]

Au-AgNR Cervical cancer cells Cell culture Not provided [38]

AuNP Nicotine and uric acid ~107 [39]

AuNR Crystal violet and methylene blue ~104 [40]

AuNR 4-nitrothiophenol ~107 [41]

AuNR Potato virus X ~1.7 × 104 this study

AgNP Silver nanoparticles, AuNF Gold nanoflowers, Au-AgNR Gold-silver nanorods

Fig. 3 SERS study of PVX determination based on Raman label
(DTNB) measurements a calibration spectra b calibration graph
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anisotropic growth and monodispersity of AuNR can be at-
tributed to the use of BAC as a surfactant. Synthesized BAC-
AuNR not only shows high signal amplification in Raman
spectroscopy but also serves high analytical performance for
quantitative analysis in SERS. High sensitivity was achieved
in SERS measurements of DTNB. We also showed that the
surface of BAC-AuNR can easily be modified with thiol con-
taining compounds for different applications. Finally, we used
BAC-AuNR in a quantitative SERS application for PVX de-
termination. BAC can be a cheaper and safer alternative to
CTAB in AuNR synthesis. This study concentrates on intro-
duction of a new and less toxic surface protection agent in
AuNR synthesis and exploring analytical performance of the
AuNR in quantitative analysis. Further studies such as facet
control study might be necessary to if higher enhancement
factors desired.
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