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Abstract The article describes a bienzyme visual system for
aptamer-based assay of Hg(II) at nanomolar levels. The detec-
tion scheme is based on the finding that Hg(II) ions captured
by aptamer-functionalized magnetic beads are capable of
inhibiting the enzymatic activity of uricase and thus
affect the formation of H2O2 and the blue product, i.e., oxi-
dized tetramethylbenzidine. This strategy allows for a visual
detection of Hg(II) at nanomolar levels without additional
amplification procedure. Measuring the absorbance at
650 nm, the logarithmic calibration plot is linear in the con-
centration range of 0.5–50 nM and the limit of detection
(LOD) is 0.15 nM. This is as low as the LOD obtained by
atomic fluorescence spectrometry (AFS). The ions K+, Mg2+,
Na+, Ca2+, Cu2+, Zn2+, Fe3+, Al3+, Co2+, AsO2

−, Ni2+, Cd2+

and Pb2+ do not have a significant effect on color formation.
Themethodwas applied to the analysis of (spiked) river water,
lake water, mineral water, tap water and certified reference
water samples, and the results agreed well with those obtained
by AFS or certified values, with recoveries ranging from 97%
to 109%. The relative standard deviation for five parallel de-
tections at a 10 nM Hg(II) level is 5.2%.
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Introduction

Hg2+ can result in DNA mutation, disruption of biological
events at the cellular level, damage of the liver and kidney,
and even death, and thus it was considered to be an important
environmental pollutant. The upper limit of Hg2+mandated by
United States Environmental Protection Agency (EPA) guide-
lines is 10 nM (2 ppb) in drinking water [1]. Additionally,
indirect exposure caused by eating Hg2+-tainted fish or other
aquatic products has also been considered as a common route
that leads to the toxic effects of Hg2+. Therefore, it is highly
desirable to develop a sensitive and selective Hg2+ detection
method that can provide simple, practical, and high-
throughput routine determination of trace levels of Hg2+ ions
in water samples.

Currently, the widely used methods for Hg2+ detection are
atomic spectrometry-based approaches, such as atomic ab-
sorption spectroscopy, cold vapor generation atomic fluores-
cence spectrometry (CVG-AFS), and inductively coupled
plasma atomic emission spectrometry (ICP-OES) and mass
spectrometry (MS) [2]. These methods, although offered the
advantages of high accuracy and selectivity, required sophis-
ticated and expensive instrumentation and skilled personnel,
which are inappropriate for point-of-use applications. To over-
come these drawbacks, much effort has been devoted towards
the design of a variety of sensing systems, such as organic
chromophores or fluorophores [3, 4], conjugated polymers
[5], gold or silver nanoparticles [6–9], upconverting nanopar-
ticles [10], magnetic fluorescence probe [11], etc. for detec-
tion of Hg2+ ions. However, most of these methods suffered
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from limitations such as poor selectivity with interference
from closely related metals, insufficient sensitivity, etc.

Aptamer-assay has been considered as a new emerging
approach for selective detection of mercury because it can
specifically interact with thymine bases to form strong and
stable thymine-Hg2+-thymine complexes (T-Hg2+-T) [12].
The high stability of T-Hg2+-T base pair have boosted a large
number of fluorescent [13, 14], chemiluminescent [15, 16],
electrochemical [17, 18] and colorimetric assays [19, 20].
Among these Hg2+ sensors, colorimetric aptasenosors
have attracted particularly much attention for point-of-use ap-
plications, since the target recognition event can be deter-
mined visually. The reported colorimetric method for Hg2+

detection is mainly based on gold nanoparticles (AuNps),
since the color was readily changed by aggregation or
deaggregation of AuNps during the target recognition
[20–24]. The visual process was can be also realized by inhi-
bition of the G-quadraplex DNAzyme function via T-Hg2+-T
[19, 25]. Besides, we also tried to use photocatalytic oxidation
of TMB to visual assay of Hg2+ [26]. Although these
colorimetric Hg2+ sensors showed the obvious advan-
tage of simplicity, it is difficult for them to distinguish
the color change of 10 nM Hg2+ (upper limit of Hg2+ in
drinking water) except the use of an extra amplification
step [24, 27].

Bienzyme reaction system has attracted much attention
because the substrate of the latter enzymatic reaction can be
produced on-line by the former enzymatic reaction [28, 29].
By utilizing the efficient bienzyme reaction system, we also
have developed ultrasensitive chemiluminescence resonance
energy transfer (CRET) biosensor for detection of glucose,
cholesterol, and benzylamine [30]. Thus, the use of bienzyme
catalytic coloration is also expected to be a promising visual
detection scheme for aptamer-assay. We found the coloration
of the bienzyme (i.e., uricase and HRP)-TMB system to be
inhibited by Hg2+. This effect can be used for aptamer-

based assay of Hg2+ at nanomolar levels without
an extra amplification (Fig. 1).

Experimental

Reagents

3,3′,5,5′-Tetramethylbenzidine (TMB), uric acid and urea-
formaldehyde magnetic microspheres (10 mg⋅ml-1, 1–2 µm in
diameter) were purchased from Aladdin (Shanghai, China,
www.aladdin-e.com). Sodium hydroxide, hydrochloric acid,
dimethyl sulfoxide (DMSO) and phosphate (KH2PO4) were
obtained from Kelong Reagent Co. (Chengdu, China,
ke longhg .51p la . com) . Ur icase and horse r ad i sh
peroxidase(HRP) were provided by Sangon Biotech
(Shanghai, China, www.sangon.com). Mercury standard
sample (GSBZ50016–90) was obtained from National
Research Center for Standard Materials (Beijing, China,
www.ncatn.com ). The Oligonucleotides (5 ′-NH2-
TTCTTTCTTCCCCTTGTTTGTT-3′) for recognition of
Hg2+ were also provided by Shanghai Sangon Biotech Co.,
Ltd. (Shanghai, China, www.sangon.com).

Preparation of aptamer-functionalized magnetic beads

First, 200 μL of magnetic beads (MBs) were diluted to 1 mL
in phosphate buffer. 100 μL of 100 μM amine modified Hg2+

aptamer was added to the diluted MBs and vortexed briefly.
Ten milligrams of EDC was then added to the MBs/aptamer
and vortexed for overnight. The particles were then washed
three times using the phosphate buffer, and resuspended in
2 mL of the phosphate buffer. The aptamer-functionalized
magnetic beads (AFMBs) were stored at 4 °C prior to use.

Fig. 1 Principle of bienzyme-based visual assay of mercury by aptamer
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Analytical protocol

40 μL of 40 μg⋅mL−1 AFMBs were added to 1.5 mL of Hg2+

standard solutions or samples and incubated for 60 min to
recognition of Hg2+; then, the AFMBS were deposited with
a magnet and washed twice by phosphate buffer; the Hg2+

ions were desorbed by addition of 100 μL 0.1 M HCl; after
20 min, 330 μL of 0.08 mg⋅mL−1 uricase in phosphate buffer
(0.1 M, pH 7.0) were added and the enzymatic activity of
uricase was inhibited for 30 min by desorbed Hg2+; 40 μL
Uric acid (0.168 mg⋅mL−1 or 1.68 U⋅mL−1) were added to the
solution for generation of H2O2 under the catalysis of the
uninhibited uricase; the 160 μL of 0.1 M HCl, 40 μL of
0.8 μg⋅mL−1 (or 0.2 U⋅mL−1 ) HRP and 30 μL of
0.1 mg⋅mL−1 TMBwere added for coloration. The absorbance
was measured at 650 nm. Here, it is worthy of noting that the
uricase solution should be freshly prepared daily.

Results and discussion

Design of bienzyme visual aptamer-assay for detection
Hg2+

At first, monoenzyme, i.e., HRP was used to catalyze the
coloration of TMB. However, the HRP catalytic activity did
not changed in the present of Hg2+ (Fig. 2a), and thus was
unable to be applied for the visual readout of Hg2+. Further
experiments showed that Hg2+ ions in 10 nM concen-
tration inhibit the enzymatic activity of uricase. This effect
leads to a retarded rate of H2O2 formation in the presence of
uricase substrate and slower rate of the chromogenic reaction
of TMB as can be seen in Fig. 2a. Thus, the uricase-HRP-
TMB system can be used for visual assay of Hg2+. It has been
proved that Hg2+ was be readily react with –SH or –NH2

contained compounds [31]. Hence, we infer that Hg2+

inhibited the catalytic activity of uricase via interacting with

–SH or –NH2 in amino acid residues, but the specific interac-
tion mechanism remains to be further investigated.

Figure 2b shows that the Hg2+ ions specifically captured
and separated by AFMBs inhibit the coloration of the
system; the small amount of Hg2+ ions adsorbed by
MBs, in contrast, lead to a much lesser inhibition. This
bienzyme-based aptamer assay possessed the advantages
of high selectivity (aptamer recognition) and satisfying
sensitivity (signal amplified by bienzyme).

Parameters affecting visual assay of Hg2+

The following parameters were optimized: (a) time for H2O2

generation; (b) sample pH value; (c) amount of AFMB; (d)
time for capturing Hg2+ and (e) inhibition time by Hg2+.
Respective data and Figures are given in the Electronic
Supporting Material (Figs. S1–S5). We found the following

Fig. 2 a The inhibition of uricase enzymatic activity by Hg2+; and b the
color read-out of bienzyme-based visual assay. Experiment conditions: a
Hg2+ concentration, 10 nM; solution pH, 4.5; H2O2 generation time,
20 min; Uric acid amount, 6.72 μg; TMB concentrat ion:

0.01 mg⋅mL−1; and b sample solution pH, 7.0; amount of AFMBs,
40 μg; Hg2+ capture time, 10 min; and other conditions were the same
as in a

Fig. 3 The visual performance and linearity of bienzyme-AFMBs
system for detection of Hg2+. Experiment conditions: H2O2 generation
time, 20 min; Uric acid amount, 6.72 μg; TMB concentration,
0.01 mg⋅mL−1; sample solution pH, 7.0; amount of AFMBs, 40 μg;
and Hg2+ capture time, 60 min; analytical wavelength, 650 nm
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experimental conditions to give best results: (a) 30 min for
H2O2 generation; (b) sample pH value of 7.0; (c) 40 μg of
AFMB; (d) 60 min for capturing Hg2+; and 30 min for inhi-
bition time by Hg2+.

Analytical performance of aptamer-assay for detection
of Hg2+

A series of Hg2+ standard solutions were captured by AFMBs,
and then detected by bienzyme-TMB coloration system. The
aptamer-assay system permitted color discrimination with a
minimal concentration of 2.5 nM (inset of Fig. 3). It should
be noted that the toxic level for Hg2+ defined by the US
Environmental Protection Agency in drinkable water is below
10 nM. Hence, the resultant color change enables a differen-
tiation between target-containing and target-free samples via
visual inspection. Further using spectrophotometry, Fig. 3
shows that the absorbance increases linearly with the loga-
rithm of Hg2+ concentration in the range of 0.5–

50 nM, and the limit of detection (3σ) can be calculated to
be 0.15 nM (about 0.03 ng⋅mL−1). Table 1 shows that this
approach is much more sensitive than the reported colorimet-
ric aptamer-assay without an amplification/enrichment proce-
dure and even comparable to AFS methods. Besides, this
assay eliminates the tedious procedure of labeling. The
reproducibility was also examined using 10 nM of Hg2+,
and the relative standard deviation (RSD) for five parallel
detections was 5.2%.

Interference study

The specificity of the assay was investigated by using other
metal ions in place of Hg2+. The potentially interfering ions
such as K+, Mg2+, Na+, Ca2+, Cu2+, Zn2+, Fe3+, Al3+, Co2+,
AsO2

−, Ni2+, Cd2+ and Pb2+ were used at concentrations of
1000 nM, and the concentration of Hg2+ was chosen to be
10 nM (100 times lower than the interfering ions). Hg2+

(10 nM) led to an obvious absorbance decrease (more than
50%), while other metallic ions (1000 nM) had no significant
effects (Fig. 4 and Fig. S6). It demonstrated good specificity of
this bienzyme-based assay, which has more selective for the
recently reported aptamer-assay for Hg2+ detection [34].

Table 1 Comparison of
colorimetric aptamer-assay and
atomic spectrometry for detection
of Hg2+

Strategy Label Amplification/
enrichment

Detection
limit (nM)

Ref.

Bienzyme-based coloration 0.15 This work

G-quadruplex-basedDNAzyme 100 [19]

AuNPs& conjugated
polyelectrolyte

50 [21]

G-quadruplex-basedDNAzyme 50 [25]

AuNPs 250 [32]

AuNps 0.6 [22]

Methylene Blue hybridization chain
reaction

0.7 [26]

Au NPs & LFSB Labeled by digoxin,
biotin or Au NPs

Exonuclease III-assisted
signal amplification

0.001 [24]

CVG-AFS 0.025 [33]

LFSB lateral flow strip biocomponent, CVG chemical vapor generation, AFS atomic spectrometry

Fig. 4 The specificity of the bienzyme-AFMBs system. The experimen-
tal conditions were the same as Fig. 3

Fig. 5 The pictures of analyzing water samples by the visual assay. The
experimental conditions were the same as Fig. 3
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Sample analysis

To estimate its real application, this assay was applied for
analysis of various water samples, i.e., river water, lake water,
mineral water, tap water and certified water (GSBZ50016–90)
samples, and the color change for these samples were shown
in Fig. 5. The Hg2+ concentrations of mineral, tap, lake and
river waters were found to be <10 nM (the toxic level for Hg2+

defined by the EPA in drinkable water) and the Hg2+ concen-
tration in certified water sample (GSBZ50016–90) was higher
than 10 nM (Table 2). The results coincided with those obtain-
ed by AFS or certified value.

Using spectrometry, a more quantitative analysis of
Hg2+can be made, and the results were in good agree-
ment with those obtained by AFS or certified value
(Table S1). The recoveries for the river water, lake water,
mineral water, tap water were in the range of 97–109%
(Table S2). These results indicated that this system might
be a promising tool for fast and convenient detection of
Hg2+ in water samples.

Conclusion

We have developed a bienzyme aptamer-assay for ultrasensi-
tive visual detection of Hg2+ in water samples. The efficient
inhibition of uricase activity by Hg2+ provided the assay with
high sensitivity, allowing detection of Hg2+ at nanomolar level
without an extra amplification procedure. The capture of Hg2+

by AFMBs contributed greatly to the high specificity of the
system. As a result, 100-fold of potential coexisting metal ions
did not yield obvious interference. Simplicity, high sensitivity
and selectivity were the main benefits of our assay. By using
aptamers selective for other metal ion, this detection scheme
may be applied to ions such as Pb2+, Ag+ and the like.
Therefore, the bienzyme-AFMBs assay was an appealing tool
for fast detection of metal ion pollutants in water samples.
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