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Abstract The authors describe a sandwich-type electrochem-
ical immunoassay for sensitive determination of the
carcinoembryonic antigen (CEA). It is based on the use of
iridium nanoparticles (Ir NPs) acting as electrochemical signal
amplifier on the surface of a glassy carbon electrode. At first,
polydopamine-reduced graphene oxide (PDA-rGO) was
employed to immobilize primary antibody (Ab1) against
CEA. Secondly, Ir-NPs were used as a support for the immo-
bilization of secondary antibody (Ab2) to afford signal labels.
The large surface area of PDA-rGO and the excellent electro-
oxidative H2O2-sensing properties of Ir NPs result in a sensitive
assay for CEA. Operated best at a working voltage of −0.6 V
(vs. SCE), the assay has a linear range that extends from
0.5 pg⋅mL−1 to 5 ng·mL−1, and the lower detection limit is
0.23 pg⋅mL−1. The immunosensor displays satisfactory repro-
ducibility and stability, thus demonstrating a reliable immuno-
assay strategy for tumor biomarkers. It was applied to the de-
termination of CEA in spiked serum samples.

Keywords Immunosensor . Sandwich-type . Tumor
biomarker . Immobilization . Electrochemical signal
amplification . Electrochemical impedance spectroscopy .

Hexacyanoferrate . Nyquist plot . Hydrogen peroxide . Serum
analysis

Introduction

The carcinoembryonic antigen (CEA) is a reliable serum
biomarker in case of colorectal cancer, breast cancer and
lung cancer [1–3]. Thus, it is urgently necessary to precise
detect CEA in fields of modern biomedicine and clinical
diagnostics. Conventional immunoassays such as enzyme-
linked immunosorbent assays (ELISA) [4], chemilumines-
cence immunoassays [5], radioimmunoassays (RIA) [6]
and electrochemical immunoassay [7] have been used
for detecting CEA. Among them, electrochemical immu-
noassay has attracted more and more attention by virtue of
simple operation, high sensitivity and cost-effectiveness
[8–10].

Sandwich-type immunosensor, binding of highly spe-
cific antigens with antibodies (Ag-Ab) and then reacting
with secondary antibodies which are combined as a label
for signal amplification, has become one of popular ana-
lytical techniques in biomedical analysis, food quality
testing and environmental monitoring [11–13]. In contrast
with label-free immunosensor, there is no denying that
sandwich-type immunosensor has unique charm that can
yield larger signals, the higher sensitivity, the lower de-
tection limit, and the avoidance of interferences by sample
impurities [14]. Furthermore, the emerging of different
type nanomaterials has brought an enormous opportunity
to sandwich-type immunosensor, including carbon nano-
tubes [15], oxide nanomaterials [16], metal nanoparticles
[17] and nanocomposite [18, 19]. Such immunosensors
based on nanomaterials show good performance that pre-
serves the bioactivity of antibodies and enhance electro-
chemical properties of the immunosensors, for instance,
fast electron transfer and high signal to noise ratio (S/N)
[20, 21].
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It is well known that sandwich-type electrochemical
immunosensor strongly relies on signal labels to transduce
and amplify the signal change resulted from the bio-
recognition process of analytes [22]. Therefore, the sensitivity
of sandwich-type electrochemical immunosensor depends on
the signal amplify strategy. Owing to the inherited features of
high specific reactivity towards the substrate, natural enzymes
become the most commonly used signal amplification labels
for sensitive electrochemical immunoassay, such as horserad-
ish peroxidase was widely used to fabricate electrochemical
signal labels by virtue of the high electrochemical reduction
towards hydrogen peroxide [23, 24]. However, the catalytic
activity of natural enzyme is more easily influenced by the
external surroundings such as pH value and temperature.
Alternatively, nanomaterials possessed high electrochemical
reduction activities on hydrogen peroxide were adopted to
prepare signal labels for sensitive detection of tumor bio-
markers [22]. Iridium nanoparticles (Ir NPs) have received
considerable attention in the field of fluorescence labeling
[25], catalytic synthesis [26], sensing [27] and so on.
Among the various transition metals, Ir NPs have been con-
sidered as an excellent catalysis due to the inherited high se-
lectivity and stability, especially large surface area and high
density of active sites [28, 29]. Based on these merits, Ir NPs
are fitting well as signal labels for the fabrication of electro-
chemical immunosensors.

Herein, we utilized the unique sandwich-type electrochem-
ical immunosensor based on Ir NPs and polydopamine-
reduced graphene oxide (PDA-rGO) for sensitive detection
of CEA. The high sensitivity was implemented by using the
large surface area of PDA-rGO to increase the amount of
immobilized Ab1, and its high conductivity. Furthermore, Ir

NPs as signal tags of the immunosensor have excellent
catalase-mimic performance, large surface area and good dis-
persion, revealing the promising application for developing
electrochemical immunosensors.

Experimental section

Equipment

Scanning electron microscopy (SEM) images were recorded
using a COXEM EM-30 Plus (Korea). Transmission electron
microscope (TEM) images were obtained on a Philips CM200
UT (Field Emission Instruments, USA). Fourier transform
infrared (FT-IR) spectra were acquired by Perkin-Elmer
580B spectrophotometer (Perkin-Elmer, USA). Three-
electrode device including a glassy carbon electrode (GCE),
a saturated calomel electrode (SCE) and a platinum-wire elec-
trode was used for electrochemical measurements. All electro-
chemical detections were performed by a CHI 760D worksta-
tion (China).

Reagents and materials

Graphite powder (99.95%) and Bovine serum albumin (BSA,
96–99%) was purchased from ShanghaiMacklin Biochemical
Technology Co., Ltd. (http://www.macklin.cn/). Iridium
chloride hydrate (IrCl3, 99.9%) was bought from Alfa Aesa
(https://www.alfa.com/zh-cn/). The carcinoembryonic
Antigen (CEA) and paired antibody were obtained from
Shanghai Linc-Bio Science Co., Ltd. (http://linc-bio.cn/). All
the other reagents were analytical grade and used directly

Scheme 1 The fabrication
process of the electrochemical
immunosensor
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without further treatments. Ultrapure water was utilized
throughout the experiments.

Preparation of PDA-rGO

Polydopamine-reduced graphene oxide (PDA-rGO) was pre-
pared following the reported procedure [30]. Dopamine
(20 mg) was added to 10 mL, 10 mM of Tris-HCl buffer
(pH 8.5), and then mixed with 1.0 mg⋅mL−1 GO. The mixture
was stirred for 24 h at 25 °C. Thereafter, PDA-rGO was ob-
tained after centrifuging and washing twice with ultrapure
water.

Preparation of PVP-Ir NPs

Polyvinylpyrrolidone-stabilized colloidal Iridium nanoparticles
(PVP-Ir NPs) were prepared by an ethanol reduction approach
[31]. A representative synthesis procedure can be described as
follows: aqueous IrCl3 solution (8.4 μmol, 4 mL) was slowly
dropped into 4 mL of ethanol solution containing PVP
(168 μM), then the mixture was stirred vigorously at 25 °C
for 12 h before the pale yellow solution appeared. The solution

was refluxed in air at 100 °C for 6 h until the brown solutionwas
obtained. Finally, PVP-Ir NPs were obtained by subsequent
evaporating process and then the black products were dispersed
in phosphate buffer (0.1 M, pH 7.4), and stored at 4 °C.

Preparation of Ir NPs-Ab2 as labels

1 mL of PVP-Ir NPs (3 mg⋅mL−1) was mixed with 1 mL of Ab2
(200 ng⋅mL−1), the mixture was placed at an oscillator for incu-
bating Ab2 under 4 °C for 12 h. The labels of Ir NPs-Ab2 were
obtained by centrifuging and washing with phosphate buffer.
Finally, the resulting labels were redispersed in phosphate buffer
including 1% (m:m) BSA and stored at 4 °C before use.

Procedures

As illustrated in Scheme 1, a sandwich-type electrochemical
immunosensor was constructed. Firstly, a working electrode
GCE was polished by alumina powders affording a mirror-
like surface. 6 μL of well-dispersed PDA-rGO (1.5 mg⋅mL−1)
was dropped on the pretreated GCE and dried out. Then 6 μL
of primary CEA antibody (Ab1, 200 ng⋅mL−1) was coated on
the electrode through the ability of PDA enabling protein con-
jugation. After drying, 1% BSA solution was dropped on the
electrode for incubating 1 h at 37 °C to block the nonspecific
sites. Consequently, CEAwith given concentration was added
on the modified electrode. Finally, 6 μL of Ir NPs-Ab2 was
added for incubating 1 h at 37 °C. After that, the modified
electrode was ready for electrochemical measurement.

The measurement parameters of cyclic voltammograms
(CV) are listed as follows: (a) potential range, −1.0 to 0.6 V;
scan rate, 0.1 V/s. The electrochemical-impedance spectra
(EIS) was assayed from 1 to 105 Hz with an amplitude of
5 mV in 5.0 mM Fe(CN)6

3−/4- solution containing 0.1 M
KCl. The operating potential of amperometric detection is
−0.6 V due to the largest redox current appears here, and run
time is 200 s.

Fig. 1 SEM image of PDA-rGO a
and TEM image of PVP-Ir NPs b

Fig. 2 Cyclic voltammograms of Ir NPs modified electrode in phosphate
buffer in the absence (black) and presence (red) of 5 mM H2O2
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Results and discussion

Choice of materials

Graphene oxide (GO), an oxidized derivative of single
atomic layer graphene, possesses attractive properties such
as large specific area, physiological stability, and good
biocompatibility. GO contains a series of polar group in-
cluding hydroxyl, carboxyl, epoxy and carbonyl groups
[32, 33]. Polydopamine (PDA) as an excellent functional
material has been extensively used in the fields of surface
modification, drug delivery, theranostic application and so
on [34, 35]. Herein, PDA was selected for surface modifi-
cation of GO via oxidative polymerization of dopamine
since it has good biocompatibility, biodegradability and
dispersibility. Moreover, the process of PDA and proteins
conjugation is speedy, simple without requiring any acti-
vation procedure. On account of the beneficial characteris-
tics, we chose the PDA-rGO as a substrate material to im-
mobilize a large amount of Ab1.

According to reports the redox-potentials of platinum and
iridium are respectively higher than other metallic elements
(Pt2+ / Pt 1.19 V, Ir3+ / Ir 1.16 V), demonstrating the catalytic
activity of Ir NPs is comparable to reported Pt nanoparticles
[36]. Herein, Ir NPs were adopted to fabricate immunosensor
for the detection of tumor biomarker by virtue of the inherited
high catalytic activity.

Characterization of the PDA-rGO, PVP-Ir NPs

PDA-rGO were characterized by SEM (Fig. 1a) and FTIR
(Fig. S1). It is easy to observe that PDA-rGO have papery

structure (Fig. 1a), which means that it has a large specific
surface area, can immobilize higher levels of Ab1 onto the
electrode surface. Fig. S1 shows the FTIR spectra of GO
and PDA-rGO further revealed the synthesis of PDA-rGO
was successful. As revealed by the TEM image of Fig. 1b,
PVP-Ir NPs were sphere-like nanoparticles with the average
diameter of approximately 1.5 nm.

It is well known that the sensitivity of the immunosensor
depends on signal amplification perfrmance of the signal la-
bels. Therefore, the catalytic activity of Ir NPs for the reduc-
tion of H2O2 was investigated. Figure 2 presents the electro-
chemical reduction performance of Ir NPs towards 5 mM
H2O2. An increase of the electrochemical response was ob-
served apparently that verifies the intrinsic catalase mimic
performance of Ir NPs. Accordingly, the −0.6 V potential
was determined as the operating potential for further electro-
chemical measurements.

Characterization of the immunosensor

An efficient detection method, electrochemical-impedance
spectra (EIS) were used to characterize the property of
surface-modified electrode. The EIS of each construction step
of immunosensor consisted of semicircle and linear por-
tion. The charge transfer resistance (Rct) was provided
by the semicircle diameter that represents for impede of
the redox couple flux of the electrode surface, thus, this
value would increase when each layer hindering the
electron exchange was modified on the electrode [37].
Fig. S2 shows the EIS of the continuous building steps for
modified electrodes, resulting in the successful construction of
the immunosensor.

Fig. 3 Amperometric response a
and calibration curve b of the
immunosensor about different
CEA concentrations.
Error bar = RSD (n = 5)

Table 1 In comparison with
other methods for the
detection of CEA

Method Linear range [ng⋅mL−1] Detection Limit [ng⋅mL−1] Reference

GO/MWCNTs-COOH/Au@CeO2 0.05–100 20 [38]

rCu2O-GO-AuNPs 0.01–4 4 [39]

Ag NCs-HRP 0.001–10 0.5 [40]

Au/Ag 0.001–50 0.3 [41]

This method 0.0005–5 0.23 This work
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Analytical performance

Under the optimized conditions that is pH value of 7.4, H2O2

concentration of 5.0 mM, working potential of −0.6 V, PDA-
rGO concentration of 1.5 mg⋅L−1, Ir NPs-Ab2 concentration of
1.5 mg⋅L−1 as optimal operating data (shown in Fig. S3). The
current change resulted from electrochemical reduction of
H2O2 were linearly increased following the increasing con-
centrations of CEA (Fig. 3). Accordingly, the formula of cal-
ibration curve of CEAwas ΔI =0.4350 C + 2.2987, R = 0.99
in the range from 0.5 pg⋅mL−1 to 5 ng⋅mL−1 with a satisfying
detection limit of 0.23 pg⋅mL−1 (S/N = 3). In comparison with
other CEA immunosensors, the immunosensor has more out-
standing analysis performance for the CEA detection, shown
in Table 1.

Reproducibility, stability and selectivity

To investigate reproducibility of the immunosensors, five
modified-electrodes for the detection of 0.5 ng⋅mL−1 CEA
were conducted, respectively. The relative standard deviation
(RSD) was 1.61%, verifying the fabricated immunosensor has
admirable reproducibility (Fig. 4a).

The stability of the immunosensor was proved by measur-
ing the current response once every 5 days. The unused elec-
trode was stored in 4 °C until the next electrochemical mea-
surement. As shown in Fig. 4b, we can see that no obvious
current decline in the detection of the same electrode, and
88.7% of the initial current was remained after 30 days.
Therefore, the stability was confirmed to be acceptable.

Figure 4 c exhibited the selectivity of the constructed
immunosensor under the same operating conditions.
Experiments were performed using 0.5 ng⋅mL−1 CEA,
0.5 ng⋅mL−1 alpha fetoprotein (AFP), 0.5 ng⋅mL−1 cardial
troponin I (cTnI), 1 mg⋅mL−1 ascorbic acid and 1 mg⋅mL−1

uric acid as analytical substrate, respectively. It can be seen
that a considerable current signals were observed for CEA,
whereas the response signals of other tumor biomarkers and
interfering species were almost negligible. Thus, this

immunoassay method for detecting CEA has satisfactory ca-
pacity of anti-interference.

Analysis of human serum sample

The reliability of analytical performance and practical value of
the immunosenor was confirmed through real human serum
detection. The concentration of CEA in serum sample was
investigated via the commercial ELISA kits. The consequence
was listed in Table 2, the RSDs were respectively 4.9%, 2.5%,
1.3%, 2.5% and 1.5% at the addition of 0.5, 1, 2, 3, 4 ng⋅mL−1,
respectively, and the recovery range from 99% to 100.5%.
Thus, such immunoassay can be used to detect CEA and even
other tumor biomarkers in clinical diagnosis.

Conclusion

We fabricated a sandwich electrochemical immunosensor
used Ir NPs as electrochemical signal amplifier and PDA-
rGO as substrate material for the detection of CEA. On ac-
count of the wide linear range, the low detection limit as well
as the satisfactory reproducibility, stability and selectivity of
the immunosensor, it can be attempted to use in the practical
clinical analysis for patients, and also use in combination with
other analytical techniques. Furthermore, this immunoassay
provides good promising for the detection of tumor bio-
markers beyond CEA in human serum.

Fig. 4 a The current response of the immunosensors towards the same CEA concentration (0.5 ng⋅mL−1); b The current response of the immunosensor in
30 days; c The current response towards 0.5 ng⋅mL−1 CEA, 0.5 ng⋅mL−1 AFP, 0.5 ng⋅mL−1 cTnI, 1 mg⋅mL−1 ascorbic acid and 1 mg⋅mL−1 uric acid

Table 2 Application of the propose immunosensors in human serum

Sample
[ng⋅mL−1]

Addition
[ng⋅mL−1]

Found
[ng⋅mL−1]

RSD
[%, n = 5]

Recovery [%]

0.5 0.5 1 ± 0.05 4.9 99

0.5 1 1.5 ± 0.04 2.5 100.5

0.5 2 2.5 ± 0.05 1.3 100.2

0.5 3 3.5 ± 0.04 2.5 99.7

0.5 4 4.5 ± 0.11 1.5 99.6
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