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Abstract The family of zearalenones (ZENs) represents a
major group of mycotoxins with estrogenic activity. They
are produced by Fusarium fungi and cause adverse effects
on human health and animal production. The authors describe
here a label-free amperometric immunosensor for the direct
determination of ZENs. A glassy carbon electrode (GCE) was
first modified with polyethyleneimine-functionalized multi-
walled carbon nanotubes. Next, gold and platinum nanoparti-
cles (AuPt-NPs) were electro-deposited. This process strongly
increased the surface area for capturing a large amount of
antibodies and enhanced the electrochemical performance.
In a final step, monoclonal antibody against zearalenone was
orientedly immobilized on the electrode, this followed by sur-
face blocking with BSA. The resulting biosensor was applied

to the voltammetry determination of ZENs, best at a working
voltage of 0.18 V (vs SCE). Under optimized conditions, the
method displays a wide linear range that extends from 0.005
to 50 ng mL−1, with a limit of detection of 1.5 pg mL−1 (at an
S/N ratio of 3). The assay is highly reproducible and selective,
and therefore provides a sensitive and convenient tool for
determination of such mycotoxins.
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Introduction

Zearalenones (ZENs), including ZEN and its derivates (α-
ZOL, β-ZOL, ZAN, α-ZAL and β-ZAL), are a group of
mycotoxins produced by Fusarium molds and commonly de-
tected in corn products and other cereal-based foods [1–3].
ZENs may cause reproductive troubles such as less fertility,
lower hormone levels and fetal wastage [4, 5]. In order to
protect consumers’ health, European Union (EU) has set the
maximum residue levels (MRLs) for ZEN in foodstuffs, i.e.
350 μg kg−1 in unprocessed corn and 20 μg kg−1 in both
processed corn-based and cereal-based baby foods
(Commission Regulation, EC No.1126/2007). Thus, it is ur-
gent to explore sensitive, rapid and simple analytical methods
for monitoring the ZENs exposure in foodstuffs concerning
human health.

Chromatography methods are commonly used for
detecting ZENs because of their high accuracy and reliability
[3, 6, 7]. However, these techniques require expensive instru-
ments, as well as sophisiticated pretreatment and clean-up
processes for variable matrices in accordance of instrumental
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conditions. As an alternative strategy, electrochemical biosen-
sors have gained great interests towards analysis of target bio-
molecules [8, 9]. With application of monoclonal antibody
(MAb), immunoassays have been considered to be a promis-
ing approach with high selectivity and sensitivity [10].
Compared with conventional immunosensors with complicat-
ed enzyme label, novel label-free immunosensors have been
developed for trace analysis, performing direct detection by
measuring physical changes of antibody–antigen
immunocomplex [11, 12].

Nano-materials have been introduced into a variety of
methods for mycotoxin detection [13, 14], especially applied
to develop immunosensors for their unique merits. Due to
unique structural, mechanical, thermal, and electrical proper-
ties, multi-wall carbon nanotubes (MWCNTs) consisting of
up to several tens of graphitic shells have been widely applied
as one of the most important materials in electrochemical
immunosensor [15–18]. Bimetallic nanoparticle is another
functional material used in our study and also exploited wide-
ly in biochemical analysis. The addition of a second metal
brings in particular changes in chemical and physical proper-
ties by the interaction between two components, for instance,
catalytic activity and chemical selectivity [19, 20]. Gold–plat-
inum alloy nanoparticles (AuPt-NPs) is one of the most useful
bimetallic nanoparticle, which has excellent catalysis because
of high synergistic action between gold and platinum [21]. By
controlling the electrodeposition time and the concentration of
metallic nanoparticles solution, the electrodeposition method
for metallic nanoparticles immobilization was easily operated
and less time-consuming.

The immobilization of antibodies on the electrodes was an
important factor in fabricating sensitive immunosensors.
Physical adsorption and covalent immobilization of antibod-
ies were usually adopted in immunosensors preparation for
the detection of ZEN and its derivates in previous report
[22–26]. However, these immobilization methods probably
result in the loss of binding capability due to random orienta-
tion of the antibodies and significant steric-hindrance [27]. In
contrast, oriented immobilization of antibody on the surface
of an immunosensor effectively improves biosensor perfor-
mance [28], which has been achieved adsorption on a
sublayer of Fc binding receptors [29]. Staphylococcus pro-
teins A (SPA), derived from the cell wall of Staphylococcus
aureus, is a bacterial surface protein with four Fc binding
domains which specifically bind to the Fc regions of anti-
body and leave the antigen-binding site free [30–33]. The
strategy of SPA-mediated antibody immobilization leads to
highly efficient immunoreactions and to a remarkable detec-
tion performance [34].

Herein, the aim of this current research work is to explore a
label-free electrochemical immunosensor for detecting ZEN
and its derivates as family mycotoxins in naturally contami-
nated matrices. In order to achieve excellent sensitivity,

MWCNTs was utilized towards electrode surface to enhance
the adsorption capacity due to its large surface area, and AuPt-
NPs were deposited to provide a stable surface for SPA im-
mobilization. The oriented immobilization of antibody by
modifications with SPA can improve the performance of
immunosensor as well. So far, there have been no reports
focusing on the detection of a group of mycotoxin by a sensi-
tive label-free immunosensor based on oriented immobiliza-
tion. In regard to bioanalysis with complicated matrices, this
fabricated label-free immunosensor provides a relatively time-
saving approach for the detection of family ZENs with wide
linear range and low detectable limit.

Experimental

Chemicals

ZENs standards, including zearalenone (ZEN), α-zearalenol
(α-ZOL), β-zearalenol (β-ZOL), zearalanone (ZAN), α-
zearalanol (α-ZAL), β-zearalanol (β-ZAL), as well as other
mycotoxins, ochratoxin A (OTA), aflatoxin B1 (AFB1), and
deoxynivalenol (DON) were purchased from Romer Labs,
Inc. (Union, MO, USA, http://www.romerlabs.com).
HAuCl4 and H2PtCl6 were purchased from Sinopharm
Chemical Reagent Co. Ltd. (Shanghai, China, http://www.
sinoreagent.com). Carboxyl functionalized multiwall carbon
nanotubes (MWCNTs) were supplied by Shenzhen Carbon
Nanotechnologies Co. Ltd. (Shenzhen, China, http://www.
nanotubes.com.cn). Recombinant SPA and staphylococcal
protein G (SPG) were brought from Hangzhou Neuropeptide
Biological Science and Technology Inc. Ltd. (Hangzhou,
China, http://www.NUPTEC.com). MAb used was obtained
in our previous work, which was immunized by the ZEN-
BSA conjugate and produced via the mouse hybridoma tech-
nique [35]. Polyethylenimine (PEI, Mw 25,000) and bovine
serum albumin (BSA) were purchased from Sigma-Aldrich
(St. Louis, MO, USA, http://www.sigmaaldrich.com). Other
chemical reagents were of analytical grade. 0.01 M PBS
(pH 7.4) containing 5 mM of K3[Fe(CN)6]/K4[Fe(CN)6] and
0.1 M KCl was used as working solution.

Apparatus

Cyclic voltammetry (CV) and differential pulse voltammetry
(DPV) were performed with a CHI660D electrochemical
workstation (Shanghai Chenhua Co., China, http://www.
chinstr.com). The conventional three-electrode system was
employed with a glassy carbon electrode (GCE, 3.0 mm di-
ameter) as the working electrode, a saturated calomel elec-
trode (SCE) as the reference electrode, and a platinum elec-
trode as the counter electrodes. All electrochemical measure-
ments were carried out at room temperature (25 °C).
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Fabrication of the label-free immunosensor

Prior to use, the glassy carbon electrode was polished sequen-
tially with Al2O3 powder of 1, 0.3 and 0.05 μm, and cleaned
ultra-sonically with distilled water, 6 M nitric acid, absolute
ethanol and distilled water for 5 min, respectively. Then, the
electrode was immersed in 0.5MH2SO4 for activation under a
cycling electrode potential from −1.0 to 1.0 Vat a scan rate of
100 mV s−1 until stabilization. A detail schematic illustration
of the stepwise procedures for immunosensor fabrication was
shown in Fig.1.

Synthesis of MWCNT-PEI

The preparation ofMWCNT-PEI was conducted by following
procedures reported in a previous study with modifications
[36]. 1 mg of MWCNTs was dispersed in 1 mL PEI aqueous
solution (1 mg mL−1), and the suspension was sonicated for
60 min. 10 μL of MWCNT-PEI solution was dropped on the
bare electrode and dried in the air.

Electrodeposition of AuPt-NPs

Electrodeposition of AuPt-NPs was preformed according to a
previous research with small modifications [37]. 2 mg mL−1

of HAuCl4 and H2PtCl6 solution were separately prepared by
0.2 M Na2SO4 aqueous solution, and then mixed with a vol-
ume ratio of 1:1. Then modified GCE/MWCNT-PEI electrode
was immersed into the above mixture solution and electrode-
posited at −0.2 V for 30 s to form GCE/MWCNT-PEI/ AuPt-
NP electrode.

Antibody-oriented immobilization

A 5 μL of SPA (0.3 μg mL−1) and 5 μL of anti-ZEN MAb
(0.1 μg mL−1) were sequentially dropped on the GCE/
MWCNT-PEI/AuPt-NP-modified electrode and incubated at
37 °C for 1 h. Unbound SPA and antibodies were washed

away with PBS solution after each modification step.
Finally, the prepared immunosensor was blocked with 1 %
of BSA solution for 1 h at 37 °C to avoid nonspecific adsorp-
tion. After carefully washed and dried in air, the electrode was
stored at 4 °C prior to analysis.

Mycotoxins detection

For each measurement for ZEN detection, the immunosensor
was immersed in the working solution for DPVanalysis, gen-
erating the peak current as I, BSA, followed by incubation in
standard or sample solution for 20 min. After the
immunosensor was washed carefully with PBS and dried in
the air, another measurement of DPVanalysis was carried out,
recording the peak current as I, ZEN. The ZEN detection result
was finally based on the current difference of two DPV mea-
surements above (ΔI = I, BSA - I, ZEN).

Results and discussion

Choice of materials

In order to obtain excellent performance, the following mate-
rials were carefully selected for sensor construction.
MWCNTs were used for supporting nanoparticles and im-
proving electronic conductivity and chemical stability on the
electrode because of the unique characteristics to enlarge ac-
tive surface area. PEI, an amino-rich cationic polyelectrolyte,
was chosen as a functional agent, which can interact with
MWCNTs via both physisorption and electrostatic adsorption
on MWCNTs’ sidewalls. AuPt-NPs were selected for depos-
iting on the PEI functionalized MWCNTs for immobilization
of SPA, by considering that metallic alloy nanomaterials have
better catalytic properties than monometallic counter-parts
[38], and Au possesses favorable biocompatibility to protein.
On this constructed immunosensor, SPAwas adopted for ori-
ented immobilization of antibodies to ensure antibodies

Fig. 1 Schematic illustration of the stepwise immunosensor fabrication process
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being orientedly anchored on substrate surface through their
Fc portion and thus the binding sites of antibodies remaining
free and accessible for binding with antigens [33].

Characteristics of the immunosensor

In order to investigate the assembly process of MWCNTs,
bimetallic alloys nanoparticles (AuPt-NPs) and SPA films,
the morphology of these fabrications was characterized by
SEM (Fig. 2). Figure 2a showed that regularly branched
MWCNTs were densely embedded and efficiently dispersed
within the PEI aqueous solution, which were capable of sta-
bilizing the nanometer-sized metal particles on the external
surface. According to Fig. 2b for AuPt-NPs deposition, many
anomalous nanoclusters were obtained on the surface of the
MWCNTs by means of electrodeposition. The amount of NPs
can be controlled by the deposition time, which provided an
efficient surface for loading SPA and accelerating the electron
transfer. In Fig. 2c, SPAwas embedded firmly and uniformly
on the surface of metal NPs. This further contributes to ori-
ented immobilization of antibody.

In order to monitor the current changes of the fabricated
electrode, the CVsmeasurements were performed at a scan rate
of 100 mV. The CVs of the electrodes at different stages were
displayed in Fig. 3a. A reversible [Fe(CN)6]3−/[Fe(CN)6]4− re-
dox peaks pair was seen as a curve that corresponds to the bare

GCE. After the modification of MWCNT-PEI and following
deposition of AuPt-NPs, the amperometric response signifi-
cantly increased, showing stronger conductivity of the GCE
with the modification of MWCNTs and AuPt-NPs (Fig. 3a,
curve b and c). However, with the immobilization of SPA and
anti-ZEN MAb, the CV response decreased stepwise due to
proteins hindering the electrons transfer on the electrode
(Fig. 3a, curve d and e). Subsequently, a decline was noticed
after the self-assembly of BSA (Fig. 3a, curve f) that blocked
possible remaining active sites on the electrode surface. The
CV response was further decreased after the fabricated
immunosensor was incubated with a 5 ng mL−1 ZEN solution
prepared in PBS (Fig. 3a, curve g). As shown above, the CV
changes were consistent with the conductivity changes upon
each experimental step, and verified stepwise assembly of the
immunosensor.

Typical CV of the fabricated immunosensor was per-
formed in working solution at different scan rates, shown
as Fig.3b (curve a–j). Both the anodic and cathodic peak
currents (Ipa and Ipc) were proportional to square root of
scan rates in the range from 5 to 400 mV s−1. The regression
equations of Ipa and Ipc were listed as follows: Ipa
(μA) = −2.8134 + 3.1166 V1/2 (mV s−1) (R2 = 0.9918),
Ipc (μA) = 2.6652–3.4536V1/2 (mV s−1) (R2 = 0.9964), in-
dicating that the electrochemical process was a diffusion-
controlled reaction (Fig. 3c).

Fig. 2 The SEM identification of the material films used for immunosensor fabrication and immobilized on ITO conducting glass: aMWCNT-PEI, b
MWCNT-PEI/AuPt-NP, c MWCNT-PEI/AuPt-NP/SPA

Fig. 3 a CVs of modified electrode recorded in the presence of 0.01 M
PBS containing 5.0 mM [Fe(CN)6]3−/4− and 0.1MKCl, a) bare electrode,
b) GCE/MWCNT-PEI electrode, c) GCE/MWCNT-PEI/AuPt-NP
electrode, d) GCE/MWCNT-PEI/AuPt-NP/SPA electrode, e) GCE/
MWCNT-PEI/AuPt-NP/SPA/MAb electrode, f) GCE/MWCNT-PEI/
AuPt-NP/SPA/MAb/BSA electrode, g) GCE/MWCNT-PEI/AuPt-NP/

SPA/MAb/BSA/ZEN electrode. b CVs of the modified electrodes at
different scan rates (from a to j): 5, 10, 50, 100, 150, 200, 250, 300,
350, 400 mV s−1 in working buffer. c Linear relationship between the
anodic peak currents (Ipa, upper) and cathodic peak currents (Ipc, lower)
to square root of scan rates

150 Microchim Acta (2017) 184:147–153



Optimization of method

The following parameters were optimized: (a) Metal NPs for
electrodeposition; (b) the deposition time of metal NPs; (c)
protein for antibody capturing; (d) the concentration and im-
mobilization time of protein for antibody capturing; (e) the
concentration and immobilization time of antibody; (f) the
pH of working buffer in the detection of ZEN; (g) the incuba-
tion time for the detection of ZEN; (h) the blocking time of
BSA. Respective data and Figures (Fig. S1 and Fig. S2) are
given in the Electronic Supporting Information. The following
experimental conditions were found to give best results: (a)
AuPt-NPs for electrodeposition; (b) 30 s for deposition of
AuPt-NPs; (c) SPA for oriented immobilization of antibodies;
(d) 60 min for SPA mobilization at a concentration of
0.3 μg mL−1 of SPA solution; (e) 60 min for antibody immo-
bilization with a concentration of 0.1 μg mL−1 of antibody
solution; (f) the pH of the working solution as 7.4 for ZEN
detection; (g) the incubation time of 20 min for ZEN detec-
tion; (h) blocking for 60 min with 1 % of BSA solution.

Sensitivity of the immunoassay for ZEN

Under the above optimal conditions, the quantitative range of
the ZEN immunosensor was explored. As presented in
Fig. 4a, the DPV response decreased with the increase of

ZEN concentration. It might be due to antigen-antibody
immunocomplex structures formed on the immunosensor
which act as electron- transfer barriers [39]. As shown in
Fig. 4b, the calibration plots relating the changes of current
response (ΔI) was proportional to ZEN concentration over the
0.005–50 ng mL−1 range. The linear regression equation is
ΔI = 4.0210 + 1.4015 lgC (C: ng mL−1) with R2 = 0.9909.
The detection limit (LOD) calculated was 1.5 pg mL−1

(S/N = 3). The obtained LOD was comparable with the sensi-
tive label-free immunosensor reported previously
(1.7 pg mL−1) [21], but the linear range was wider than pre-
vious reports listed in Table 1.

Selectivity, stability and reproducibility
of the immunosensor

The selectivity of the immunosensor was investigated by com-
paring the DPV response changes with incubation in ZENs
(α-ZOL, β-ZOL, ZAN, α-ZAL and β-ZAL) solution and
some other common co-occurring mycotoxins (OTA,DON
and AFB1) solution under the same concentration of
50 ng mL−1. Figure 5a showed that the current changes (ΔI)
were 6.48 μA for ZEN, 1.6 μA for α-ZAL, 3.74 μA for β-
ZAL, 1.39 μA for α-ZOL, 1.73 μA for β-ZOL, and 0.96 μA
for ZAN, respectively, while no significant changes were ob-
served for OTA, DON and AFB1 (ΔI < 0.15 μA). The

Fig. 4 Calibration plot for ZEN detection obtained with the
immunosensor. a The DPVs of the immunosensor after incubation in
different concentrations of ZEN standard solution (from a to k): 0,

0.005, 0.01, 0.05, 0.1, 0.5, 1, 2.5, 5, 10, and 50 ng mL−1. b The linear
relationship between the current response at a working potential of 0.18 V
(vs SCE) and ZEN concentration in the range of 0.005–50 ng mL−1

Table 1 Label-free immunosensors for determination of ZENs

References Working electrode Antibody immobilization Linear range
(ng mL−1)

LOD
(pg mL−1)

Target analytes

[23] GCE/mesoporous carbon@Au-core@AgPt/Ab/BSA Adsorption 0.005–15 1.7 ZEN

[24] Gold electrode/graphene sheets-NiNP/Ab/BSA EDC-NHS 0.05–10 6 Zeranol

[25] SPCE/MWCNTs-PVP/AuNPs/Ab EDC-NHS 0.05–50 16 α-zearalanol

[26] SPCE/Au–PtNPs/Ab EDC-NHS 0.03–30 10 Zeranol

This study GCE/MWCNT-PEI/AuPt-NP/SPA/Ab/BSA SPA orientation 0.005–50 1.5 Family ZENs
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obtained results indicated that the prepared immunosensor
detected family ZENs with high selectivity, which was differ-
ent from previous immunosensors focusing on detection of a
single mycotoxin [23–26]. Therefore, the immunosensor can
be applied as an indicative tool for ZENs (ZEN, α-ZOL, β-
ZOL, ZAN, α-ZAL and β-ZAL) detection without interfer-
ences from other mycotoxins.

The reproducibility of the immunosensor was evaluated via
testing DPV signals in 0.5 ng mL−1 ZEN standard solutions
with five prepared immunosensors. Five ΔI values were ob-
tained as 25.82 μA, 25.14 μA, 24.63 μA, 25.98 μA, and
25.32 μA, respectively, with a relative standard deviation
(RSD) of 2.13 %. The results validated that the fabricated
immunosensor had good reproducibility.

Additionally, by measuring the DPV response in two indi-
vidual experiments with a 10-day interval, good stability was
shown with the result that 89.04 % of its initial signal was
retained after 10 days of storage period at 4 °C. Under the
optimal conditions, the prepared immunosensor was mea-
sured by CVs for a 20-cycle successive scan, and a less than
<1 % deviation of initial responds were observed (Fig. 5b).

Performance of the immunoassay

In order to further investigate the performance of the fabricat-
ed immunosensors for ZEN analysis in real samples, two
types of corn products, including corn flour and corn based
baby food were chosen as matrices. As verified by LC-MS/
MS, the contamination levels of ZENs were 1.53 μg kg−1 in
corn flour and 0.31 μg kg−1 in corn based baby food respec-
tively. After 5 g of each product was spiked with ZEN stan-
dard solution with three spiking levels respectively, the sam-
ples were treated with 25 mL of 70 % methanol solution. The
ZEN extracting solution was then 5-fold diluted with PBS for
immunosensor tests and each experiment was repeated for
four times. The recoveries from detections results were calcu-
lated as the averages of four replicates and shown in Table S1,
giving the range 90.36%–106.40% (corn flour) and 87.65%–
109.04 % (corn based baby food) with all RSDs less than
10 %. The above results suggested that this immunosensor

assay was feasible for detecting ZEN reliably in real corn
based products with simple pretreatment.

Conclusion

In summary, a sensitive and cost-effective label-free
immunosensor was constructed based on the oriented immo-
bilization of a MAb specific for ZENs and DPV intensity as
the readout signal for direct detection of family ZENs. The
applications of MWCNTs and AuPt-NPs enhanced the con-
ductibility and provided large surface area for loading biomol-
ecules. MAb was immobilized efficiently towards SPAwhich
increased the sensitivity of the immunosensor. With excellent
sensitivity, high reproducibility and stability, good selectivity
and satisfactory accuracy for ZENs, the immunosensor,
coupled with simple pretreatment, provide a feasible and reli-
able way for monitoring family ZENs in real food samples.
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